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Abstract 55	

Mass cytometry (CyTOF) has greatly expanded the capability of cytometry. It is now easy to generate 56	
multiple CyTOF samples in a single study, with each sample containing single-cell measurement on 50 57	
markers for more than hundreds of thousands of cells. Current methods do not adequately address the 58	
issues concerning combining multiple samples for subpopulation discovery, and these issues can be 59	
quickly and dramatically amplified with increasing number of samples. To overcome this limitation, we 60	
developed Partition-Assisted Clustering and Multiple Alignments of Networks (PAC-MAN) for the fast 61	
automatic identification of cell populations in CyTOF data closely matching that of expert manual-62	
discovery, and for alignments between subpopulations across samples to define dataset-level cellular 63	
states. PAC-MAN is computationally efficient, allowing the management of very large CyTOF datasets, 64	
which are increasingly common in clinical studies and cancer studies that monitor various tissue samples 65	
for each subject. 66	

 67	

Introduction 68	

Analyses of CyTOF data rely on many of the tools and ideas from flow cytometry (FC) data analysis, as 69	
CyTOF datasets are essentially higher dimensional versions of flow cytometry datasets. Currently, the 70	
most widely used method in FC is still human hand-gating, as other methods often fail to extract 71	
meaningful subpopulations of cells automatically. In hand-gating, we draw polygons or other enclosures 72	
around pockets of cell events on a two-dimensional scatterplot to define subpopulations and cellular states 73	
that are observed in the data. This process is painfully time-consuming and requires advance knowledge 74	
of the marker panel design, the quality of the staining reagents, and, most importantly, a priori what cell 75	
subpopulations to expect to occur in the data. When presented with a new set of marker panels and 76	
biological system, the researcher would find it difficult to delineate the cell events, especially in high-77	
dimensional and multiple-sample datasets. 78	

The inefficient nature of hand-gating in flow cytometry motivated algorithmic development in automatic 79	
gating. Perhaps the most popular is flowMeans(1), which is optimized for FC and can learn  80	
subpopulations in  FC data(2) in an automated manner; however, it has not been successfully applied to 81	
CyTOF data analysis. Currently, most data analysis tools created for flow cytometry data analyses are not 82	
easily applicable for high-dimensional datasets(3). An exception is SPADE, which was developed and 83	
optimized specifically for the analysis of CyTOF datasets(3). flowMeans and SPADE constitute the 84	
leading computational methods in cytometry, but as shown later in this work, their performance may 85	
become sub-optimal when challenged with large and high-dimensional datasets. There are also other 86	
recent clustering-based tools that utilize dimensionality reduction and projections of high-dimensional 87	
data, however, these tools do not directly learn the subpopulations for all the cell events, and may be too 88	
slow to complete data analysis for an increasing amount of samples. 89	

In this study, we address the data analysis challenges in two major steps. First, we propose the partition-90	
assisted clustering (PAC) approach, which produces a partition of the k-dimensional space (k=number of 91	
markers) that captures the essential characteristic of the data distribution. This partitioning methodology 92	
is grounded in a strong mathematical framework of partition-based high-dimensional density 93	
estimation(4–8). The mathematical framework offers the guarantee that these partitions approximate the 94	
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underlying empirical data distribution; this step is faster than the recent k-nearest neighbor-based method 95	
(9) and is essential to the scalability of our clustering approach to analyze datasets with many samples. 96	
The clustering of cells based on recursive partitioning is then refined by a small number of k-means style 97	
iterations before a merging step to produce the final clustering.  98	

Secondly, the subpopulations learned separately in multiple different but related datasets can be aligned 99	
by marker network structures (multiple alignments of networks, or MAN), making it possible to 100	
characterize the relationships of subpopulations across different samples automatically. The ability to do 101	
so is critical for monitoring changes in a subpopulation across different conditions. Importantly, in every 102	
study, batch effect is present; batch effects shift subpopulation signals so that the means can be different 103	
from experiment to experiment. PAC-MAN naturally addresses batch effects in finding the alignments of 104	
the same or closely related subpopulations from different samples. 105	

PAC-MAN finds homogeneous clusters efficiently with all data points in a scalable fashion and enables 106	
the matching of these clusters across different samples to discover cluster relationships in the form of 107	
clades. 108	

 109	

Results and Discussion 110	

 111	

PAC 112	

PAC has two parts: partitioning and post-processing. In the partitioning part of PAC, the data space is 113	
recursively divided into smaller hyper-rectangles based on the number of data points in the locality 114	
(Figure 1a). The partitioning is accomplished by either Bayesian Sequential Partition (BSP) with limited 115	
look-ahead (Figure 1a and 1b) or Discrepancy Sequential Partition (DSP) (Figure 1a); these are two fast 116	
variants of partition-based density estimation methods previously developed by our group (4–8), with 117	
DSP being the fastest. BSP and DSP divide the sample space into hyper-rectangles with uniform density 118	
value in each of them. The subsetting of cells according to the partitioning provides a principled way of 119	
clustering the cells that reflects the characteristics of the underlying distribution. In particular, each 120	
significant mode is captured by a number of closely located rectangles with high-density values (Figure 121	
1c). Although this method allows a fast and unbiased localization of the high-density regions of the data 122	
space, we should not use the hyper-rectangles directly to define the final cluster boundaries for two 123	
reasons. First, real clusters are likely to be shaped elliptically, therefore, the data points in the corners of a 124	
hyper-rectangle are likely to be incorrectly clustered. Second, a real cluster is often split into more than 125	
one closely located high-density rectangles. We designed post-processing steps to overcome these 126	
limitations: 1) a small number of k-means iterations is used to round out the corners of the hyper-127	
rectangles, 2) a merging process is implemented to ameliorate the splitting problem, which is inspired by 128	
the flowMeans algorithm. The details of post-processing are given in Materials and Methods. The 129	
resulting method is named b-PAC or d-PAC depending on whether the partition is produced by BSP or 130	
DSP. 131	

 132	
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MAN 133	

An approach to analyze multiple related samples of CyTOF data is to pool all samples into a combined 134	
sample before detection of subpopulations. This is a natural approach under the assumptions that there are 135	
no significant batch effects or systematic shifts in cell subpopulations across the different samples. 136	
However, such assumptions may not hold due to one or more of the following reasons: 137	

1) Dataset size and instruments used. Large number of samples usually means the samples were 138	
collected on different days with different experimental preparations. Many steps can introduce 139	
significant shifts in measurement levels. 140	

2) Staining reagents. Reagents such as antibodies, purchased from different vendors and batch 141	
preparations can affect the overall signal. While saturation of reagents in the protocol could help 142	
eliminate the batch effects in the staining procedure, this approach is costly and might not work 143	
for all antibodies, especially those with poor specificity. 144	

3) Normalization beads stock. While normalization beads(10) help to control for the signal level, 145	
especially within one experiment, the age of the beads stock and their preparation could lead to 146	
significant batch effects. In addition, there are different types of normalization beads and 147	
normalization calculations. 148	

4) Human work variation. While many researchers are studying the same system (e.g., immune 149	
system), different protocols and implementation by different researchers, who sometimes perform 150	
experimental steps slightly differently, can lead to batch effects. 151	

5) Subpopulation dynamics. The subpopulation centers can move from sample to sample due to 152	
treatments on the cells in treatment-control studies or perturbation studies. General practice is to 153	
cluster by phenotypic markers. 154	

6) Sample background. If the data came from different cell lines or individuals in a clinical study, 155	
the measurement levels and proportions of cell subpopulations would be expected to change from 156	
sample to sample. Without expert scrutiny, it would be difficult to make sense of the data with 157	
current data analysis tools. 158	

Could we extract shared information that allows us to interpret cross-sample similarities and differences? 159	
To ameliorate these difficulties, we have designed an alternative approach that is effective in the presence 160	
of substantial systematic between-sample variation. In this approach, each sample is analyzed separately 161	
(by PAC) to discover within-sample subpopulations. Over-partitioning in this step is allowed in order not 162	
to miss small subpopulations. The subpopulations from all samples are then compared to each other based 163	
on a pairwise dissimilarity measure designed to capture the differences in within-sample distributions 164	
(among the markers) across two subpopulations. Using this dissimilarity, we perform bottom-up 165	
hierarchical clustering of the subpopulations to represent the relationship among the subpopulations. The 166	
resulting tree of subpopulations is then used to guide the merging of subpopulations from the same 167	
sample, and to establish linkage of related subpopulations from different samples. We note that the design 168	
of a dissimilarity measure (Materials and Method) that is not sensitive to systematic sample-to-sample 169	
variation is a novel aspect of our approach. The merging of subpopulations from the same sample is also 170	
important, as it offers a way to correct any over-partitioning that may have occurred during the initial 171	
PAC analysis of each sample. We emphasize that, as with the usage of all statistical methods, the user 172	
must utilize samples or datasets that are considered as good as possible; interpretation of the analysis 173	
results rely on the researchers to collect data with validated reagents for all samples. 174	
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 175	

Rational initialization for PAC increases clustering effectiveness 176	

Appropriate initialization of clustering is very important for eventually finding the optimal clustering 177	
labels; PAC works well because the implicit density estimation procedure yields rational centers to learn 178	
the modes of sample subpopulations. When tested on the hand-gated CyTOF data on the bone marrow 179	
sample in (14), compared to k-means alone, PAC gives lower total sums of squares and higher F-180	
measures in the subpopulations (Figure 1d and 1e). This process also helps PAC to converge in 50 181	
iterations (Figure 1f) in post-processing, whereas k-means performs very poorly even after 5000 iterations 182	
(Figure 1g). Through the lens of t-sne plots (Figure 1g), the PAC results are more similar to the hand-183	
gating results, while the k-means, flowMeans, and SPADE clustering results perform poorly. In 184	
flowMeans, several large subpopulations are merged. SPADE’s separation of points is inconsistent and 185	
highly heterogeneous, probably due to its down-sampling nature. On the other hand, by inspection, PAC 186	
obtains similar separation for both the major and minor subpopulations as the hand-gating results. 187	

 188	

PAC is consistently better than flowMeans and SPADE for simulated datasets and hand-gated cytometry 189	
datasets 190	

In the systematic simulation study, we challenged the methods with different datasets with varying 191	
number of dimensions, number of subpopulations, and separation between the subpopulations. The F-192	
measure and p-measures for the PAC methods are consistently equal or higher than that of flowMeans 193	
and SPADE (Table 1 and Supporting Figure 2a).  In addition, we observe that flowMeans gives 194	
inconsistent F-measures for similar datasets (Table 1), which may be due to the convergence of k-means 195	
to a local minimum without a rational initialization.  196	

Next, we tested the methods based on published hand-gated cytometry datasets to see how similar the 197	
estimated subpopulations are to those obtained by human experts. We applied the methods on the 198	
hematopoietic stem cell transplant and Normal Donors datasets from the FlowCAP challenges(2) and on 199	
the subset of gated mouse bone marrow CyTOF dataset (Dataset 5) recently published(11). The gating 200	
strategy of the CyTOF dataset is provided in Supporting Figure 1. The dataset and expert gating strategy 201	
are the same as described earlier(12). Note that in the flow cytometry data, the computed F-measures are 202	
slightly lower than that reported in FlowCAP; this is due to the difference in the definition of F-measures. 203	
Overall, the PAC outperforms flowMeans and SPADE by consistently obtaining higher F-measures 204	
(Table 1). In particular, in the CyTOF data example, PAC generated significantly higher F-measures 205	
(greater than 0.82) than flowMeans and SPADE (0.59 and 0.53, respectively). In addition, PAC gives 206	
higher overall subpopulation-specific purities (Supporting Figure 2b and Supporting Table 1). These 207	
results indicate that PAC gives consistently good results for both low and high-dimensional datasets. 208	
Furthermore, PAC results match human hand-gating results very well. The consistency between PAC-209	
MAN results and hand-gating results in this large data set confirms the practical utility of the 210	
methodology. 211	

 212	

Separate-then-combine outperforms Pool Approach when Batch Effect is present 213	
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It is natural to analyze samples separately then combine the subpopulation features for downstream 214	
analysis in the multiple samples setting. However, we need to resolve the batch effects.  215	
Two distinct subpopulations could overlap in the combined/pooled sample, such as in the case when the 216	
data came from two generations of CyTOF instruments (newer instrument elevates the signals). On the 217	
other hand, in cases with changing means, two subpopulations can evolve together such that their means 218	
change slightly, but enough to shadow each other when samples are merged prior to clustering.  219	

First, we consider the overlapping scenario (Figure 2b). When viewed together in the merged sample, the 220	
right subpopulation from sample 1 overlaps with the left subpopulation in sample 2 (Figure 2c). There is 221	
no way to use expression level alone to delineate the two overlapping subpopulations (Figure 2d). By 222	
learning more subpopulations using PAC, there are some hints that multiple subpopulations are present 223	
(Figure 2e). Despite these hints, it would not be possible to say whether the shadowed subpopulations 224	
relate in any way to other distinct subpopulations. 225	

PAC-MAN resolves the overlapping issue by analyzing the samples separately (Figure 2f). Considering 226	
the case in which we do not know a priori the number of true subpopulations, we learn three 227	
subpopulations per sample. The network structures of the subpopulations discovered are presented in 228	
Figure 2g and we see that the third subpopulations from the two samples share the same network 229	
structures, while the first subpopulations of the two samples differ by only one edge; these respective 230	
networks are clustered together in the dendrogram (Figure 2h, bottom panel). By utilizing the networks, 231	
the clades that represent the same and/or similar subpopulations of cells can be established. Clustering by 232	
network structures alone resolves the majority of points in the data (Figure 2h, top panel). Furthermore, as 233	
discussed next, by incorporating marker levels into the alignment process, all the points can be resolved 234	
(Figure 2i). 235	

Next we consider the case with dynamic evolution of subpopulations that models the treatment-control 236	
and perturbation studies. The interesting information is in tracking how subpopulations change over the 237	
course of the experiment. In the simulation, we have generated two subpopulations that nearly converge 238	
in mean expression profile over the time course (Figure 3a). The researcher could lose the dynamic 239	
information if they were to combine the samples for clustering analysis. As in the previous case, we could 240	
use PAC to learn several subpopulations per sample (Figure 3b). Then, with the assumption that there are 241	
two evolving clusters from data exploration, we align the subpopulations to construct clades of same 242	
and/or similar subpopulations (Figure 3c) based on the network structural information (Supporting Figure 243	
3). With network and expression level information in the alignment process, the two subpopulations or 244	
clades can be resolved naturally (Figure 3c). 245	

 246	

Network and expression alignment is better than network or expression alignment alone 247	

With networks in hand, we could further characterize the relationships between subpopulations across 248	
samples. However, the alignment process needs to work well for true linkage to be established. We could 249	
align by network alone, by expression (or marker) means, or both. Figures 2h, 2i, and 3c present these 250	
alternatives in comparison. By using all the subpopulation networks, the results still contain subsets of 251	
misplaced cells (Figures 2h top panel and 3c left panel). This is because small clusters of cells have noisy 252	
underlying covariance structure; therefore, the networks cannot be accurately inferred. These structural 253	
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inaccuracies negatively impact the network clustering. The (mean) marker level approach also does not 254	
work well (Figure 3c center panel) due to the subpopulation mean shifts across samples. On the other 255	
hand, the sequential approach works well (Figures 2i and 3c right panel). In the sequential approach, 256	
larger (>1500 in batch effect case; >1000 in dynamic case) subpopulations’ networks are utilized for the 257	
initial alignment process. Next, the smaller subpopulations, which have noisy covariance, are merged 258	
with the closest larger, aligned subpopulations. Thus, more subpopulations could be discovered upstream 259	
(in PAC), and the network alignment would work similarly as the smaller subpopulations, which could be 260	
fragments of a distribution, do not impact the alignment process (Supporting Figure 4a and b). Moreover, 261	
in the network inference step, unimportant edges can negatively impact the alignment process (Supporting 262	
Figure 4c) in the network-alone case. Biologically, this means that edges that do not constrain or define 263	
the cellular state should not be utilized in the alignment of cellular states. Effectively, the threshold placed 264	
on the number of edges in the network inference controls for the importance of the edges. Thus, the 265	
combined alignment approach works well and allows moderate over-saturation of cellular states to be 266	
discovered in the PAC step so that no advance knowledge of the exact number of subpopulations is 267	
necessary. 268	

 269	

PAC-MAN efficiently outputs meaningful data-level subpopulations for mouse tissue dataset 270	

 271	

We use the recently published mouse tissue dataset(11) to illustrate the multi-sample data analysis 272	
pipeline. The processed dataset contains a total of more than 13 million cell events in 10 different tissue 273	
samples, and 39 markers per event (Supporting Table 2). The original research results centered on 274	
subpopulations discovered from hand-gating the bone marrow tissue data to find ‘landmark’ 275	
subpopulations; the rest of the data points were clustered to the most similar landmark subpopulations. 276	
While this enables the exploration of the overall landscape from the perspective of bone marrow cell 277	
types, a significant amount of useful information from the data remains hidden. 278	

In contrast, using d-PAC-MAN, the fastest approach by our comparison results, we can perform 279	
subpopulation discovery for each sample automatically and then align the subpopulations across samples 280	
to establish dataset-level cellular states. On a standard Core i7-44880 3.40GHz PC computer, the single-281	
thread data analysis process with all data points takes about one hour to complete, which is much faster 282	
than alternative methods. With multi-threading and parallel processing, the data analysis procedure can be 283	
completed very quickly. As mentioned earlier, PAC results for the bone marrow subsetted data from this 284	
dataset matches closely to that of the hand-gated results. This accuracy provides confidence for applying 285	
PAC to the rest of the dataset. 286	

Figure 4 shows the t-sne plots for subpopulation discovered (top panel of each sample) and the 287	
representative subpopulation established (bottom panel of each sample) for the entire dataset. In the PAC 288	
discovery step, we learn 35 subpopulations per sample without advance knowledge of how many 289	
subpopulations are present. This moderate over-partitioning of the data samples leads to a moderate 290	
heterogeneity in the t-sne plots. Next, the networks are inferred for the larger subpopulations (with 291	
number of cell events greater than 1000), and the networks are aligned for all the tissue samples. We 292	
output 80 representative subpopulations or clades for the entire dataset to account for the traditional 293	
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immunological cellular states and sample-specific cellular states present. Within samples, the 294	
subpopulations that cluster together by network structure are aggregated. The smaller subpopulations (not 295	
involved in network alignment) are either merged to the closest larger subpopulation or establish their 296	
own sample-specific subpopulation by expression alignment; small subpopulations were clamped with 297	
larger clades by grouping the subpopulations into 5 clusters per sample based on the means (of marker 298	
signal). The representative subpopulations (90 total) follow the approximate distribution of the cell events 299	
on the t-sne plots and the aggregating effect cleans up the heterogeneities due to over-partitioning in the 300	
PAC step. 301	

The cell type clades are the representative subpopulations for the entire dataset, and they could either be 302	
present across samples or in one sample alone. Their distribution is visualized by a heatmap (Figure 5). 303	
While the bone marrow sample contains many cell types, only a subset of them are directly aligned to cell 304	
types in other samples, which means using the bone marrow data as the reference point leaves much 305	
information unlocked in the dataset. The cell types in the blood and spleen samples have more alignments 306	
with cell types in other samples. The lymph node samples share many clades; the small intestine and 307	
colon samples also share many clades, probably due to closeness in biological function. The thymus 308	
sample has few clades shared with other samples, which may be due to its functional specificity. 309	

PAC-MAN style analysis can be applied to align the tissue subpopulations by their means instead of 310	
network similarities (Supporting Figure 5). As done previously, representative clades (88 total) were 311	
outputted. The same aggregating effect is observed (Supporting Figure 5a), and this is due to the 312	
organization from dataset-level variation in the means. Comparing to the network alignment, the means 313	
linkage approach has slightly more subpopulations per sample; the subpopulation proportion heatmap 314	
(Supporting Figure 5b) shows more linking. Although the bone marrow sample subpopulations co-occur 315	
in the same clades slightly more with other sample subpopulations, this sample does not co-occur with 316	
many clades in the dataset. Thus, a PAC-MAN style analysis with means linkage also harvests additional 317	
information from the entire dataset.  318	

To compare the network and means approaches with PAC-MAN, we study the F-measure and p-measure 319	
results with 88 total clades from each approach. The overall F-measure with all cell events is 0.7969 and 320	
the overall F-measure with clades assignments of PAC-discovered subpopulations is 0.3143. The two F-321	
measure values suggest that the assignment of PAC-discovered subpopulations is more consistent for 322	
larger subpopulations.  323	

To illustrate the assignment purities, the p-measures are computed for the following two cases. 1) 324	
Network clade assignment is the basis (network-justified), similar to the ground truth in the clustering 325	
comparisons previously; or 2) means clade assignment is the basis (means-justified) (Supporting Table 4). 326	
P-measure cutoff is set at 0.3 (to remove unreliable comparisons) to obtain purer clade assignments. In the 327	
network-justified case, PAC subpopulations with more than 0.3 in p-measure constitute 93.44 % of all 328	
cell events. In the means-justified case, PAC subpopulations with more than 0.3 in p-measure constitute 329	
92.67 % of all cell events. Furthermore, if the p-measure cutoff were to increase to 0.5, the percentages of 330	
cells left for the network-justified and mean-justified cases are 6.25% and 75.16%, respectively. The 331	
network-justified case yields drastically lower numbers of cell events in the purer PAC subpopulations 332	
because the means approach has more heterogeneity in the linkages (defined as PAC-subpopulation 333	
participants in each shared clade with size of at least 2). In fact, the network approach has 100 linkages 334	
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while the means approach has 209 linkages. Therefore, the extra linkages in the means approach would 335	
yield greater impurities in the network-justified case. The linkage plot (Supporting Figure 6a) shows that 336	
the low linkages occur slightly more frequently for the network approach. One consequence is that the 337	
network approach aggregates PAC subpopulations within sample more frequently; for instance, in the 338	
thymus sample, the network approach yields 14 clades while the means approach yields 21 clades. 339	

After aggregating, the clade sizes (with unique participants per sample) are plotted (Supporting Figure 340	
6b). The network approach tends to find fewer linkages, as more clades have sizes of less than 4, while 341	
the means approach has more clades than the network approach with clade sizes greater than 4. The 342	
network approach is more conservative due to the additional constraints from network structures. 343	
Conventionally, in the cytometry field, only the means are considered in the definition of cellular states. 344	
Assuming the absence of batch and dynamic effects, the researcher could view the purer shared clade 345	
assignments in the network-justified case (general agreement between constrained network approach and 346	
means approach) as more reliable candidates of cross-sample relationships to investigate in future 347	
experiments (Supporting Figure 6c).  348	

Hence, the network alignment approach is in agreement that of the means approach, with network 349	
alignment being more stringent in the establishment of linkages. The network PAC-MAN approach 350	
defines cellular states with the additional information from network structures, and it has the effect of 351	
constraining the number of linkages between samples while finding linkages for subpopulations that are 352	
distant in their means.  353	

 354	

Network hubs provide natural annotations 355	

To further characterize the cell types, we annotate the clades within each sample using the top network 356	
hub markers, which constrain the cellular states. The full annotation, along with mean average expression 357	
profiles, is presented in Supporting Table 3. The clade information is presented in the ClusterID column. 358	
The annotations for cells across different samples but within the same clades share hub markers. For 359	
example, in clade 1 for the blood and bone marrow samples, the cells share the hub markers Ly6C and 360	
CD11b. In the bone marrow sample, one important set of subpopulations is the hematopoietic stem cell 361	
subpopulations.  One such subpopulation is present as clade 18 with the annotation CD34-CD27-cKit-362	
Sca1 and is about 1.87 percent in the bone marrow sample. Clade 18 is only present in the bone marrow 363	
sample, indicating that the PAC-MAN pipeline defines this as a sample-specific and coherent 364	
subpopulation using dataset-level variation. The thymus contains a large subpopulation (84.07 percent) 365	
that is characterized as CD5-CD4-CD43-CD3, suggesting it to be the maturing T-cell subpopulation. 366	

 367	

Conclusion 368	

We have presented the PAC-MAN data analysis pipeline. This pipeline was designed to remove major 369	
roadblocks in the utilization of existing and future CyTOF datasets. First, we established a quick and 370	
accurate clustering method that closely matches expert gating results; second, we demonstrated the 371	
management of multiple samples by handling mean shifts and batch effects across samples. The 372	
alignment allows researchers to find relationships between cells across samples without resorting to 373	
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pooling of all data points. This pipeline can be efficiently utilized to analyze large datasets of high-374	
dimension. PAC-MAN allows the cytometry field to harvest information from the increasing amount of 375	
CyTOF data available. 376	

 377	

Materials and Methods 378	

 379	

Partition-assisted clustering has two parts 380	

1) Partitioning: a partition method (BSP(5) or DSP(7)) is used to learn N initial cluster centers from the 381	
original data. 382	

2) Post-processing: A small number (m) of k-mean iterations is applied to the rectangle-based clusters 383	
from the partitioning, where m is a user-specified number. We used m=50 in our examples. After this k-384	
means refinement, we merge the N clusters hierarchically until the desired number of clusters (this 385	
number is user-specified) is reached. The merging is based on a given distance metric for clusters. In the 386	
current implementation, we use the same distant metric as in flowMeans(1). That is, for two clusters X 387	
and Y, their distance D X, Y  is defined as: 388	

D X, Y = min { 𝑥 − 𝑦 !𝑆!!! 𝑥 − 𝑦 , 𝑥 − 𝑦 !𝑆!!!(𝑥 − 𝑦)} 

where  𝑥, 𝑦 are the sample mean of cluster X and Y, respectively. S!!! is the inverse of the sample 389	
covariance matrix of cluster X. 𝑆!!! is defined similarly. In each step of the merging process, the two 390	
clusters having the smallest pairwise distance will be merged together into one cluster. 391	

 392	

Partition Methods 393	

There are two partition methods implemented in the comparison study: d-PAC and b-PAC. The results 394	
are similar, with d-PAC being the faster algorithm. Figure 1a illustrates this recursive process. 395	

d-PAC is based on the discrepancy density estimation (DSP)(7). Discrepancy, which is widely used in the 396	
analysis of Quasi-Monte Carlo methods, is a metric for the uniformity of points within a rectangle. DSP 397	
partitions the density space recursively until the uniformity of points within each rectangle is higher than 398	
some pre-specified threshold. The dimension and the cut point of each partition are chosen to 399	
approximately maximize the gap in uniformity of two adjacent rectangles.  400	

BSP + LL is an approximation inference algorithm for Bayesian sequential partitioning density estimation 401	
(BSP)(5). It borrows ideas from Limited-Look-ahead Optional Pólya Tree (LL-OPT), an approximate 402	
inference algorithm for Optional Pólya Tree(8). The original inference algorithm for BSP looks at one 403	
level ahead (i.e. looking at the possible cut points one level deeper) when computing the sampling 404	
probability for the next partition. It then uses resampling to prune away bad samples. Instead of looking at 405	
one level ahead, BSP + LL looks at h levels ahead (h > 1) when computing the sampling probabilities for 406	
the next partition and does not do resampling (Figure 1b). In other words, it compensates the loss from 407	
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not performing resampling with more accurate sampling probabilities. For simplicity, ‘BSP + LL’ is 408	
shortened to ‘BSP’ in the rest of the article. 409	

 410	

F-measure 411	

We use the F-measure for comparison of clustering results to ground truth (known in simulated data, or 412	
provided by hand-gating in real data). This measure is computed by regarding a clustering result as a 413	
series of decisions, one for each pair of data points. A true positive decision assigns two points that are in 414	
the same class (i.e. same class according to ground truth) to the same cluster, while a true negative 415	
decision assigns two points in different classes to different clusters. The F-measure is defined as the 416	
harmonic mean of the precision and recall. Precision P and recall R are defined as:  417	

P = !"
!"!!"

 , R = !"
!"!!"

，where TP is the total number of true positives, FP is the total number of false 418	

positives and FN is the total number of false negatives.  419	

F-measure ranges from 0 to 1. The higher the measure, the more similar the estimated cluster result is to 420	
the ground truth. This definition of F-measure is different than that of FlowCAP challenge(2). The use of 421	
co-assignment of labels in this definition is a more accurate way to compute the true positives and 422	
negatives. 423	

 424	

Purity-measure (p-measure) 425	

Most of the existing measurements for clustering accuracy aim at measuring the overall accuracy of the 426	
entire datasets, i.e. comparing with the ground truth over all clusters. However, we are also interested in 427	
analyzing how well a clustering result matches the ground truth within a certain class. Specifically, 428	
consider a dataset D with K classes: {C!, C!,… , C!} and a given ground truth cluster labels g, we construct 429	
an index called the purity measure, or p-measure for short, to measure how well our clustering result 430	
matches g for each class C!. This index is computed as follows: 431	

1) For each class C!, look for the cluster that has the maximum number of overlapping points with this 432	
class, denoted by L!!. 433	

2) Define S! =  
|!!∩!!!|

|!!!|
, S! =  

|!!∩!!!|

|!!|
, where | ∙ | denotes the number of points in a set. 434	

3) The final P-index for class C! is given by: P =  !!!!!
!!!!!

. 435	

If we were to match a big cluster with a small class, even though the overlapping may be large, S! would 436	
still be low since we have divided the score by the size of the cluster in S!. In addition, we are interested 437	
in knowing how many points in C! are clustered together by L!!, which is measured by S!. 438	

 439	
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Network construction and comparison 440	

After PAC, the discovered subpopulations typically have enough cells for the estimation of mutual 441	
information. This enables the construction of networks as the basis for cell type characterization. 442	
Computationally, it is not good to directly use the mutual information networks constructed this way to 443	
organize the subpopulations downstream. The distance measure used to characterize the networks could 444	
potentially give the same score for different network structures. Thus, it is necessary to threshold the 445	
network edges based on the strength of mutual information to filter out the noisy and miscellaneous 446	
edges. In this work, these subpopulation-specific networks are constructed using the MRNET network 447	
inference algorithm in the Parmigene (13) R package. The algorithm is based on mutual information 448	
ranking, and outputs significant edges connecting the markers. The top d edges (d is set to be 1x the 449	
number of markers in all examples) are used to define a network for the subpopulation. This process 450	
enables a careful calculation of the distance measure. 451	

For each pair of subpopulation networks, we calculate a network distance, which is defined as follows. If 452	
G1 and G2 are two networks, let S be the set of shared edges and A be union of the of the edges in the two 453	
networks, then we define  454	

Similarity(G!,G!) =  |!|
|!|

, where | ∙ | denotes the size of a set. 455	

This is known as the Jaccard coefficient of the two graphs. The Jaccard distance, or 1- Jaccard coefficient, 456	
is then obtained. This is a representation of the dissimilarity between each pair of networks; the Jaccard 457	
dissimilarity is the measure used for the downstream hierarchical clustering.  458	

 459	

Cross-sample linkage of subpopulations 460	

We perform agglomerative clustering of the pool of subpopulations from all samples. This clustering 461	
procedure greedily links networks that are the closest in Jaccard dissimilarity, and yields a dendrogram 462	
describing the distance relationship between all the subpopulations. We cut the dendrogram to obtain the 463	
k clades of subpopulations. Subpopulations from the same sample and falling into the same clade are then 464	
merged into a single subpopulation (Figure 2a). This merging step has the effect of consolidating the 465	
over-partitioning in the PAC step. No merging is performed for subpopulations from different samples 466	
sharing the same clade. In this way, we obtain k clades of subpopulations, with each clade containing no 467	
more than one subpopulation from each sample. We regard the subpopulations within each clade as being 468	
linked across samples. 469	

In the above computation, only subpopulations with enough cells to define a stable covariance are used 470	
for network alignment via the Jaccard distance; the rest of the cell events from very small subpopulations 471	
are then merged with the closet clade by marker profile via distance of mean marker signals. If the small 472	
subpopulations are distant from the defined clades, then a new sample-specific clade is created for these 473	
small subpopulations. 474	

 475	

 476	
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Annotation of Subpopulations 477	

To annotate the cellular states, we first apply PAC-MAN to learn the dataset-level subpopulation/clade 478	
labels. Next, these labels are used to learn the representative/clade networks. The top hubs (i.e. the most 479	
connected nodes) in these networks are used for annotation. This approach has biological significance in 480	
that important markers in a cellular state are often central to the underlying marker network, which is 481	
analogous to important genes in gene regulatory networks; these important markers have many 482	
connections with other markers. If the connections were broken, the cell would be perturbed and 483	
potentially driven to other states. 484	

 485	

Running Published Methods 486	

To run t-SNE (14) a dimensionality reduction visualization tool, we utilized the scripts published here 487	
(https://lvdmaaten.github.io/tsne/). Default settings were used. 488	

To run SPADE, we first converted the simulated data to fcs format using Broad Institute’s free 489	
CSVtoFCS online tool in GenePattern(15)  (http://www.broadinstitute.org/cancer/software/genepattern#).  490	

Next, we carried out the tests using the SPADE package in Bioconductor R(16) 491	
(https://bioconductor.org/packages/release/bioc/html/spade.html).  492	

To run flowMeans, we carried out the tests using the flowMeans package in Bioconductor R(1)  493	
(https://bioconductor.org/packages/release/bioc/html/flowMeans.html). 494	

In the comparisons, we selected only cases that work for all methods to make the tests as fair as possible. 495	

To calculate the mutual information of the subpopulations, we use the infotheo R package (https://cran.r-496	
project.org/web/packages/infotheo/index.html). 497	

To run network inference, we use the mrnet algorithm in the parmigne R package (13). (https://cran.r-498	
project.org/web/packages/parmigene/index.html).  499	

 500	

Code Availability 501	

The PAC R package can be accessed at: 502	

https://cran.r-project.org/web/packages/PAC/index.html  503	

 504	

Simulated Data for Clustering Analysis 505	

To compare the clustering methods, we generated simulated data from Gaussian Mixture Model varying 506	
dimension, the number of mixture components, mean, and covariance. The dimensions range from 5 to 507	
39. The number of mixture components is varied along each dimension. The mean of each component 508	
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was generated uniformly from a d-dimensional hypercube; we generated datasets using hypercube of 509	
different sizes, but kept all the other attributes the same. The covariance matrices were generated as 𝐴𝐴!, 510	
where 𝐴 is a random matrix whose elements were independently drawn from the standard normal 511	
distribution. The sizes of the simulated dataset range from 100k to 200k.  512	

The simulated data are provided as (Datasets 1-6). Datasets 1-4 are for the PAC part. Dataset 1 contains 513	
data with 5 dimensions; Dataset 2 contains data with 10 dimensions; Datasets 3a and 3b contain data with 514	
20 dimensions; and Datasets 4a and 4b contain data with 35 dimensions. The ground truth labels are 515	
included as separate sheets in each dataset. 516	

When applying flowMeans, SPADE, and the PAC to the data, we preset the desired number of 517	
subpopulations to that in the data to allow for direct comparisons.  518	

 519	

Gated Flow Cytometry Data 520	

Two data files were downloaded from the FlowCAP challenges(2). One data file is from the 521	
Hematopoietic stem cell transplant (HSCT) data set; it has 9,936 cell events with 6 markers, and human 522	
gating found 5 subpopulations. Another data file is from the Normal Donors (ND) data set; it has 60,418 523	
cell events with 12 markers, and human gating found 8 subpopulations. The files are the first (‘001’) of 524	
each dataset. These data files were all 1) compensated, meaning that the spectral overlap is accounted for, 525	
2) transformed into linear space, and 3) pre-gated to remove irrelevant events. We used the data files 526	
without any further transformation and filtering. When applying flowMeans, SPADE, and the PAC to the 527	
data, we preset the desired number of subpopulations to that in the data to allow for direct comparisons.  528	

 529	

Gated Mass Cytometry Data 530	

Human gated mass cytometry data was obtained by gating for the conventional immunology cell types 531	
using the mouse bone marrow data recently published(11). The expert gating strategy is provided as 532	
Supporting Figure 1. The gated sample subset contains 64,639 cell events with 39 markers and 24 533	
subpopulations and it is provided as Dataset 7. 534	

To test the performance of different analysis methods, the data was first transformed using the asinh(x/5) 535	
function, which is the transformation used prior to hand-gating analysis; For SPADE analysis, we utilize 536	
the asinh(x/5) option in the SPADE commands. The post-clustering results from flowMeans, SPADE, b-537	
PAC, and d-PAC were then subsetted using the indexes of gated cell events. These subsetted results are 538	
compared to the hand-gated results. 539	

 540	

Simulated Data for MAN Analysis 541	

To test the linking of subpopulations, we generated simulated data from multivariate Gaussian with preset 542	
signal levels and randomly generated positive definite covariance matrices. There are two cases, batch 543	
effect and dynamic. Each simulated sample file has five dimensions, with two of these varying in levels; 544	
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these are the dimensions that are visualized. Dataset 5 contains the data for general batch effects case and 545	
Dataset 6 contains the data for dynamic effects case. The ground truth labels are included as separate 546	
sheets in each dataset. 547	

 548	

General batch scenario. Sample 1 represents data from an old instrument (instrument 1) while sample 2 549	
represents data from a new instrument (instrument 2). There are two subpopulations per sample. These 550	
two subpopulations are the same, but their mean marker levels shifted higher up in sample 2 due to higher 551	
sensitivity of instrument 2 (Figure 2b). The subpopulations have different underlying relationships 552	
between the markers. In this simulated experiment, five markers were measured. Out of the five markers, 553	
two markers show significant shift, and we focus on these two dimensions by 2-dimensional scatterplots. 554	
In Figure 2b, the left subpopulation in sample 1 is the same as the left subpopulation in sample 2; the 555	
same with the right subpopulation. The same subpopulations were generated from multivariate Gaussian 556	
distributions with changing means with fixed covariance structure. 557	

Dynamic scenario. Dynamic scenario models the treatment-control and perturbation studies. In the 558	
simulation, we have generated two subpopulations that nearly converge over the time course (Figure 3a). 559	
The researcher could lose the dynamic information if they were to combine the samples for clustering 560	
analysis. The related subpopulations were generated from multivariate Gaussian distributions with 561	
changing means with fixed covariance structure. 562	

 563	

Raw CyTOF Data Processing 564	

The researcher preprocesses the data to 1) normalize the values to normalization bead signals, 2) de-565	
barcode the samples if multiple barcoded samples were stained and ran together, and 3) pre-gate to 566	
remove irrelevant cells and debris to clean up the data(10,17). Gene expressions look like log-normal 567	
distributions(18); given the lognormal nature of the values, the hyperbolic arcsine transform is applied to 568	
the data matrix to bring the measured marker levels (estimation of expression values) close to normality, 569	
while preserving all data points. Often, researchers use the asinh(x/5) transformation, and we use the same 570	
transformation for the CyTOF datasets analyzed in this study.  571	

 572	

Mouse Tissue Data 573	

In the Spitzer et al., 2015 dataset(11), three mouse strains were grown, and cells were collected from 574	
different tissues: thymus, spleen, small intestine, mesenteric lymph node, lung, liver, inguinal lymph 575	
node, colon, bone marrow, and blood. In each experiment, 39 expression markers were monitored. The 576	
authors used the C57BL6 mouse strain as the reference(11); the data was downloaded from Cytobank, 577	
and we performed our analysis on the reference strain. 578	

First, all individual samples were filtered by taking the top 95% of cells based on DNA content and then 579	
the top 95% of cells based on cisplatin: DNA content allows the extraction of good-quality cells and 580	
cisplatin level (low) allows the extraction of live cells. Overall, the top 90% of cell events were extracted. 581	
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The filtered samples were then transformed by the hyperbolic arcsine (x/5) function, and merged as a 582	
single file, which contains 13,236,927 cell events and 39 markers per event (Supporting Table 2). 583	

Using PAC-MAN, we obtained 35 subpopulations in each sample then 80 clades for the entire dataset. 584	
The 80 clades account for the traditional immune subpopulations and sample-specific subpopulations. 585	
Small subpopulations not used in alignment are later merged into the closest clades; this is done by 586	
performing hierarchical clustering with the marker signals to obtain 5 “expression” subclades per sample. 587	
Subsequently, any clade with less than 100 cells is discarded. Subpopulation proportion heatmap was 588	
plotted to visualize the subpopulation-specificities and relationships across the samples. Finally, 589	
annotation was performed using the hub markers of each representative subpopulation in each sample. 590	
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Figure and Table Legends 644	

 645	

Figure 1: PAC utilizes rational initialization for fast and accurate clustering convergence 646	

(a) Partition-based methods estimate data density by cutting the data space into smaller rectangles. 647	
Bayesian Sequential Partition (BSP) divides the data space via binary partition in the middle of the 648	
bounded region, while that of Discrepancy Sequential Partition (DSP) occur at the location that balances 649	
the data point uniformly on both sides of the cut. The numbers denote sequential order of partitions. Since 650	
DSP adapts to the data points, it converges on the estimated density faster than BSP. (b) In the (one-step) 651	
look-ahead of version of partition, the algorithm cuts the data space for all potential cuts plus one step 652	
more (steps 2 and 3), and it finds the optimal future version (after step 3), which determines the actual cut 653	
(step 2). (c) The partitioning of simulated data space containing five subpopulations; the hyper-rectangles 654	
surround high-density areas, approximating the underlying distribution. (d-e) The rational initialization 655	
step helps PAC to outperform random initialization. The handgated CyTOF data was used. In this case, 656	
the overall sum of squares error is lower and the F-measure is higher for PAC. (f) The convergence of 657	
PAC toward the hand-gated results, or ground truth, is fast. It takes less than 50 downstream post-658	
processing kmeans iterations for the PAC to achieve a significantly higher F-measure than the alternative 659	
methods. In contrast, flowMeans convergence is poor. (g) Visualization of clustering results with t-sne 660	
plot. The t-sne plots contain 10,000 cell events of the handgated CyTOF data with different set of labels 661	
drawn. Note that the colors are informative only within each panel. These labels are from kmeans, 662	
SPADE, flowMeans, b-PAC, and d-PAC. The subpopulation numbers for all methods were set to be the 663	
same as that of handgated results. 664	

 665	

Figure 2: Overlapping batch effects can be resolved by PAC-MAN 666	

(a) Schematic of MAN. Consider a deck of networks (in analogy to cards), with each “suit” representing a 667	
sample and each “rank” representing a unique network structure. The networks are aligned by similarity 668	
and organized on a dendrogram. The tree is cut (red line) at the user-specified level to output the desired k 669	
clades. Within each clade, the network structures are similar or the same. If the same sample has multiple 670	
networks in the same clade, then these networks are merged (black box around same cards). (b) Simulated 671	
data samples with two of the same subpopulations. The means shifted due to measurement batch effect. 672	
(c) When the samples are combined, as in the case of analyzing all samples together, two different 673	
subpopulations overlap. (d) The overlapped subpopulations cannot be distinguished by clustering. (e) 674	
PAC could be used to discover more subpopulations, however, the hints of the present of another 675	
subpopulation do not help to resolve the batch effect. (f) PAC was used to discover several 676	
subpopulations per sample without advanced knowledge of the exact number of subpopulations. (g) The 677	
networks of the subpopulations discovered in (f). Networks can be grouped by similarities to organize the 678	
subpopulations across samples; the alignment is based on Jaccard dissimilarity network structure 679	
characterization matrix; dendrogram of the hierarchical clustering results. (h) Resolution of batch effect 680	
by networks of all subpopulations discovered. (i) Resolution of batch effect first by gene networks of 681	
larger subpopulations and then by merging smaller subpopulations into the aligned clades. 682	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/116566doi: bioRxiv preprint 

https://doi.org/10.1101/116566
http://creativecommons.org/licenses/by-nc/4.0/


	 20	

 683	

Figure 3: Dynamic information can be extracted by PAC-MAN 684	

(a) Ground truth of simulated samples. Two subpopulations, in blue color, almost converge in time by 685	
mean shifts. (b) PAC discovers several subpopulations per sample without advanced knowledge of the 686	
number of subpopulations present. (c) Comparison of PAC-MAN results between representative clades 687	
(number of clades set to 2). Using gene networks and expression information alone do not resolve the 688	
dynamic information. On the other hand, dynamic information is resolved first by gene networks of larger 689	
subpopulations and then by merging smaller subpopulations into the aligned clades. 690	

 691	

Figure 4: Mouse tissue data analysis results visualized by t-sne plots. 692	

Each t-sne plot was generated using 10,000 randomly drawn cell events from each mouse tissue sample. 693	
The results from PAC (top panel) and MAN (bottom panel) steps are presented as a pair. Initial PAC 694	
discovery was set to 35 subpopulations without advanced knowledge of the number of subpopulations in 695	
each sample. In MAN, 80 network clades were outputted, and the cellular states are defined by gene 696	
expression, network structure, and dataset-level variation. This composite definition naturally aggregates 697	
the initial 35 subpopulations to yield smaller number of subpopulations in less variable samples. 698	

 699	

Figure 5: Clade proportions and annotation 700	

Heatmap of clade proportions across the samples. Sample-specific clades have a value of 1, while shared 701	
clades have proportions spread across different samples. Physiologically similar samples share more 702	
clades. 703	

 704	

Supporting Figure 1: Gating strategy of CyTOF data for methods comparison 705	

Biaxial gating hierarchy for the mouse bone marrow CyTOF dataset. Gating strategy that was used to find 706	
24 reference populations in the mouse bone marrow CyTOF data. Pre-gating step involved removal of 707	
doublets, dead cells, erythrocytes and neutrophils. Non-neutrophils population was either subject to 708	
cluster analysis by computational tools or subsequent gating. Dotted boxes represent 24 terminal gates 709	
that were selected as reference populations for the comparison analysis. 710	

 711	

Supporting Figure 2: Subpopulation purity of simulated and real CyTOF data 712	

(a) Subpopulation-specific purity plot of 35-dimensional simulated data with 10 subpopulations. The blue 713	
points denote the differences between the p-measures of the partition-based method (either d-PAC or b-714	
PAC) and flowMeans, while the red points denote the p-measure differences between the partition 715	
methods and SPADE. The horizontal line at 0 means no difference between the methods. Most of the blue 716	
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and red points are above 0, indicating that the PAC generates purer subpopulations compared to the 717	
ground truth. The two subplots are very similar, which means that d-PAC and b-PAC give very similar p-718	
measures. More precisely, the sum of differences between d-PAC and flowMeans and d-PAC and 719	
SPADE are 0.85 and 1.09, respectively; and the overall difference between b-PAC and flowMeans and b-720	
PAC and SPADE are 0.84 and 1.08, respectively. 721	

(b) Subpopulation-specific purity plot of the hand-gated CyTOF data. The same convention is used as in 722	
(Supporting Figure 2a). Again, more blue and red points are above 0, indicating that the partition-based 723	
methods generate purer subpopulations compared to the ground truth. There is a cluster of points below 0 724	
occurring in the middle of the plot, suggesting that flowMeans and SPADE capture the mid-size 725	
subpopulations more similar to hand-gating than the partition-based methods. More specifically, 726	
flowMeans does better (p-measure difference of 0.1 or better; difference of less 0.1 is considered 727	
practically no difference) with finding subpopulations of GMP, CD8 T cells, MEP, CD4 T cells 728	
(compared to d-PAC), and Plasma cells, while SPADE does better with CD19+IgM- B cells, NK cells 729	
(compared to d-PAC), CD8 T cells, NKT cells, Basophils, Short-Term HSC, and Plasma cells. However, 730	
overall, PAC has a much better performance, as the absolute sum of points above 0 is higher than that of 731	
points below 0. More precisely, the sum of differences between d-PAC and flowMeans and d-PAC and 732	
SPADE are 1.21 and 1.45, respectively; and the overall difference between b-PAC and flowMeans and b-733	
PAC and SPADE are 2.06 and 2.31, respectively. The difference table is provided in Supporting Table 1. 734	

 735	

Supporting Figure 3: Gene Networks inferred from subpopulations in the dynamic example 736	
simulated dataset 737	

Figure 3 introduced the dynamic example in which five samples each having 2 true subpopulations 738	
capture the almost-convergence of means. Here the underlying gene network structures for the PAC 739	
discovered subpopulations (three per sample) are presented. 740	

 741	

Supporting Figure 4: Comparison between aligning cross-sample subpopulations by gene network, 742	
expression profile, or both 743	

(a) PAC can be used to discover more subpopulations, with the effect of more partitions from the true 744	
clusters. (b) When over-partitioning is present, gene network or gene expression profile alone cannot 745	
resolve the dynamic (or batch) effects due to noisy covariance for small fragments of distributions. 746	
However, first aligning the larger subpopulations with more stable covariance, and thus network 747	
structures, and then merge in the smaller subpopulations by expression profile resolves the effects. (c) If 748	
more irrelevant edges were introduced, network alignment would fail due to the negative impact of the 749	
miscellaneous edges; however, eliminating small subpopulations from the alignment step alleviates the 750	
increased edge count problem. 751	

 752	

Supporting Figure 5: PAC-MAN style linkage by means 753	
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(a) t-sne plots of mouse tissue samples colored by representative subpopulations labels from linkage by 754	
means. (b) Subpopulation proportion heatmap of clades of samples from linkage by means. 755	

 756	

Supporting Figure 6: Comparison between network and means PAC-MAN  757	

(a) PAC-discovered subpopulations are aggregated by MAN into clades; the number of PAC 758	
subpopulations/clades for the network and means PAC-MAN approaches are plotted. (b) After 759	
aggregating shared clades within samples, the number of shared clades for the entire dataset is plotted for 760	
the two PAC-MAN approaches. c) Using the network approach results as basis, the clades with strong 761	
agreement (high p-measures) with the means PAC-MAN approach are given. The shared clades (present 762	
in more than one sample) are reliable candidates for future experiment to find cross-sample relationships. 763	

 764	

Table 1: F-measure Comparisons of Methods on Simulated and Hand-gated Cytometry Datasets. 765	

F-measure is calculated using the original hand-gate labels and the estimated labels generated by each 766	
analysis method. The true-positives are found if the methods assign the same labels to points belonging to 767	
the same subpopulation in the hand-gated data. The more true-positives found, the higher the F-measure, 768	
which ranges from 0 to 1, with 1 being the highest. Partition-based methods perform consistently well on 769	
data ranging from 5 to 39 dimensions. In the simulations, d-PAC and b-PAC perform just as well or better 770	
than flowMeans and SPADE. flowMeans gives drastically different F-measures for the cases 771	
20_10_40_100k  and 20_20_40_100k :  0.25386 vs. 0.92518; this large difference is likely due to the 772	
random initiation of cluster centers. In the hand-gated datasets, SPADE has the worst performance. 773	
Ultimately, the performance of flowMeans and SPADE deteriorate for the 39-dimensional real CyTOF 774	
data, while d-PAC and b-PAC perform consistently well. 775	

*Simulated data have the following convention: a_b_c_d, where a denotes the number of 776	
dimensions/markers, b denotes the number of subpopulations, c denotes the size of the hypercube for data 777	
generation, and d denotes the number of cells.  778	

**from rounding up, not originally 1.00 779	

 780	

Supporting Table 1: Purity (p) Measure Differences in CyTOF Comparison 781	

p-measure differences in gated CyTOF data analysis comparison. The differences are shown for all the 782	
annotated cell subpopulations, which are ordered by their sizes. Overall, the PAC methods give more 783	
positive p-measures. 784	

 785	

Supporting Table 2: Sample Sizes in Mouse Tissue CyTOF Dataset 786	

The numbers of cells in the samples of Spitzer et al., 2015 CyTOF dataset. The data is from the C57BL6 787	
mouse strain and a total of ten tissue samples are present. The raw column shows the number of cells 788	
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prior to filtering by DNA and cisplatin values. The final cell counts are shown in the filtered file (3rd) 789	
column. 790	

 791	

Supporting Table 3: PAC-MAN Subpopulation Characterization Output for Mouse Tissue CyTOF 792	
Dataset 793	

The full set of annotated results, along with mean expressions, subpopulation proportion and counts, are 794	
reported. 795	

 796	

Supporting Table 4: Network-justified and means-justified p-measures for Alignments of PAC-797	
discovered Subpopulations 798	

The PAC-discovered subpopulations were mapped as clades in both the network and means PAC-MAN 799	
approaches. The p-measures were calculated for the cases 1) network approach mapping as the basis and 800	
2) means approach mapping as the basis. The comparison is the same in principle to the comparison of 801	
labels for clustering methods. The results are ordered by p-measures. 802	

 803	
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