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Abstract 
Background 

Phenome-Wide Association Studies (PheWAS) are a high throughput approach to evaluate 
comprehensive associations between genetic variants and a wide range of phenotypic measures. One of 
the main challenges with PheWAS is the varying sample size ranges of cases and controls across the 
many phenotypes of interest, that could affect statistical power to detect associations. The motivation of 
this study is to investigate the parameters, including sample size, that affect estimation of statistical power 
in PheWAS.  

Results 

We performed a PheWAS simulation study, where we investigated variation in statistical power based on 
different parameters like overall sample size, number of cases, case-control ratio, minor allele frequency, 
and disease penetrance. The simulation was performed on both dichotomous and continuous phenotypic 
measures. Our simulation on dichotomous traits suggests that the number of cases have more impact 
than the case to control ratio; also we find that a sample size of 200 cases or more seems to maintain 
statistical power to identify associations for common variants. For continuous measures, a sample size of 
1000 or more individuals performed best in the power calculations. We primarily focused on common 
variants (MAF>0.01) in this study; However, in future studies, we will be extending this effort to perform 
similar simulations on rare variants. 

Conclusions 

This study provides a series of PheWAS simulation analysis that can be used to estimate statistical power 
under a number of potential scenarios.  These results can be used to provide guidelines for appropriate 
study design for future PheWAS analyses. 
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Background 

PheWAS approaches have been implemented in variety of different studies like the eMERGE 
network[1–5] with electronic health record information that includes international classification of 
disease version 9 (ICD-9) code based diagnoses, laboratory test measurements and 
demographic information. Other PheWAS include data from epidemiological studies[6,7], as well 
as clinical trials[8,9] such as the AIDS clinical trial group (ACTG) which collected a range of 
measurements for different clinical domains like pharmacology, metabolism, virology, and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2017. ; https://doi.org/10.1101/115550doi: bioRxiv preprint 

https://doi.org/10.1101/115550
http://creativecommons.org/licenses/by/4.0/


 2 

immunology[8,9]. Cohorts like these with large number of measurements for every individual 
have made PheWAS an effective approach to scan over hundreds and thousands of 
associations in a high-throughput way. PheWAS serve as a great tool to generate genetic 
association hypotheses for multiple phenotypes as well as provide insights in cross-phenotype 
associations. Unlike a GWAS where one phenotype is evaluated, PheWAS utilizes a wide range 
of phenotypes collected for a variety of biological interests for each dataset. Thus in PheWAS, 
the data collected for different measurements can vary dramatically in sample size, including 
specifically the numbers of cases for diagnoses can be considerably different depending on the 
rarity of the diagnosis.  This makes the estimation of statistical power for PheWAS a challenge. 
For example, in electronic health record (EHR) data, one of the most commonly used data types 
are ICD-9 codes; these codes provide information on disease diagnosis, procedures, and 
medications in the form of 3-5 digit codes. The longitudinal ICD-9 data collected over many 
years varies drastically between patients due to multiple factors such as differences in the 
frequency of patient visits, differences in length of records due to varying start and end dates, 
and lack of medical history with outpatient data. These factors generate sparseness and 
missing information in the data and hence variability in number of cases, case-control ratio, as 
well as overall sample size in case-control study designs. These factors could potentially affect 
the estimations from association testing. 
 
The goal of this study is to perform power estimations altering number of parameters 
encountered in PheWAS, to determine the appropriate thresholds to use for number of cases or 
total sample size, as well as the ratio of cases to controls for a given phenotype.  It is 
challenging to make study design decisions regarding sample size at the outset of a PheWAS 
from an EHR with either case-control phenotypes (ICD-9 codes) or quantitative trait phenotypes 
(clinical lab variables) as the number of cases or samples will vary for each phenotype. We run 
into three issues with low sample size phenotypes: 1) we have low statistical power to identify or 
replicate any associations and 2) we may potentially have biased estimates in analyses with low 
sample size, and 3) we increase our multiple hypothesis testing burden by testing low powered 
phenotypes. In this paper, we investigate a number of different factors that could influence the 
statistical power in association testing with a PheWAS and these simulations can provide 
empirically derived evidence to guide future PheWAS study designs.  
 
Methods: 
 
Simulation Study 
We designed a simulation approach with different combinations of genotype and phenotype 
parameters and then performed association testing to investigate the factors that could 
influence the statistical power to detect a signal.  
 
The design process for a binary disease outcome was to simulate datasets with different 
number of cases, and for each count of cases we evaluated all permutations of parameters 
including: case to control ratio, minor allele frequency, and several disease penetrance 
measures. We used R to generate random population-based samples with genotypes and their 
disease status using different input parameters aforementioned. For example, we generated 
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one simulated model with 10 cases and 10 controls when case to control ratio is 1:1, 0.01 minor 
allele frequency, 0.15 disease penetrance and an additive genotype model (0,1,2). Under each 
simulation model, we generated 1000 datasets for each combination and then calculated 
associations using logistic regression for binary traits and linear regression for quantitative traits 
implemented in the statistical package PLATO (http://ritchielab.psu.edu/plato). Please refer to 
Table 1 for all the different combinations of parameter values used for simulation.  
 
For the continuous or quantitative trait simulations, we investigated the power estimates by 
varying the sample size, and for each bin we evaluated the power for different permutations of 
minor allele frequency and disease penetrance. Again, we generated 1000 datasets for each 
combination and then used linear regression to calculate associations with the quantitative 
traits. Please refer to Table 2 for all the different combinations of parameter values used for the 
quantitative trait simulations. 
 
Table 1: Parameters for case-control simulation 
 

Case-Control Ratio Cases Controls MAF Penetrance 𝛽0 

1:2 
1:4 
1:8 

1:16 
1:50 

1:100 
1:500 

1:1000 

10 

20 
40 
 80 
160 
500 

1,000 
5,000 

10,000 

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 

1:2 
1:4 
1:8 

1:16 
1:50 

1:100 
1:500 

1:1000 

50 

100 
200 
400 
800 

2,500 
5,000 

25,000 
50,000 

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 

1:2 
1:4 
1:8 

1:16 
1:50 

1:100 
1:500 

1:1000 

100 

200 
400 
800 

1,600 
5,000 

10,000 
50,000 

100,000 

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 

1:2 
1:4 
1:8 

1:16 
1:50 

1:100 
1:500 

1:1000 

200 

400 
800 

1,600 
3,200 

10,000 
20,000 

100,000 
200,000  

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 

1:2 
1:4 
1:8 

1:16 
1:50 

500 

1,000 
2,000 
4,000 
8,000 

25,000 

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 
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1:100 
1:500 

1:1000 

50,000 
250,000 
500,000 

1:2 
1:4 
1:8 

1:16 
1:50 

1:100 
1:500 

1:1000 

1000 

2,000 
4,000 
8,000 

16,000 
50,000 

100,000 
500,000 

1,000,000 

0.01 
0.05 
0.1 

0.25 
0.4 

0.15 
0.2 
0.3 

0.1 

 
 
Table 2: Parameters for quantitative measurements 

Sample Size MAF Penetrance 𝛽0 

10 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

50 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

100 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

200 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

500 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

1,000 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

5,000 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

10,000 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 

25,000 0.01, 0.05, 0.1, 0.25, 0.4 0.15, 0.2, 0.3 0.1 
 
Results 
 
Binary variable simulation 
 
We designed a simulation approach with different combinations of genotype and phenotype 
parameters and then performed association testing to investigate the factors that could 
influence power to detect a signal as explained ablove. We performed all permutations of the 
parameter settings shown in Table 1.  
 
In Figure 1, we show trends in the estimates of power at a p-value of 0.01 for different 
parameters used for simulation. First, we observed an increase in power with an increase in 
penetrance irrespective of any change in other parameters and this is expected as highly 
penetrant disease are more likely to be identified even with small numbers of samples (this is 
due to having a high effect size). We also identified that the ratio between cases and controls 
does not have much impact on the power. It is actually the number of cases that largely 
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influences the power to detect genetic associations. For example, as shown in Figure 1, the 
case-control ratio has inconsiderable affect on power whereas with the increase in case number 
we see three times increase in power to identify an association. These simulations also show 
the importance of minor allele frequency threshold when calculating associations on genotype 
models with an additive effect. Here, we find that all of the simulation models showed increased 
performance with minor allele frequency greater than 5%. The model with lower frequency 
variants (MAF between 1% and 5%) did not reach 100% power until the case threshold was 
increased to 1000 samples and the model exhibited high disease penetrance.  
 
Figure 1. Binary Trait Power Results. Power of each simulation analysis with case-control 
ratio on the x-axis, minor allele frequency indicated by different colored lines, and power on the 
y-axis. Each box presents power for one value of the case count and penetrance combination. 
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Quantitative trait simulation 
 
We also performed similar simulation analysis on quantitative measurements (such as clinical 
lab variables) to identify a sample size threshold for multi-phenotype based studies like 
PheWAS. We used the same parameter matrix for simulations as was done for binary variables 
with the exception of the cases and case-control ratio (Table 2). For quantitative traits, we use 
different sample size numbers for the simulation ranging from 10 to 25,000, as these are based 
on estimates of sample sizes we observe in EHR or clinical trials datasets. In Figure 2, we 
show a similar graph as in the binary variable simulation where the x-axis has different sample 
sizes of the data set and on y-axis is the power of association. We observed almost no power 
until the dataset had approximately 1000 samples for a phenotype with penetrance of 0.15 and 
as expected we see the increase in power with higher penetrance even at smaller sample sizes. 
Around the sample size of 1000, we see an increase in power with slight variation with different 
minor allele frequencies. Again variants with rare minor alleles did not perform well until a 
sample size of 1000 and penetrance of 0.3. These quantitative variable simulations suggest that 
a threshold of 1000 samples for models with MAF greater than 5% in PheWAS and larger 
sample size or different statistical approach to evaluate rare variants. 
 
Figure 2: Quantitative Trait Power Results. power of each simulation analysis by sample 
size, penetrance and minor allele frequency.  
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Discussion 
 
PheWAS provides a great genomic landscape of multiple phenotypes, but a challenge of 
PheWAS is the range of sample sizes and case numbers that is inherent with large EHR or 
clinical trials-based datasets. For example, there are 14,025 possible ICD-9 diagnosis codes 
and 3,824 procedure codes used by EHR systems within healthcare provider organizations. 
With the introduction of ICD-10, the number of ICD-based codes has further increased to 
approximately 69,000. PheWAS is a high throughput approach to test for hundreds and 
thousands of variables, but testing 14,025 diagnosis codes for association with up to 1-million or 
more genetic variants can result in a very high multiple testing burden. Also, a large fraction of 
codes will have very low case numbers due to rarity of the disease, and thus may not be 
sufficiently powered for association detection. For example, Geisinger Heath System (GHS) is 
one of the largest health care providers in central Pennsylvania with an EHR including ~1.2 
million unique patients. We looked into the GHS EHR data of around 100,000 participants 
consented into the MyCode® Community Health Initiative[10] to evaluate the extent of the 
variability in number of ICD-9 codes by case sample count. In order to account for misdiagnosis 
of missing medical history, it is advisable to define a patient as a case for an ICD-9 code only 
when they have three or more visits in their EHR where that specific code was represented in 
the patient record.  Out of 14,025 codes, 33% are not coded at all and ~30% fewer than 10 
patients with that code (case count <10). As shown in Figure 3, even after dropping out more 
than 60% of the ICD-9 codes there are still 3,568 codes with 10 or more patients labeled as 
cases, which still adds to the multiple hypothesis burden. As we identified in our binary trait 
simulation, the power for identifying association shows considerable increase at a case 
threshold of 200 with power estimates > 50% for common variant (MAF > 0.01).  In the GHS 
EHR data, there are 831 ICD-9 codes with at least 200 patients labelled as case (as shown in 
Figure 3). We recommend using 200 as a case threshold for a common variant PheWAS 
analysis as it provides enough power to identify the association and also reduces multiple 
hypothesis burden by excluding low confidence ICD-9 codes. In the case of PheWAS on 
quantitative traits, our simulation suggests that a sample size of 1000 individuals will provide 
enough power to identify an association. 
 
Conclusions 
 
PheWAS have become a common tool to explore the genotype-phenotype landscape of large 
biobanks linked to comprehensive phenotype/trait data collections as in EHRs, clinical trials, or 
epidemiological cohort studies.  This high-throughput analysis approach has been met with 
much success in recent years (cite some PheWAS papers from the literature).  However, the 
community has been lacking guidance for making study design decisions regarding sample 
size, case to control ratios, and minor allele frequency.  At present, there is not a PheWAS 
Power Calculator available to researchers.  Thus, we implemented a large-scale simulation 
study to provide some guidelines for understanding the statistical power of PheWAS analyses 
under different scenarios.  We believe these simulation results provide the needed power 
estimates for future PheWAS analysis decisions.   
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Figure 3  Frequency distribution of ICD-9 code-based case counts in 100,000 MyCode 
participants EHRs 
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