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Abstract

Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI)
technique used for studying microstructural changes in the white matter. As with many other
imaging modalities, DTI images suffer from technical between-scanner variation that hinders
comparisons of images across imaging sites, scanners and over time. Using fractional anisotropy
(FA) and mean diffusivity (MD) maps of 205 healthy participants acquired on two different scan-
ners, we show that the DTI measurements are highly site-specific, highlighting the need of cor-
recting for site effects before performing downstream statistical analyses. We first show evidence
that combining DTI data from multiple sites, without harmonization, is counter-productive and
negatively impacts the inference. Then, we propose and compare several harmonization ap-
proaches for DTI data, and show that ComBat, a popular batch-effect correction tool used in
genomics, performs best at modeling and removing the unwanted inter-site variability in FA
and MD maps. Using age as a biological phenotype of interest, we show that ComBat both
preserves biological variability and removes the unwanted variation introduced by site. Finally,
we assess the different harmonization methods in the presence of different levels of confounding
between site and age, in addition to test robustness to small sample size studies.
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1 Introduction

Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique
for studying the white matter (WM) organization and tissue characteristics of the brain. Diffusion
tensor imaging has been used extensively to study both brain development and pathology; see
Alexander et al. [2007] for a review of DTI and several of its applications. In studies assessing
white matter tissue characteristics, two commonly reported complementary scalar maps are the
mean diffusivity (MD), which assesses degree to which water diffuses at each location, and fractional
anisotropy (FA), which measures the coherence of the water to diffuse in one particular direction.
Together, MD and FA provide a complementary description of white matter.

With the increasing number of publicly availably neuroimaging databases, a crucial goal is to be
able to combine large-scale imaging studies to increase the power of statistical analyses to test
common biological hypothesis. For instance, for life-span studies, combining data across sites and
age ranges is essential to obtain a significant number of participants at each age level. The success
of combining multi-site imaging data depends critically on the comparability of the images across
sites. As with other imaging modalities, DTI images are subject to technical variability across
scans, including heterogeneity in the imaging protocol, variations in the scanning parameters and
differences in the scanner manufacturers [Zhu et al., 2009, 2011]. Among others, the reliability of FA
and MD maps have been shown to be affected by angular and spatial resolution [Zhan et al., 2010,
Alexander et al., 2001, Kim et al., 2006], the number of diffusion weighting directions [Giannelli
et al., 2009], the number of gradient sampling orientations [Jones, 2004], the number of b-values
[Correia et al., 2009], and the b-values themselves.

In the design of multi-site studies, defining a standardized DTI protocol is a first step towards reduc-
ing inter-scanner variability. However, even in the presence of a standardized protocol, systematic
differences between scanner manufacturers, field strength and other scanner characteristics will sys-
tematically affect the DTI images and induce inter-scanner variation. Image-based meta analysis
(IBMA) techniques, reviewed in Salimi-Khorshidi et al. [2009], are common methods to combine
results of multi-site studies with the goal of testing a statistical hypothesis. IBMA methods circum-
vent the need of harmonizing images across sites by performing site-specific statistical analyses and
combining results afterwards. Fisher’s p-value combining method and Stouffer’s z-transformation
test, applied to Z or T transformation of the images, are two common IBMA techniques. Fixed-
effect models based on (possibly) normalized images, and mixed-effect models to model the inter-
and intra- site variability, are other common techniques for the analysis of multi-site data. Meta-
analysis techniques are promising for studies with a large number of participants at each site. For
instance, the ENIGMA-DTI working group has been successfully using and validating meta-analysis
techniques on such multi-site DTI data [Jahanshad et al., 2013, Kochunov et al., 2014].

Meta-analysis techniques have several limitations. First of all, study-specific samples might not be
sufficient to estimate the true biological variability in the population [Mirzaalian et al., 2016]. As
mentioned in De Wit et al. [2014], adjusting for variability at the participant-level is problematic
in meta-analyses, since only group-level demographic and clinical information is available. Another
limitation is that for a multi-site study, computing site-specific summary statistics will be affected
by unbalanced data. For instance, the calculation of a variance using unbalanced datasets is highly
affected by the ratio cases/controls in the sample [Linn et al., 2016b]. Another limitation, for
imaging studies with small sample sizes, the parameters of the z-score transformations cannot be
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robustly estimated, yielding suboptimal statistical inferences.

On the other hand, mega-analyses, in which the imaging data are combined before performing
statistical inferences, has the potential to increase power compared to meta-analyses [De Wit et al.,
2014]. In addition, pooling imaging data across studies has the benefit to enrich the clinical picture
of the sample by increasing the variability in symptom profiles [Turner, 2014] and demographic
variables. This is particularly important for age-span studies. However, pooling data across studies
may increase the heterogeneity of the imaging measurements by introducing undesirable variability
caused by differences in scanner protocols. Harmonization of the pooled data is therefore necessary
to ensure the success of mega-analyses. The DTI harmonization technique proposed in Mirzaalian
et al. [2016] is a first step towards that direction. The method is based on rotation invariant spherical
harmonics (RISH) and combines the unprocessed DTI images across scanners. Unfortunately, a
major drawback of the method is that it requires DTI data to have similar acquisition parameters
across sites, an assumption often not realistic in multi-site observational analyses.

In this work, we adapt and compare several statistical approaches for the harmonization of DTI
studies that were previously developed for other data types: Functional normalization [Fortin et al.,
2014], RAVEL [Fortin et al., 2016a], Surrogate variable analysis (SVA) [Leek and Storey, 2007]
and ComBat [Johnson et al., 2007], a popular batch adjustment method developed for genomics
data. We also include a simple method that globally rescales the data for each site using a z-
score transformation map common to all features, which we refer to as “global scaling”. For the
evaluation of the different harmonization techniques, we use DTI data acquired as a part of two
large imaging studies ([Satterthwaite et al., 2014] and [Ghanbari et al., 2014]) with images acquired
on different scanners, using different imaging protocols. The participants are teenagers, and were
matched across studies for age, gender, ethnicity, and handedness.

We first analyze the site-related differences in the FA and MD measurements, and show evidence
of significant site effects that are not homogenous throughout the brain. This motivates the need
of a harmonization technique that is sensitive to region-specific scanner effects. Then, we harmo-
nize the data with the different proposed harmonizations, and evaluate their performance using a
comprehensive evaluation framework. We consider a harmonization method to be successful if: (1)
it removes the unwanted variation induced by site and differences in imaging protocols and (2) it
preserves between-subject biological variability. Both conditions must be simultaneously tested on
the same set of images. Indeed, it is pointless to remove the noise associated with site if we cannot
concurrently maintain the biological variation.

Using several criteria for evaluating (1) and (2), we show that the ComBat is the most effective
harmonization technique for DTI studies, and is a promising method for other imaging studies. It
performs the best at removing unwanted variation induced by site while preserving the biological
variation associated with age. It allows location-specific site correction factors, and uses an empir-
ical Bayes framework to improve the estimation of the parameters for imaging sites with a small
number of participants. Similar to the other proposed methods in this paper, ComBat does not
make assumptions on the origin of the site effects, and therefore does not require the images to be
acquired with similar protocols.
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2 Methods

2.1 Data

We consider two DTI studies from two different scanners. To investigate the effect of scanner
variations on the DTI measurements, we matched the participants for age, gender, ethnicity and
handedness, resulting in 105 participants retained in each study for further analysis. The charac-
teristics of each dataset are described below.

Dataset 1 (Site 1): PNC dataset. We selected a subset of the Philadelphia Neurodevelopmental
Cohort (PNC) [Satterthwaite et al., 2014], and included 105 healthy participants from 8 to 19 years
old. 83 of the participants were males (22 females), and 75 participants were white (30 non-white).
The DTI data were acquired on a 3T Siemens TIM Trio whole-body scanner, using a 32 channel
head coil and a twice-refocused spin-echo (TRSE) single-shot EPI sequence with the following
parameters: TR=8100 ms and TE = 82 ms, b-value of 1000 s/mm2, 7 b = 0 images and 64 gradient
directions. The images were acquired at 1.875 x 1.875 x 2 mm resolution.

Dataset 2 (Site 2): ASD dataset. The dataset contains 105 healthy participants from a study
focusing on autism spectrum disorder (ASD) [Ghanbari et al., 2014]. 83 of the participants were
males (22 females), and 79 participants were white (26 non-white). The age of the participants
ranges from 8 to 18 years old. The DTI data were acquired on a Siemens 3T Verio scanner, using
a 32 channel head coil and a single shot spin-echo planar sequence with the following parameters:
TR=11,000 ms and TE = 76 ms, b-value of 1000 s/mm2, 1 b = 0 image and 30 gradient directions.
The images were acquired at 2mm isotropic resolution.

For benchmarking the different harmonization procedures, we use two additional subsets of the
PNC database, with participants who differ from Dataset 1:

Independent Dataset 1: The dataset contains 292 additional healthy participants from the PNC
with an age range similar to Dataset 1.

Independent Dataset 2: The dataset contains 105 additional healthy participants from the PNC
with a slightly older age distribution than that of Dataset 1.

2.2 Image processing

Quality control on diffusion weighted images was performed manually. Datasets were excluded
for field of view issues or intensity artifacts in the DWI that compromised more than 10% of
the weighted images, or compromised the b0 image. Any artifact-affected weighted images were
removed from the DWI volume if the volume as a whole was not excluded. DWI data were denoised
using a joint anisotropic LMMSE filter for Rician noise [Tristán-Vega and Aja-Fernández, 2010].
The bo was extracted and skull-stripped using FSL’s BET tool [Smith, 2002], and the DTI model
was fit within the brain mask using an unweighted linear least-squares method. Subsequently, the
FA and MD maps were calculated from the resultant tensor image using the python package dipy

[Garyfallidis et al., 2014]. The FA and MD images were co-registered to the T1-w image using
FSL’s flirt tool [Jenkinson and Smith, 2001, Jenkinson et al., 2002]. The FA and MD maps were
then non-linearly registered to the Eve template using DRAMMS [Ou et al., 2011]. A 3-tissue class
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Figure 1. ComBat site effect parameters for FA. (a) The voxel-wise estimates of the
location parameter γiv for site 1 (dotted grey line) and site 2 (dotted red line) for the FA maps.
The solid lines represent the prior distributions (normal distributions with mean γ̄1 and γ̄2
respectively) estimated in the ComBat procedure using empirical Bayes. (b) The voxel-wise
estimates of the scale parameter δiv for site 1 (dotted grey line) and site 2 (dotted red line). The
solid lines represent the EB-based prior distributions (inverse gamma distributions) estimated in
the ComBat procedure. (c) Final EB-estimates for the site effects parameters for site 1 (first and
third row) and site 2 (second and fourth row) in template space.

T1-w segmentation was performed using FSL’s FAST tool [Zhang et al., 2001] to obtain GM, WM
and CSF labels.

2.3 Harmonization methods

We propose to use and adapt five statistical harmonization techniques for DTI data: global scaling,
functional normalization [Fortin et al., 2014], RAVEL [Fortin et al., 2016a], Surrogate Variable
Analysis (SVA)[Leek and Storey, 2007, 2008] and ComBat [Johnson et al., 2007]. We refer to the
absence of harmonization as “raw” data. We now describe the five different methods below with
their implementation to the current datasets. For brevity, the different methods are presented in
the context of FA intensities, but are similar for MD intensities and other modalities. We use the
notation yijv to denote the FA measure at site i, for scan j and voxel v.
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2.3.1 Global scaling

The global scaling (GS) approach is a model that assumes that the effect of each site on the DTI
intensities can be summarized into a pair of a global shift and scale parameters (θi,location, θi,scale).
More specifically, taking the average intensity map across all sites as a virtual reference site, the
location parameter θi,location and the scale parameter θi,scale for site i can be obtained by fitting
the linear model

Ȳi = θi,location + θi,scaleȲ + Ei, (1)

where Ȳi is the p× 1 average vector of FA intensities for site i, Ȳ is the p× 1 global average vector
of FA intensities across sites and Ei is a vector of residuals assumed to have mean 0 and variance
σ2. Estimates θ̂i,location and θ̂i,scale can be obtained by ordinary least squares (OLS). To remove
the effect of site i on the data, we set the GS-harmonized FA intensity for voxel v and for scan j
to be

yGS
ijv =

yijv − θ̂i,location

θ̂i,scale
.

A more flexible model would be to fit a LOESS or LOWESS curve [Cleveland, 1979, 1981] at
each site separately to allow for nonlinearity. This idea was previousy used in the so-called loess
normalization [Bolstad et al., 2003].

2.3.2 Functional normalization

We apply the functional normalization algorithm, described in Fortin et al. [2014] and later refined
in Klein et al. [2015], using site as a covariate. It has been successfully used to integrate data from
different genomic array technologies [Fortin et al., 2016b]. Briefly, the algorithm removes the site
effect in the marginal distribution of the FA intensities by modeling the variation in the quantile
functions as a function of site. After correction, the marginal densities of the FA intensities are
more similar across sites.

2.3.3 RAVEL

The RAVEL algorithm described in Fortin et al. [2016a] attempts to estimate a voxel-specific
unwanted variation term by using a control region of the brain to estimate latent factors of unwanted
variation common to all voxels. It is an extension of a previous intensity normalization, called White
Stripe [Shinohara et al., 2014], developed to normalize white matter intensities in structural MRI.
Similar to the control region used in Fortin et al. [2016a], we use voxels labelled as CSF as a control
region. The FA values in CSF are expected to be 0, and fluctuations in the FA measurements in
CSF are most likely technical in nature. In Figure A.1a), we show a strong correlation between
average FA in the WM and average FA in the CSF. The FA values in the CSF can therefore act a
surrogates for site effects in the WM.

Similar to RUV [Gagnon-Bartsch and Speed, 2012], we use singular value decomposition (SVD)
to obtain k latent factors of unwanted variation, denoted w1,w2, . . . ,wk, estimated from the CSF
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control voxels. Using cross-validation, we retain only the first latent factor for further analysis. At
each voxel v in the WM, we fit the following linear regression model

yijv = αv + ψvw1ij + εijv

to obtain the voxel-specific RAVEL coefficients ψ̂v (shown in Figure A.1b in template space). We
set the RAVEL-harmonized intensity to be yRAVEL

ijv = yijv − ψ̂vw1ij . The results for MD maps are
shown in Figure A.1c-d.

2.3.4 SVA

The SVA algorithm estimates latent factors of unwanted variation, called surrogate variables, that
are not associated with the biological covariates of interest. It is particularly useful when the
site variable is not known, or when there exists residual unwanted variation after the removal of
site effects. We used the reference implementation of SVA in the sva package [Leek et al., 2012],
and surrogate variables were estimated using the iteratively re-weighted SVA algorithm [Leek and
Storey, 2008]. We provided age and gender as covariates of interest to include in the regression
models. The algorithm returns s surrogate variables z1, z2, . . . , zs, where s is estimated internally by
the algorithm. Similar to RAVEL, we fit at each voxel v in the WM the following linear regression
model

yijv = αv +

s∑
l=1

φlvzlij + εijv

to obtain estimates φ̂1v, φ̂2v, . . . , φ̂sv. We set the SVA-harmonized intensity to be ySVAijv = yijv −∑s
l=1 φ̂lvzlij .

2.3.5 ComBat

The ComBat model was introduced in the context of gene expression analysis by Johnson et al.
[2007] as an improvement of location/scale models [Parmigiani et al., 2003] for studies with small
sample size. Here, we reformulate the ComBat model in the context of DTI images. We assume
that the data come from m imaging sites, containing each ni scans within site i for i = 1, 2, . . . ,m,
for voxel v = 1, 2, . . . , p. Let yijv represent the FA measure for voxel v for scan j for site i. After
some standardization dicussed in Johnson et al. [2007], ComBat posits the following location and
scale (L/S) adjustment model:

yijv = αv + Xijβv + γiv + δivεijv, (2)

where αv is the overall FA measure for voxel v, X is a design matrix for the covariates of interest
(e.g. gender, age), and βv is the voxel-specific vector of regression coefficients corresponding to
X. We further assume that the error terms εijv follow a normal distribution with mean zero and
variance σ2v . The terms γiv and δiv represent the additive and multiplicative site effects of site i for
voxel v, respectively. ComBat uses an empirical Bayes (EB) framework to estimate the parameters
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γiv and δig by pooling information across voxels. To do so, the site-effect parameters are assumed
to have the parametric prior distributions:

γiv ∼ N(γi, τ
2
i ) and δ2iv ∼ Inverse Gamma(λi, θi). (3)

The hyperparameters γi, τ
2
i , λi, θi are estimated empirically from the data as described in Johnson

et al. [2007]. In Figure 1, we present the distributions of the voxel-wise estimates γiv and δ2iv for each
site (dotted lines) together with the estimated prior distributions (solid lines); the estimated prior
distributions fit the data well. We note that the sva package also offers the option to posit non-
parametric priors for more flexibility, at the cost of increasing computational time. As described in
Johnson et al. [2007], the ComBat estimates γ∗iv and δ∗iv of the site effect parameters are computed
using conditional posterior means, and are shown in Figure 1c) in template space.

The final ComBat-harmonized FA values are defined as

yComBat
ijv =

yijv − α̂v − Xijβ̂v − γ∗iv
δ∗iv

+ α̂v + Xijβ̂v

2.4 Evaluation framework

We consider a harmonization method to be successful if: (1) it removes the unwanted variation
induced by site, scanner or differences in imaging protocols; (2) it preserves between-subject bio-
logical variability. Both conditions must be simultaneously tested on the same set of images; it is
pointless to remove the noise associated with site if we cannot concurrently maintain the biological
variation.

To evaluate (1), we calculate two-sample t-tests on the DTI intensities, testing for a difference
between Site 1 and Site 2 measurements. We perform the analysis both at the voxel and ROI level.
A harmonization technique that successfully removes site effect will result in non-significant tests,
after possibly correcting for multiple comparisons. Criteria for (2) are harder to devise because of
the absence of a gold-standard for the association of voxels or regions of the brain with a biological
covariate. In Mirzaalian et al. [2016], the authors perform a multi-site harmonization on healthy
participants, and show that the coefficient of variation (CoV) in FA at each site, measuring the
intra-site variability, is comparable before and after harmonization. However, since the intra-site
variability is a mixture of intra-site technical variability and intra-site biological variability, it does
not directly follow that biological variability is preserved. Another approach to test whether or
not (2) is satisfied is to create a synthetic experiment in which known biological effects, such as
changes in FA associated with a particular disease, are added to a subset of the images. While
potentially helpful, such simulations are rarely realistic; in real data, the structure of the noise is
often complex and confounded with the signal component. Instead, we base our evaluation of (2)
on the consistency, replicability and validity of voxels associated with biological variation, using
age as the biological factor of interest. We further detail these criteria below.

2.4.1 Consistency of the voxels associated with age

We use the consistency of the voxel-specific associations with age as a first primary criterion for the
preservation of biological signal. Associations with age are measured using usual Wald t-statistics
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Figure 2. Discovery-validation scheme for the estimation of consistency. To estimate
the performance of a harmonization procedure at improving the consistency of the voxels
associated with age, we use the harmonized dataset as a discovery cohort, and both Site 1 and
Site 2 separately as validation cohorts. For each cohort separately, we perform a mass-univariate
analysis for age to obtain a t-statistic at each voxel. This yields one vector of t-statistics for the
discovery cohort, tdis, and two vectors of t-statistics for the two validation cohorts (tval1 for Site 1
and tval2 for Site 2). We calculate the agreement between tdis and tval1 using the concordance at
the top (CAT) curve, described in the Methods section, and denote it by CAT1. Similarly, we
calculate CAT2 from tdis and tval2. A harmonization method that improves the consistency of the
harmonized voxels with respect to the individual sites will improve the average CAT curve
(CAT1 + CAT2)/2.
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from linear regression. By consistency, we mean that the results returned by performing a statistical
analysis at each site separately should be consistent with the results returned by performing a
statistical analysis on the combined and harmonized data. The combined dataset is a mixture of
both sites, and therefore the results should be correlated with the results obtained at each individual
site. If it is not the case, this would indicate that combining datasets is counterproductive and
adds noise to the analysis. We test the consistency of the voxels associated with age using a
discovery-validation scheme.

In the discovery-validation scheme, we consider the harmonized dataset (Site 1 + Site2 + Harmo-
nization) as a discovery cohort, and perform a mass-univariate analysis that estimates a t-statistic
at each voxel testing for association with age. We denote the resulting vector of t-statistics by
tdis. We then perform a mass-univariate analysis for the two sites separately, that we consider as
two independent validation cohorts, and obtain two vectors of t-statistics tval1 and tval2. in the
case of a successful harmonization, the vector tdis should be more similar to both vectors tval1 and
tval2. While one could use the usual Pearson correlation coefficient to test for consistency, this has
the drawback of considering all voxels equally (both signal and noise voxels), and therefore is not
restrained to the voxels of interest. Because we wish to test for the consistency of the signal voxels
only (voxels associated with age), we instead use concordance at the top (CAT) curves [Irizarry
et al., 2005]. The CAT curves estimate the overlap between the top k t-statistics, which are the
voxels most likely associated with age, for all possible values of k. A CAT curve closer to 1 indicates
better overlap between the two lists of t-statistics. We calculate two CAT curves: CAT1, which
measures the consistency between tdis and tval1, and CAT2, which measures the consistency between
tdis and tval2. We consider the average curve CAT1,2 = CAT1+CAT2

2 as a measure of consistency
across studies. We summarize the discovery-validation scheme for consistency in Figure 2.

2.4.2 Replicability of the voxels associated with age

Another criterion for estimating the performance of image harmonization is to measure the replica-
bility of the voxels associated with age. Replicability is defined as the chance that an independent
experiment will produce a similar set of results [Leek and Peng, 2015], and is a strong indication
that a set of results is biologically meaningful. We estimate the replicability of the voxels associ-
ated with age in a similar way as the consistency, presented above, but use independent discovery
and validation cohorts. To achieve this, we consider the harmonized dataset (Site 1 + Site 2 +
Harmonization) as a discovery cohort, and a independent dataset, with unrelated participants, as
a validation cohort (Independent Dataset). Two independent datasets are considered in this paper
and are described in the Data section. We then perform a mass-univariate analysis for the discovery
and validation cohort separately, which yields two vectors of t-statistics, tdis and tval. We measure
the overlap between tdis and tval using a CAT curve, which serves as a measure of replicability. We
summarize the discovery-validation scheme for consistency in Figure 3.

2.4.3 Creation of silver-standards

To further evaluate the performance of the different harmonization methods, we create two sets
of silver-standards: a silver-standard for voxels that are truly associated with age (signal silver-
standard), and one for voxels not associated with age (null silver-standard).
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Site 1 Site 2 
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dataset 

ASD 
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Y1	  
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f(Y1,Y2) 

Harmonization 

Mass-univariate 
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Y3	  
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(no action) 
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Figure 3. Discovery-validation scheme for the estimation of replicability. To estimate
the performance of a harmonization procedure at improving the replicability of the voxels
associated with age, we use the harmonized dataset as a discovery cohort, and an independent
dataset (different participants) as a validation cohort. For each cohort separately, we perform a
mass-univariate analysis for age to obtain a t-statistic at each voxel. This yields two vectors of
t-statistics, tdis and tval, for the discovery and validation cohorts respectively. We calculate the
agreement between tdis and tval using the concordance at the top (CAT) curve, described in the
Methods section. A harmonization method that performs better will yield a vector tdis more
similar to tval, that is a CAT curve closer to 1.
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Creation of a silver-standard for voxels associated with age

Many regions in the WM have been previously demonstrated to show an increase of FA values
through adolescence, accompanied by decreasing of MD values [Tamnes et al., 2010, Bava et al.,
2010, Lebel and Beaulieu, 2011]. Because some of the reported regions are specific to FA only, or
specific to MD only, we estimate a reference set of voxels that substantially change with age for FA,
and an additional set for substantial changes in the MD maps, for each site separately. Because
our reference sets are estimated within site, they are free of site effects and should represent the
best silver-standards for voxels associated with age: we refer to those sets as signal silver-standards.
To estimate the signal silver-standard for FA (and similarly for MD), we use the following meta-
analytic approach: for each site separately, at each voxel in the WM, we apply a linear regression
model to obtain a t-statistic measuring the association of FA with age. For each site, we define
the site-specific signal silver-standard to be the k = 5000 voxels with the highest t-statistics in
magnitude. We define the signal silver-standard to be the intersection of the two site-specific signal
silver standards. This ensures that the resulting voxels are not only voxels highly associated with
age within a study, but are also replicated across the two sites.

For the FA values, this resulted in 2265 voxels for the signal silver-standard set. Among those
voxels, 21.3% are located in the thalamic region, 17.1% are located in the anterior limb of the
internal capsule (left and right) 14.8% in the posterior limb of the internal capsule (left and right),
10.8% in the midbrain, 9.7% in the cerebral peduncle and 4.9% in the globus pallidus. These results
are highly consistent with the changes reported in literature for the same age group [Schmithorst
et al., 2002, Barnea-Goraly et al., 2005, Ashtari et al., 2007, Bava et al., 2010, Giorgio et al., 2010].
For the MD values, we obtained a signal silver-standard set of 1932 voxels. 30.4% of these voxels
are located in the superior corona radiata, 15.0% are located in the superior frontal lobe, 10.1% are
located in the precentral region, 9.4% are located in the superior longitudinal fasciculus, 7.9% are
located in the middle frontal region and 6.4% are located in the thalamic region, which is consistent
with regions previously reported in the literature [Bava et al., 2010, Tamnes et al., 2010, Krogsrud
et al., 2016].

Creation of a silver-standard for voxels not associated by age

In addition to a signal silver-standard for voxels associated with age, we created silver-standard sets
for voxels unaffected by age, for both FA and MD maps, that we refer to as null silver-standards.
Our approach is similar to that of signal silver-standards. For each site separately, at each voxel in
the WM, we apply a linear regression model to obtain a t-statistic measuring the association of FA
with age. For each site, we define the site-specific silver-standard for null voxels to be the k = 5000
voxels with the lowest t-statistics in magnitude (close to 0). We define the silver-standard to be
the intersection of the two site-specific silver standards. This ensures that the resulting voxels are
voxels with least association with age within a study, and are also replicated across the two sites.

For the FA values, we obtained a silver-standard set of 405 voxels. We note that this replication
rate (8.1%) is much more lower than the replication rate for the signal silver-standard set (45.3%).
This is not surprising; strong signal voxels are more likely to replicate than noise voxels. The
top regions represented in the null silver-standard are the middle frontal lobe (8.6%), the middle
occipital lobe (6.9%) and the precuneus region (5.4%). For the MD values, we obtained a null
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silver-standard set of 101 voxels. The top regions represented in the null silver-standard are the
postcentral gyrus (5.5%) and the lingual gyrus (4.8%).

3 Results

The results are organized as follows. We first show evidence of substantial site effects in the FA
and MD maps in Section 3.1, and then show how the different harmonization methods perform at
removing those site effects in Section 3.2. In Section 3.3, we discuss the biological variability at each
site separately, before and after harmonization and show how site effects affect the number of voxels
associations with age. In Section 3.4, we present our experiments for simulating different levels of
confounding between age and site. In Section 3.5 and Section 3.6, we present the consistency
and replicability of the voxels associated with age for the different harmonization techniques. In
Section 3.7, we present the bias in the associations between DTI values and age, and show how the
different harmonization techniques perform at correcting for the bias. In Section 3.9, we show how
the different harmonization techniques are robust to small sample size studies.

3.1 DTI scalar maps are highly affected by site

In Figure 4a), we present the histogram of FA values for the WM voxels for each participant, strat-
ified by site. We observe a striking systematic difference between the two sites for all values of FA,
with an overall difference of 0.07 in the WM (Welch two-sample t-test, p < 2.2e-16). Importantly,
we notice that the inter-site variability in the histograms is much larger than the intra-site variabil-
ity, confirming the importance of harmonizing the data across sites. A convenient way to visualize
voxel-wise between-site differences in the FA values is plot the average between-site differences as a
function of the average across sites. The Bland-Altman plot [Bland and Altman, 1986], also know
as the Tukey mean-difference plot [Cleveland, 1993] or MA-plot [Dudoit et al., 2002, Bolstad et al.,
2003] has been used extensively in the genomic literature to compare treatments and investigate
dye bias. We use the more common terminology, MA-plot, and present the results for the FA values
in Figure 4b). Not surprisingly, the scatterplot is shifted away from the zero line, indicating global
site differences. Additionally, there is a large proportion of the voxels (top left voxels) appear to
behave differently from other voxels. In the white matter atlas, these voxels are identified as being
located in the occipital lobe (middle, inferior and superior gyri, and cuneus), in the fusiform gyrus
and in the inferior temporal gyrus. This indicates that the site differences are region-specific, and
that a global scaling approach will be most likely insufficient to correct for such local effects.

To further illustrate region-specific differences, we present in Figure 4c) the boxplots of FA values
for two selected regions, cuneus left and putamen left, stratified by site. Those results motivate
the need of a region-specific harmonization. We present similar results for the MD maps
in Figure 4d,e,f. We note that the site differences appear to be more subtle for MD maps, but
nonetheless present. Comparing panel c) and panel f), we observe that a brain region exhibiting
site differences in FA maps do not necessarily show site differences in the MD maps.

3.2 ComBat successfully removes site effects in both FA and MD maps
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Figure 4. FA and MD maps are affected by site. (a) Density of the FA values for WM
voxels for each participant, colored by site. (b) MA-plot for site differences in FA. The y-axis
represents the differences in FA between Site 1 and Site 2, while the x-axis shows the average FA
across sites. FA maps that would be free of site effects would result in an MA-plot centered
around 0. The upper-left part of the scatterplot shows that several voxels appear to be differently
affected by site in comparison to the rest of the voxels. (c) Boxplot of FA values for voxels
located in two regions of interest (Cuneus left and Putamen left), depicted per site (FA values
were averaged by site at each voxel separately). This shows that the magnitude of the difference
in means between the two sites is region-specific. (d-f) Same as (a-c), but for the MD maps.
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c)	
Raw	


RAVEL	


Scaling	
 Funnorm	


ComBat	
SVA	


Figure 5. MA-plots for site differences in FA maps. Mean-difference (MA) plot for the FA
maps for the different harmonization methods. At each voxel in the WM, the y-axis represents
the difference between the average FA value at site 1 and the average FA value at site 2, and the
x-axis represents the average FA value across all participants from both sites. An MA plot
centered around 0 would indicate no global site differences. In the raw data, several voxels appear
to be differently affected by site (upper-left points). The scaling and Funnorm methods
successfully center the scatterplots around 0, but do not correct for local site effects. RAVEL,
SVA and ComBat substantially perform better.
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Figure 6. Number of voxels associated with site and age. (a) For each harmonization
method, we calculated the number of voxels in the white matter (WM) that are significantly
associated with imaging site for both FA and MD. A voxel is significant if the p-value calculated
from a two-sample t-test is less than p < 0.05, after adjusting for multiple comparisons using
Bonferroni correction. Lower numbers are desirable. (b) Number of voxels in the WM that are
significantly associated with age using simple linear regression (p < 0.05) for both FA and MD.
Higher numbers are desirable. From a total of 69,693 voxels in the WM, 69,475 and 40,056 voxels
are associated with site in the raw data, for the FA and MD maps respectively. Both SVA and
ComBat successfully remove the association with site for all voxels. ComBat performs the best at
increasing the number of voxels associated with age (5,658 voxels for FA and 32,203 voxels for
MD).

In Figure 5, we present the MA-plots before and after each harmonization for the FA maps (see
Figure A.3 for the MD maps). While both the scaling and Funnorm methods centered the MA-plots
around 0, substantial technical variation remains, and local site-effects are still apparent. For the FA
maps, RAVEL, SVA and ComBat reduce greatly the inter-site differences. For the MD maps, only
SVA and ComBat successfully remove inter-site differences; RAVEL performs significantly worse.
This is not surprising: in Figure A.1, it appears there is a lack of correlation between the average
CSF value and average WM value in the MD maps. In other words, the CSF intensities do not act
as site surrogates for the WM intensities, and therefore the RAVEL methodology underperforms
in this situation.

Next, we calculated a t-statistic at each voxel to measure the association of the FA and MD values
with site. We present in Figure 6a) the number of voxels in the WM that are significantly associated
with site for each harmonization approach, for both FA and MD maps. A voxel is significant if
the p-value calculated from the two-sample t-test is less than 0.05, after correcting for multiple
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comparisons using Bonferroni correction. Most voxels are associated with site in the absence of
harmonization (raw data), and all harmonization methods reduce the number of voxels associated
with site for both FA and MD maps at different degree. In agreement with the MA-plots, RAVEL,
SVA and ComBat successfully remove site effects for most voxels in the FA maps, but only SVA
and ComBat remove site effects for most voxels in the MD maps.

We also calculated t-statistics after summarizing FA and MD values by brain region. Using the
Eve template atlas, we identified 156 region of interest (ROIs) overlapping with the WM mask. We
present the number of regions significantly associated with site in Figure A.4a). While all ROIs
are associated with site in the absence of harmonization in the FA maps, SVA and ComBat fully
remove site effects for all ROIs. Residual site effects are found for more than a third of the ROIs
for the Scaling, Funnorm and RAVEL harmonization methods. Similar results hold for the MD
maps (140 out of 156 ROIs are affected by site in the absence of normalization).

3.3 Harmonization across sites preserves within-site biological variability

A good harmonization technique should preserve the biological variability at each site separately. To
test that, we calculated t-statistics for association with age before harmonization, for site 1 and site 2
separately, and after harmonization, for site 1 and site 2 separately as well. For each harmonization
procedure, we computed the Spearman correlation between the unharmonized t-statistics and the
harmonized statistics. For Site 1, the correlations are: ρ =0.997 for both Scaling and Funnorm,
ρ = 0.981 for RAVEL, ρ = 0.893 for SVA and ρ = 0.994 for ComBat. For Site 2, the correlations
are: ρ = 0.996 for both Scaling and Funnorm, ρ = 0.964 for RAVEL, ρ = 0.875 for SVA and
ρ = 0.997 for ComBat. The ComBat, Scaling and Funnorm methods perform exceptionally well.
We note that the correlation is substantially lower for SVA at both sites. This is not surprising;
unlike other methods, SVA removes variability that is not associated with age across the whole
dataset, but does not protect for the removal of biological variability at each site individually.

In Figure 6b), we present the number of voxels in the WM that are significantly associated with
age for each harmonization approach, for both FA and MD maps. A voxel is called significant if the
p-value calculated from simple linear regression is less than 0.05, after adjusting for multiple com-
parisons using Bonferroni correction. All harmonization methods increase the number of significant
voxels associated with age in comparison to the raw data. ComBat presents the most substantial
gain for FA maps (5658 voxels, in comparison to 481 voxels for raw data) and for MD maps (32,203
voxels, in comparison to 23,136 voxels for raw data). We also performed a similar analysis at the
ROI level: using the white matter atlas, we computed an average FA value at each region, for each
participant separately, and subsequently applied the different harmonization techniques; similar
results were obtained (see Figure A.4b in Appendix).

3.4 Harmonization and confounding

In the next sections, we evaluate the performance of the different harmonization procedures by
estimating the consistency and replicability of the voxels associated with age. We also investigate
the robustness of the different harmonization techniques to datasets for which age is confounded by
site. The previous results were obtained by harmonizing two sites that were carefully matched for
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Figure 7. Confounding scenarios for FA maps. In all four panels, each data point
represents the FA value versus the age of the participant for a fixed voxel in the right thalamus.
Full dots and circles are used to distinguish the two sites of the participant scans (Dataset 1 and
Dataset 2). The solid black line in all panels represents the estimated linear relationship between
FA and age when all data points are included (absence of confounding). In panel (a), the grey
lines represent the estimated relationship between FA and age for each site. In panels (b-d), the
selected participants are colored (blue, red and green respectively), and the colored solid lines
represent the estimated linear relationship between FA and age for the selected participants only.

age, gender and ethnicity to minimize potential confounding of those variables with site. However,
matching has several limitations. If there is a poor overlap between the covariates of interest across
sites, matching will result in a significant exclusion of samples. In addition, the number of scans to
be excluded is proportional to the number of covariates to be matched, which can be significant in
many applications, making matching infeasible. On the other hand, failing to match for covariates
will result in an undesirable situation where site will be a confounder for the relationship between
the DTI values and the phenotype(s) of interest. Thus, a better alternative to matching is to first
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combine all available data across sites, and then to apply a harmonization technique that is robust
to confounding.

Confounding between age and site presents an additional challenge for harmonization, since re-
moving variation associated site can lead to removing variation associated with age if not done
carefully. To evaluate the robustness of the different harmonization methods in the presence of
statistical confounding between imaging site and age (that is age is unbalanced with respect to
site), we selected different subsets of the data to create several confounding scenarios, as shown in
Figure 7. For illustration purpose, we chose a voxel in the right thalamus for which the association
between FA and age is high. Figure A.2 illustrates the confounding scenarios using median FA
values in the WM. We see that for the full data (Figure 7a), the FA values increase linearly with
age within each site.

“Positive confounding” and “negative confounding” refer to situations where the relationship be-
tween the FA values and age is overestimated and underestimated, respectively, with the same
directionality of the true effect. Selecting older samples from Site 2, and younger samples from
Site 1, creates positive confounding (Figure 7b). This is because the average FA value for Site 2
is higher than the average value for Site 1. On the other hand, excluding the oldest participants
from Site 2 and the youngest participants from Site 1 will create negative confounding (Figure 7c).
“Qualitative confounding” is an extreme case of confounding where the estimated direction of the
association is reversed with respect to the true association. Selecting younger participants from
Site 2, and older participants from Site 1, with no overlap of age between the two sites, creates
such confounding (Figure 7d).

We note that in the no-confounding scenario of Figure 7a), the association between the FA values
is unbiased in the sense that it is not modified by site. Indeed, the slope using all the data (black
line) is similar to the slopes estimated within each site (grey lines). However, the variance of the
estimated slope will be inflated due to the unaccounted variation attributable to site.

We now present the consistency and replicability of the voxels associated with age for the different
harmonization methods in the different confounding scenarios.

3.5 ComBat improves the consistency of the voxels associated with age

We evaluated the consistency of the voxels associated with age using the discovery-validation scheme
described in Section 2.4.1. We considered the harmonized dataset as a discovery cohort, and the
two within-site datasets as validation cohorts. We performed a mass-univariate analysis testing
for association with age separately for each cohort, and used CAT curves [Irizarry et al., 2005] to
measure the consistency of the results between the discovery and validation cohorts.

We present in Figure 8 the CAT curves for each of the confounding situation. In the absence of
confounding (first column), there is good overlap for all methods, including the raw data. ComBat
performs the best, with a flat CAT curve around 1. This indicates that the ranking of the t-statistics
in the ComBat-harmonized dataset is almost the same as the ranking of the t-statistics estimated
at each site separately. In the positive confounding scenario (second column), all methods perform
similar to the raw data, except for the scaling and Funnorm approaches that show substantial
inconsistencies with the ranking of the within-site t-statistics, as seen by their CAT curves closer
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No	confounding Negative	confoundingPositive	confounding Qualitative	confounding

Figure 8. Consistency of the voxels associated with age in the FA maps. For each
confounding scenario and for each harmonization method, we calculated a concordance at the top
(CAT) curve for voxels associated with age. The concordances were calculated between the
harmonized dataset (2 sites combined) and each of the two within-site datasets; the CAT curves
presented here are averaged across the two within-site datasets. Briefly, for each value of the
x-axis (k), the CAT curve measures the proportion of the top k voxels associated with age in the
harmonized dataset that are also present in the top k voxels associated with age for each of the
within-site dataset. The voxels associated with age from the two within-site datasets represent
gold-standard voxels. A good harmonization will increase the overlap with those voxels and will
result in a CAT curve closer to 1. Overlaps by chance will result in a CAT curve along the
diagonal dashed line indicating change agreement.

to the diagonal line. This is not surprising; both the scaling and Funnorm approach are global
approaches, and because of the positive nature of the confounding, the removal of a global shift
associated with site will also remove the global signal associated with age.

In the presence of negative confounding and qualitative confounding, combining the data without a
proper harmonization technique lead to more severe problems (Figure 8, third and fourth columns).
The CAT curves for the raw data (no harmonization) are considerably below the diagonal line,
indicating a negative correlation between the within-site t-statistics ranking and the combined
dataset t-statistics ranking. The negative correlation can be explained by the following: because of
the negative (or qualitative) confounding, the t-statistics for the voxels that are truly not associated
with age, normally centered around 0, became highly negative because of the site effect. On the
other hand, the t-statistics for the voxels associated with age, normally positive for FA, are shifted
towards 0. The negative and qualitative confounding artificially make the null voxels significant
and create a reversed ranking. In the negative confounding scenario, all methods, except SVA, are
able to recover a ranking that is much more consistent with the true ranking, therefore improving
consistency of the results. In the qualitative confounding situation, only ComBat, Funnorm and the
scaling approach improving upon the raw data, with ComBat showing the greatest improvement.
Overall, the results are promising for ComBat: the consistency of the top voxels associated with
age is dramatically improved for all confounding scenarios, making ComBat a robust harmonization
method. The other harmonization approaches show variable performance.
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Figure 9. Replicability of the voxels associated with age in the FA maps. For each
confounding scenario and for each harmonization method, we calculated a concordance at the top
(CAT) curve for the voxels associated with age. The concordances were calculated between the
harmonized dataset (2 sites combined) and an independent dataset. In (a), 292 unrelated
participants within the same range were selected as an independent cohort. In (b), 105 unrelated
and older participants were selected as an independent cohort. A good harmonization will result
in a CAT curve closer to 1. Overlaps by chance will result in a CAT curve along the diagonal.
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3.6 ComBat improves the replicability of the voxels associated with age

The CAT curves presented in the previous section were calculated using the two site datasets as
validation cohorts, which are not independent with respect to the harmonized dataset. In this
section, we calculate the CAT curves using an independent dataset as validation cohort. This eval-
uates the performance of the different harmonization techniques at replicating the voxels associated
with age across independent datasets, where replicability is defined as chance that an independent
experiment will produce consistent results [Leek and Peng, 2015]. We note that replicability is a
stronger result than consistency since it evaluates the methods using external validation.

We used two different independent cohorts for estimating the replicability: a larger cohort composed
of 292 participants with a similar age distribution (Independent Dataset 1) and a cohort composed
of 105 participants with a slightly older age distribution (Independent Dataset 2), as described in
the Methods section. Both cohorts were taken from the PNC [Satterthwaite et al., 2014].

In Figure 9a), we present the CAT curves using Independent Dataset 1 as a validation cohort (same
age range). The results are very similar to the consistency results presented in Figure 8. ComBat
performs the best at replicating the voxels associated with age for all confounding scenarios. In
Figure 9b), we present the CAT curves using Independent Dataset 2 as a validation cohort (older
age range). Because the population of the independent cohort in this case is older, there may
be differences in the subset of voxels that are truly associated with age. This can be seen in
lower overall concordances curves in Figure 9b). Nevertheless, ComBat still performs the best at
improving the replicability of the voxels, for all confounding scenarios.

3.7 ComBat successfully recovers the true effect sizes

In this section, we evaluate the bias in the estimated changes in FA associated with age (∆̂ageFA)
for each harmonization procedure, for the different confounding scenarios. We refer to ∆̂ageFA(v)
as the estimated “effect size” for voxel v. The effect site can be estimated using linear regression
(slope coefficient associated with age). In principle, to assess unbiasedness, we would need to know
the true effect sizes ∆ageFA. We circumvent this by estimating the effect sizes on the signal silver-
standard described in Section 2.4.3. For each site, we calculated the effect size for each voxel of
the signal silver-standard by running a simple linear regression for age, and retaining the regression
coefficient for age as the estimated effect size. We took the average across the two sites at each
voxel as the estimated true effect size. This resulted in a distribution of 2265 effect sizes for the
signal voxels, with a median effect size close to 0.004, presented in the left boxplot of Figure A.6a).
We also estimated the true effect sizes for voxels not associated with age (null voxels described in
Section 2.4.3). We obtained a distribution of 1932 effect sizes for the null signal. Not surprisingly,
those effects sizes are roughly centered at 0 (right boxplot, Figure A.6a).

In Figure 10a), we present the distribution of the estimated effect sizes on the signal silver-standard
for all methods, and for all confounding scenarios. The dashed lined represents the median effect
size of the true effect sizes, and the solid line represents an effect size of 0. As expected, the
effect sizes in the raw data (datasets combined without harmonization) are consistent with the
type of confounding; positive confounding shifts the effect sizes positively, and the negative and
qualitative confounding shifts the effect sizes negatively. ComBat is the only harmonization tech-
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Figure 10. Estimated effect sizes ∆̂ageFA for different confounding scenarios. (a)
Boxplots of the estimated effect sizes ∆̂ageFA for the set of signal voxels described in Section 3.9,
for different confounding scenarios: positive confounding (pos), no confounding (no), negative
confounding (neg) and quantitative confounding (rev). The dotted line represents the median
true effect size (around 0.004). (b) Boxplots of the estimated effect sizes ∆̂ageFA for the set of
null voxels described in Section 3.9. The median true effect size is around 0. The distributions of
the estimated effect sizes for the ComBat-harmonized datasets approximate very well the
distribution of the true effect sizes shown in the last column in each panel. Results for MD values
are presented in Figure A.7.
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nique that fully recovers the true effect sizes for all confounding scenarios in terms of median value
and variability. Funnorm and RAVEL both reduced the bias in the effect sizes distribution, and
both underestimate the true associations. We note that RAVEL performs sensibly worse for the
qualitative confounding scenario. Interestingly, SVA does not achieve any bias correction for any
of the confounding scenarios; the distribution of the estimated effect sizes resemble those of the
unharmonized dataset. This could be explained by the fact that SVA method “protects” for the
present association between the outcome and the covariate of interest, and therefore an association
that is biased in the original dataset will remain biased in the SVA-corrected dataset. Similarly,
we present in Figure 10b) the distribution of the estimated effect sizes for the null silver-standard.
We recall that a successful harmonization approach will result in a boxplot centered around 0. The
results are similar to Figure 10a); ComBat successfully recovers the true effect size distribution for
all confounding scenarios. Results for MD maps are presented in Figure A.6b) and Figure A.7.

The retrieval of unbiased effect sizes for both the signal and the null silver-standard strongly suggests
that ComBat successfully removed the site effect in the combined datasets without removing the
signal associated with age, even in the presence of substantial confounding between age and site.
The FA changes estimated after ComBat for voxels highly associated with age are similar to the
FA changes measured at each site separately.

3.8 ComBat improves statistical power

In Figure 11, we present the distribution of the WM voxels-wise t-statistics measuring association
with age in the FA maps for four combinations of the data: Site 1 and Site 2 analyzed separately,
Site 1 and Site 2 combined without harmonization, and Site 1 and Site 2 combined and harmonized
with ComBat. The goal of combining datasets from different sites is to increase the sample size,
and therefore the power of the statistical analysis. We therefore expect t-statistics with higher
magnitude for voxels truly associated with age. Moreover, we note that most of the t-statistics will
be positive as a consequence of the global increase in FA associated with development of the brain
in teenagers [Tamnes et al., 2010, Bava et al., 2010, Lebel and Beaulieu, 2011].

In Figure 11a), in which we present the t-statistics for all voxels in the WM, we observe an opposite
effect. The distribution of the t-statistics for the two sites combined without harmonization is
shifted towards 0 (mean t-statistic of 1.4) in comparison to the t-statistics obtained from both sites
separately (mean t-statistic of 1.7 and 2.3 for site 1 and site 2 respectively).This strongly indicates
that combining data from multiple sites, without harmonization, is counter-productive and impairs
the quality of the data. On the other hand, combining and harmonizing data with ComBat results
in a distribution of higher t-statistics on average (mean t-statistic of 2.8). We present in Figure 11b)
the t-statistics in template space with and without ComBat.

To further examine the effects of harmonization on the data, we present the distribution of the
t-statistics for voxels that are truly associated with age (signal silver-standard described in Sec-
tion 2.4.3) in Figure 11c, and voxels that are truly not associated with age (null silver-standard
described in Section 2.4.3) in Figure 11d). This confirms that ComBat increases the statistical
power at finding voxels truly associated with age, as seen by the distribution of t-statistics substan-
tially shifted to the right in Figure 11c. The mean t-statistic for the raw data and after ComBat
is 4.3 and 8.3 respectively. ComBat also keeps the t-statistics of the null voxels tightly centered
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Figure 11. ComBat improves statistical power. We present voxel-wise t-statistics in the
WM, testing for association between FA values and age, for four combinations of the data:
Dataset 1 and Dataset 2 analyzed separately, Dataset 1 and Dataset 2 combined without any
harmonization, and Dataset 1 and Dataset 2 combined and harmonized with ComBat. (a)
Distribution of the t-statistics for all WM voxels, for each analyzed dataset. The combined
datasets harmonized with ComBat show higher t-statistics. (b) T-statistics in template space for
the combined dataset, with no harmonization (top row) and with Combat (bottom row). (c)
Distribution of the t-statistics for a subset of voxels highly associated with age (signal
silver-standard described in Section 2.4.3). (d) Distribution of the t-statistics for a set of voxels
not associated with age (null silver-standard described in Section 2.4.3). ComBat increases the
magnitude of the t-statistics for the signal voxels while maintaining the t-statistics around 0 for
the null voxels. (e) Number of voxels significantly associated with age. Bonferroni correction was
applied to correct for multiple comparisons.
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around 0 (Figure 11d). In Figure 11e), we present the number of voxels significantly associated
with age (p < 0.05) after adjusting for multiple comparisons using Bonferroni correction. The
results strengthen our observations that harmonization is needed in order to successfully combine
multi-site data.

We present the results for the MD maps in Figure A.5. It is expected to observe many voxels
showing a negative association between MD and age in teenagers [Tamnes et al., 2010, Bava et al.,
2010, Lebel and Beaulieu, 2011], and therefore to observe a distribution of t-statistics shifted
towards negative values (as opposed to the t-statistics distribution in FA maps). Again, ComBat
successfully increases the magnitude of the t-statistics for the signal voxels (distribution of the
t-statistics highly shifted away from 0 in Figure A.5c), while maintaining the t-statistics for the
null voxels centered around 0 (Figure A.5d).

3.9 ComBat is robust to small sample sizes

A major advantage of ComBat over other methods is the use of Empirical Bayes to improve the
estimation and removal of the site effects in small sample size settings. To assess the robustness
of the different harmonization approaches for combining small samples size studies, we created
B = 100 random subsets of size n = 20 across sites. Specifically, we selected for each subset 10
participants at random from each site. For each subset, we applied the different harmonization
methods and calculated voxel-wise t-statistics in the WM, for testing the association of the FA
values with age, for a total of 100 t-statistic maps. To obtain an estimated gold-standard for a
t-statistic map obtained with studies of sample size 20, that we refer to as a silver-standard, we
created B = 100 random subsets of size 20 from site 1, and B = 100 additional random subsets of
size 20 from site 2. Because subsets are created within site, they are not affected by site effects and
results obtained from those subsets should be superior or as good as any of the results obtained
from the harmonized subsets.

In Figure 12a), we present the average CAT curve for each harmonization method (average taken
across the random subsets) together with the silver-standard CAT curve (dark blue), for the FA
maps. All methods improve the replicability of the voxels associated with age. We note that
Combat performs as well as the silver-standard, successfully removing most of the site effects.
In Figure 12b), we present the densities of the t-statistics for the top voxels associated with age
(signal voxels described in Section 2.4.3) for the FA maps. We note that all methods improve
the magnitude of the t-statistics, therefore increasing statistical power, with ComBat showing the
best performance, notably performing as well as the silver-standard. In Figure 12c), we present the
densities of the t-statistics for voxels not associated with age (null voxels described in Section 2.4.3)
for the FA maps; a good harmonization method should result in t-statistics centered around 0. The
global scaling approach, functional normalization and ComBat correctly correctly return t-statistics
centered around 0 that are similar to the silver-standard. SVA and RAVEL do not perform as
well (densities shifted away from 0). Overall, the results show that ComBat is a very promising
harmonization method even for small sample size studies, doing as well as a dataset that was not
affected by site effects. Similar results were obtained for the MD maps, presented in the panels
(d-f) of Figure 12.
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Figure 12. ComBat is robust to small sample size studies. We created B = 100 random
subsets of size 20, selecting at random 10 participants from each site, and applied each
harmonization method on every subset separately. For each harmonized subset, we computed a
t-statistic at each voxel in the WM, testing for the association of FA and MD with age. We
created a silver-standard list of t-statistics by creating B = 100 random subsets of size 20 within
site. (a) Average concordance at the top (CAT) curve for each harmonization method for the FA
maps. The silver-standard CAT curve is depicted in dark blue. A higher curve represents better
replicability of the voxels associated with age. (b) Densities of the t-statistics for the set of signal
voxels described in Section 3.9, for the FA maps. Higher values of the t-statistics are desirable.
(c) Densities of the t-statistics for the set of null voxels described in Section 3.9, for the FA maps.
T-statistics closer to 0 are desirable. For each plot, the results obtained for the
ComBat-harmonized datasets approximate very well the results obtained from the within-site
silver-standard (dark blue). (d) Same as (a), but for the MD maps. (e) Same as (b), but for the
MD maps. Lower values of the t-statistics are desirable. (f) Same as (c), but for the MD maps.
RAVEL performs substantially worse than other methods.
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4 Discussion

In this work, we investigated the effects of combining DTI studies across sites and scanners on
the statistical analyses. We used FA and MD maps from data acquired at two sites with different
scanners. We first showed that combining the two studies without proper harmonization led to a
decrease in power of detecting voxels associated with age. This confirmed that DTI measurements
are highly affected by small changes in the scanner parameters, as those affect the underlying water
diffusivity. This motivated the need for harmonizing data across sites and scanners. We then
adapted and compared several statistical harmonization techniques for DTI studies.

Using a comprehensive evaluation framework that acknowledges the importance of biological varia-
tion in the data, we showed that ComBat, a popular batch effect correction tool used in genomics,
performs the best at harmonizing FA and MD maps. It allows the site effects to be location-specific,
but pools information across voxels to improve the statistical estimation of the site effects. More
specifically, we showed that ComBat substantially increases the replicability of the voxels associ-
ated with age across independent experiments. We also investigated the robustness of the proposed
harmonization methods when the associations of age and DTI measurements are confounded by
site as a consequence of possible unbalanced data, as well as robustness to small sample sizes.
ComBat was the best at improving the results across all scenarios, and appeared to be robust to
small sample size studies. Indeed, it was able to recover the true associations between the FA (and
MD) values and age, despite the bias introduced by the association between site and age.

Global scaling, as well as functional normalization [Fortin et al., 2014], dit not perform well overall.
It is not surprising; those two methods fail to account for the spatial heterogeneity of the site effects
throughout the brain. We also compared ComBat to RAVEL, an intensity normalization technique
previously proposed for T1-w images [Fortin et al., 2016a]. RAVEL performed well for the FA
maps, for which the FA values in the CSF reflect well the technical variation in the WM. However,
RAVEL did not perform well for the MD maps; the site effects in the CSF were not correlated with
the site effects in the WM. We also compared ComBat to SVA [Leek and Storey, 2007, 2008], an
algorithm developed for genomics data that estimates unwanted variation that is orthogonal to the
biological variation. SVA was successful at estimating and removing the site effects, but did not
perform as well as ComBat for datasets for which age was confounded with site.

The ComBat methodology can be extended in several ways. In the case of a categorical outcome, for
instance disease status or gender, a first extension to ComBat would be to estimate the voxel-specific
site effect parameters only using participants from a reference category. This would be particu-
larly useful for datasets with unbalanced data, as demonstrated in Linn et al. [2016b]. Another
extension is to spatially restrain the estimation of the hyperparameters for the prior distributions
to only pool information across neighboring voxels. Another extension would be to incorporate an
inverse probability weighting (IPW) scheme to explicitly model statistical confounding between the
phenotype of interest in site. IPW has been shown to improve results when there is presence of
confounding in imaging studies [Linn et al., 2016a].

While this paper has focused on the harmonization of imaging data across sites and scanners,
another important challenge is the harmonization of imaging data within a site. Indeed, even for
scans acquired on the same scanner, between-participant unwanted variation that is technical in
nature also exists. This requires a harmonization technique that is not dependent on a site, or
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scanner variable. In genomics, latent factor approaches that estimate unknown source of variation
have been successfully used, such as SVA [Leek and Storey, 2007] and RUV [Gagnon-Bartsch and
Speed, 2012]. Lately, a similar approach, called RAVEL [Fortin et al., 2016a], has been developed
for the harmonization of structural MRI intensities using a control region for the estimation of the
latent factors of unwanted variation [Fortin et al., 2016a]. The choice of the control region can
be difficult for other modalities. A future extension of ComBat, for within-site harmonization, is
to adapt the empirical Bayes framework to continuous variables. This will especially be handy in
situations for which there is no site variable, or the site variable is missing, or when the main source
of technical variation in the data is not associated with site.

Although we have shown the performance of ComBat in the context of DTI scalar maps, the
ComBat model is not specific to DTI scalar maps. It can also be used to harmonize connectivity
data across different processing protocols, such as the connectivity maps derived from the DTI
datasets discussed in this paper; this is part of our future work. In addition, while we used
voxels as features to be harmonized in the ComBat model, the ComBat technique can be applied
to measurements summarized at the ROI level. This makes Combat a promising harmonization
technique for other imaging modalities, for instance for volumetrics and cortical thickness studies.
We have adapted and implemented the ComBat methodology to imaging data, and the software is
available in an R package on GitHub (https://github.com/Jfortin1/ComBatHarmonization).

5 Software and reproducible analysis

All of the postprocessing analysis was performed in the R statistical software (version 3.2.0). For
SVA and ComBat, reference implementations from the sva package were used. All figures were
generated in R with customized and reproducible scripts, using several functions from the package
fslr [Muschelli et al., 2015]. The scripts can be found on GitHub at https://github.com/

Jfortin1/ComBatHarmonization. The manuscript was prepared with LATEX.
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Figure A.1. RAVEL harmonization. (a) Relationship between the average FA measure in
white matter (WM) and cerebrospinal fluid (CSF). The FA measurements vary by site in both
WM and CSF. (b) Voxel-specific RAVEL coefficient ψ̂v in template space for FA maps. (c)
Relationship between the average MD measure in white matter (WM) and cerebrospinal fluid
(CSF). The MD measurements vary by site in WM, but do not seem to vary in CSF. (d)
Voxel-specific RAVEL coefficient ψ̂v in template space for MD maps.

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2017. ; https://doi.org/10.1101/116541doi: bioRxiv preprint 

https://doi.org/10.1101/116541
http://creativecommons.org/licenses/by-nc-nd/4.0/


●
●

●●

●

●

●

●

● ● ●

●
●

●
● ●

●
●

●

●
●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●●● ●

●
●

●●●●

●
●

● ●●

●

●

●
●

●

●
●

●

●● ●
●●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●
●

●●

●

●

●
●

● ●
●

●

● ●
●●

●
●

●
●

●

●

●

●

●
●●

●

8 10 12 14 16 18

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

No confounding

Age

FA ●
●

●●

●

●

●

●

● ● ●

●
●●

● ●

●
●

●

●
●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●●● ●
●

●

●●●●

●●
● ●●

●

●

●
●

●

●
●
●

●● ●
●●

●●
●

●●

●●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●
●

●●

●

●

●
●

● ●
●

●

● ●
●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

Site1
Site2

●
●

●●

●

●

●

● ●

● ●

●

●
●

● ●
●

● ●●

● ●
●●●

●●
●

● ●●

●

●
● ● ●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●
●

●

8 10 12 14 16 18
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40

Positive confounding

Age

FA

●
●
●

●●

●
●

●

●
●
●

● ●●

●
●

●

●

●
●

●

●

●●●
●

●

●●● ●

●

●
●
●

●

●●
●

●●

●

●

●
●●

●

●●
●

●

●

●

● ●

●

● ●

●

●

●

●

●● ●● ●

●
●●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
● ●

●●
● ●

●
●

●
●

●

●

●

●
●

●
●
●●●●

●

●

Site1
Site2

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

●

8 10 12 14 16 18

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Negative confounding

Age

FA ●
●

●●

●

●

●

●

● ● ●

●
●●

● ●

●
●

●

●
●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●●● ●
●

●

●●●●

●●
● ●●

●

●

●
●

●

●●

●● ●
●●

●●
●

●●

●●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●
●

●●

●

●
●

●●

●●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●
●●

●

●

●
●

●●

●

●

●
●

● ●
●

●

● ●
●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

Site1
Site2

●

●

●
●

●
●

●

●
●
●

●●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●●

●
●

●

●

● ●

●

●
●

●

●
●

●● ●●
●

●

●●

●
●

●

●

●●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●●
● ●

●

●

●

●

●
●

8 10 12 14 16 18

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Qualitative confounding

Age

FA ●
●

●●

●

●

●

● ●●
● ●

●
●

●

●

●

●●● ●
●●

●●
● ●●

●

●

●
●●●

●●
●● ●●

●

●
● ● ●●

● ●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●

●
●

● ●
●

●

● ●●
●

●
●

●

●

●

●

●
●●

●

●

●

Site1
Site2

Figure A.2. Confounding scenarios for FA maps. Same as Figure 7, but for the per-scan
median FA value in the White Matter (WM).
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Figure A.3. MA-plots for site differences in MD maps. Same as Figure 5, but for MD
maps.
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Figure A.4. Number of ROIs associated with site and age. Same as Figure 6, but for the
156 regions of interest (ROIs). All p-values were adjusted for multiple comparisons in a
conservative manner using Bonferroni correction. (a) In the absence of harmonization (raw data),
all 156 ROIs are associated with site in the FA maps, and 140 ROIs are associated with site in the
MD maps. Both SVA and ComBat result in 0 ROI associated with site. (b) ComBat performs
well at increasing the number of ROIs associated with age (92 ROIs for FA and 92 ROIs for MD),
as opposed to 8 ROIs and 72 ROIs in the raw data, for the FA and MD maps respectively.
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Figure A.5. Effect of ComBat harmonization on t-statistics (MD maps). Same as
Figure 11, but for the MD maps.
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Figure A.6. Distribution of the effect sizes for the silver-standards.
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Figure A.7. Estimated effect sizes ∆̂ageMD for different confounding scenarios Same
as Figure 10, but for MD.
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