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Abstract 

Disentangling the etiology of common, complex diseases is a major challenge in genetic 

research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have 

been performed. Similar to other complex disorders, major breakthroughs in explaining the 

high heritability of BD through GWAS have remained elusive. To overcome this dilemma, 

genetic research into BD, has embraced a variety of strategies such as the formation of large 

consortia to increase sample size and sequencing approaches. Here we advocate a 

complementary approach making use of already existing GWAS data: applying a data mining 

procedure to identify yet undetected genotype-phenotype relationships. We adapted 

association rule mining, a data mining technique traditionally used in retail market research, 

to identify frequent and characteristic genotype patterns showing strong associations to 

phenotype clusters. We applied this strategy to three independent GWAS datasets from 

2,835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate 

association rules were extracted. Two of these - one associated with eating disorder and the 

other with anxiety - remained significant in an independent dataset after robust correction for 

multiple testing, showing considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively). 

Our approach may help detect novel specific genotype-phenotype relationships in BD 

typically not explored by analyses like GWAS.  While we adapted the data mining tool within 

the context of BD gene discovery, it may facilitate identifying highly specific genotype-

phenotype relationships in subsets of genome-wide data sets of other complex phenotype 

with similar epidemiological properties and challenges to gene discovery efforts.  

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2017. ; https://doi.org/10.1101/116624doi: bioRxiv preprint 

https://doi.org/10.1101/116624
http://creativecommons.org/licenses/by/4.0/


Breuer et al.   Association rules in bipolar disorder 

 

3 

 

Introduction 

It is widely accepted that the high heritability of around 80 % for bipolar disorder (BD) is 

conferred by a polygenic component yet to be understood in its complexity [1,2]. Genome-

wide association studies of BD have identified several genome-wide significant variants and 

also hinted at the existence of many more variants which fail to achieve the rigorous 

threshold of genome-wide significance (p<5.0e-08) but contribute to the overall variance 

when considered within the context of polygenicity [5,6]. However, the number of newly 

identified variants is far below original expectations, with limited sample sizes being one of 

the explanatory factors. The largest sample for a meta-analysis of GWAS of BD to date 

comprised nearly 64,000 participants [7]. Although this is an impressive sample size, GWAS 

of other phenotypes, such as adult height, have demonstrated that samples three-times this 

figure are required to achieve an adequate number of significant findings [8]. Recent 

successes of the Psychiatric Genomics Consortium (https://pgc.unc.edu/) in schizophrenia 

genetics where case-control samples have already exceeded 100,000 individuals suggest 

that continued enlargement of sample size will also increase the yield of genome-wide 

significant findings for BD. Clinical heterogeneity of the BD phenotype may also have 

hampered success in identifying vulnerability genes. DSM [9] and ICD [10] present a list of 

possible symptoms, each of which must persist for a minimum period of time for the 

diagnosis to be assigned. Since a diagnosis of BD is based upon the presence of a minimum 

number of these symptoms, the diagnosis can be assigned for varying symptom 

constellations. Thus the nature and number of the underlying clinical symptoms, as well as 

the time periods over which they occur, show substantial variation between patients. Thus, 

the clinical presentation is diverse, and differing disease courses are observed within each 

diagnostic category. 

We hypothesize that heterogeneity can be reduced and the number of identified variants 

increased by analyzing the joint effect of several genetic variants on specific subsets of 

clinical items identified in BD patients [11,12]. We hypothesize that systematic data mining 

approaches from other fields can be applied to analyses of GWAS data. Popular methods 

such as support vector machines, Bayesian networks, and association rule mining (ARM) 

have been successfully applied in industry. ARM is one of the most important and well 

researched techniques of data mining [13]. It aims to extract casual structures among sets of 

items in data bases for discovering and predicting regularities and has been applied 

extensively to market research [14,15] in order to analyze customer habits. Recently, it has 

been introduced to biological data, in particular microarray data for gene expression analysis 

[16,17]. We consider this approach highly appropriate for genome-wide data, since its main 

goal is to unravel unknown associations between source data, i.e. customer profiles in 

market research, and potential targets, i.e. their buying behavior, which can then be used for 
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target prediction (Figure 1). Within the context of genome-wide data, the source data are 

genetic variants and the potential targets are symptom clusters. The aim of the present study 

is to apply this data mining approach to GWAS datasets of BD in order to identify yet 

undetected genotype-phenotype associations, searching for associations between frequently 

occurring genotype combinations and symptom clusters. 

 

Materials and Methods 

Samples 

Genotype and phenotype data were obtained from three independent BD case-control 

samples, the US-American GAIN (1,000 cases, 1,033 controls) [18] and TGEN (1,190 cases, 

401 controls) collections [19]  and the German BoMa (645 cases, 1310 controls) sample [20]. 

Clinical symptoms, sociodemographic and environmental features were ascertained using 

structured interviews (DIGS [21] for GAIIN and SCID-I for BoMa [22]. All phenotypes were 

retrieved from professionally curated databases [23,24]. Detailed information on the samples 

can be found elsewhere [18,19,25]. Descriptive statistics for both samples are provided in 

Table S1. The total sample for the present study comprised n=5,579 subjects (2,835 cases 

and 2,744 controls). The GAIN sample was used for the discovery step, and the TGEN and 

BoMa samples were used for the replication step. Prior to study inclusion, written informed 

consent was obtained from all subjects. The study was performed under a protocol approved 

by the ethical committee of the University of Heidelberg (Medizinische Ethikkommission II). 

 

Selection of clinical features 

In addition to the two phenotypic specifiers age at onset (AAO) and sex, we included a 

variety of other phenotypic feature, for the selection of which we applied the following criteria: 

(i) evidence of familiality and/or heritability [26]; (ii) a frequency of at least 5% across all three 

samples; (iii) a missing data rate of less than 10%; (iv) availability in at least two of the three 

data sets; and/or (v) clinical features with a high frequency among BD patients, including co-

morbid features not being part of the diagnosis of BD. In total, we selected 23 clinical 

features (Table S2), the frequency of which was similar across all three samples (Figure S1), 

and ranged from <10% (e.g. eating disorder) to 80% (e.g. reckless behavior). 

 

Selection of single markers and genetic model 

The GAIN and TGEN samples were genome-wide genotyped on the Affymetrix 6.0 SNP 

array. For the BoMa sample, the Illumina HumanHap550 BeadChip was used. All genotypes 

were imputed based on 2.1 million HapMap Phase 2 markers [27]. Due to computational 

runtime constraints, our analysis is based on a selected number of markers. We included 

only those SNPs that showed an association p-value of less than 0.001 in a recent meta-
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analysis of 4,961 BD patients and 7,294 controls (Supplementary Notes, Methods-SNP 

selection). Our resulting SNP set comprised 5,487 SNPs, on which LD pruning 

(Supplementary Notes, Methods-Linkage disequilibrium) was performed in order to reduce 

redundancy within the genotype data before the discovery step and to decrease runtime. 

This left us with a total of 1,599 SNPs. Of these, 1,581 SNPs were available in all three 

samples studied. As the ARM approach requires binary variables we had to transform the 

genotype information into a binary format (Supplementary Notes, Methods-Genetic Models).  

 

Algorithm for association rule mining 

The basic idea for identifying genotype-phenotype data using these binary genotype data is 

to (i) receive frequent genotype patterns, (ii) to look for significantly associated phenotypes 

as candidates, or in terms of the original algorithm candidate association rules, in a discovery 

dataset, and (iii) to validate these candidate association rules in an independent replication 

dataset. Figure 2 illustrates the basic idea of combining genotypic information in order to 

identify frequent genotype patterns (left) and evaluate the patterns regarding interesting 

phenotype traits in order to receive a candidate association rule like genotype-pattern A 

implies phenotype-pattern B ( )BA⇒  (right). 

 

Identifying frequent genotype patterns. The frequent genotype patterns can be identified 

in a systematic manner. Several approaches have been developed for association rule 

mining [28,29]. Here we use the most common Apriori algorithm, as it can be implemented in 

a straightforward manner and shows a good performance for short patterns, making it an 

ideal choice for the present study. For details, see Supplementary Notes, Methods- Runtime, 

Methods-Apriori algorithm, and Methods-Closed frequent itemsets. 

 

Discovery of candidate association rules. Once a frequent genotype pattern is identified it 

is tested for association with each phenotypic trait, i.e. each of the 23 selected clinical 

features. This step involves the generation of a contingency table for the frequent genotype 

pattern and each clinical feature. Based on this contingency table, the interestingness of an 

association rule is assessed. For details, see Supplementary Notes, Methods-Association 

rule discovery. 

 

Replication of candidate association rules. The third stage of our rule mining approach is 

the replication of the candidate rules. Significance testing is rarely investigated in rule mining 

[30]. However, we considered this to be important as an inherent aspect of rule mining is the 

occurrence of false positive results. We anticipated 50,000 false positives per one million 

tests on the basis of the widely used type I error rate of 5%. One approach to correct for this 
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is to assume that the association rules are independent and apply Bonferroni correction to 

the test statistics in the discovery data only. However, several simulations have shown that 

as well as reducing the rate of false discoveries, the Bonferroni approach also reduces the 

rate of true positive findings [30]. Alternatively, permutation tests can be performed to test 

whether or not the association between a genotype pattern and a phenotype cluster is 

random (Supplementary Notes, Methods-Permutation tests). However, when constrained to 

a single dataset, both methods are susceptible to overfitting. Thus, we considered the 

performance of a replication of all candidate rules nCR in an independent dataset a more 

appropriate alternative as this adjusts for potentially spurious sample effects and random 

associations. Using the latter approach and the Bonferroni method, we defined a primary 

test-wide significance level adjα  for the replication as: 

CRadj n/05.0=α . 

However, as shown by our findings and those of Webb [30], when extracting a set of 

association rules using the ARM approach, the rules are unlikely to be independent. Thus, 

this significance testing remains conservative and is likely to reject true positive results. 

Therefore, we also report p-values adjusted using the false discovery rate (FDR). This is an 

alternative statistical method to adjust for multiple testing: FDR assumes sub-groups of tests 

to be dependent. FDR is less conservative, resulting in an increase in power at the cost of an 

increased likelihood of type I errors [31,32]. 

 

Analyses 

In order to apply our approach to the GWAS data, we developed a software tool, termed 

RUDI (RUle Discoverer; Supplementary Notes, Software). A rule discovery analysis of 1,581 

SNPs (3,162 variables) and 23 phenotypic traits in the 1,000 cases from the GAIN sample 

was performed. Around 4.286e+09 genotype patterns were tested using the following 

settings: (a) z-score of 5.0; (b) maximum length of the genotype pattern of 3, and (c) absolute 

minimum support of individuals matching the particular genotype pattern of 50 

(Supplementary Notes, Methods-Parameter selection). The runtime on an Intel Xeon X3220 

with 2.4GHz was around 18 hours on a single processor using the described settings. A 

second run was performed to replicate the candidate rules in our replication dataset of 

n=1,835 BD patients (TGEN + BoMa). 

 

Results 

N=20,882 candidate rules satisfied the required thresholds in the discovery data set. The 

strongest association rule showed a p-value of 3.457e-15 (#962) and thus reached 

significance after correction for multiple testing using the Bonferroni method (adjusted p-
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value=3.260e-04). When all candidate rules were compared, 15 disjunct phenotype clusters 

were observed. Of these, 11 consisted of a single clinical feature. The remaining four 

consisted of two clinical features (Table S3). 

Replication of the n=20,882 candidate rules was then performed in our replication dataset of 

n=1,835 BD patients. The level of significance after adjustment using the Bonferroni method 

was 2.394e-06 for a default alpha of 5%. Although replication of the top finding from the 

discovery step (#962) failed, two rules met the significance threshold:  

(i) rule #12978  

 

rs6733011_A_0, rs4113925_T_0, rs3769745_T_0 => ‘eating disorder’ (ED) 

 

with a p-value = 3.576e-08 and an odds ratio (OR) = 3.566 [.95 confidence interval (CI): 

2.169-5.681] ;  

 

and (ii) rule #6221  

 

rs858057_G_0, rs4757144_G_0, rs3130781_C_0 => ‘simple phobia’ (SP) 

 

with a p-value = 1.780e-06 and an OR = 2.995 [.95 CI: 1.841-4.730]. Three further rules 

remained significant after FDR correction (Supplementary Notes, Further results). A total of 

1,252 (6.0%) of the candidate rules reached nominal significance in the replication sample. 

The distribution of the p-values for all candidate rules in the replication dataset fits the 

expected chi-squared distribution (Figure S2). 

 

Association finding with eating disorder 

Our top finding, rule #12978, showed a genotype pattern frequency of 5.2-7.4% in the case 

samples and of around 5.2-5.8% in the control populations (Table S4). Further details of the 

genotype pattern are shown in Table S7. In addition to the primary replication within the 

discovery-replication framework, two types of permutation tests (Supplementary Notes, 

Methods-Permutation tests) were performed to estimate: (a) the probability of finding a more 

significant association with the genotype pattern by re-sampling the phenotype; and (b) the 

probability of randomly choosing a genotype pattern that shows at least the same level of 

significance. Both reject the hypothesis of a random association based on the empirical p-

values observed (4.000e-06 and 7.000e-06, respectively), based on 1e+06 trials in the 

discovery data. In a subsequent step, we combined the data of all n=2,835 patients and re-

evaluated rule #12978, i.e. we compared patients with and without an eating disorder 

(BD_ED and BD_nonED, respectively) in terms of the genotype pattern of this rule. This 
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combined analysis of cases showed a p-value=5.300e-14 and an OR=4.120 [.95 CI: 2.740-

6.068]. Thus, within the group of patients carrying the genotype pattern, the frequency of a 

co-morbid eating disorder is increased on average by a factor of 4. An association analysis 

was then performed for each of the three SNPs of the genotype pattern to determine whether 

the observed association was due to the combination of the three SNPs or conferred by only 

one of them. Single trend tests for the phenotype ‘eating disorder’ was performed in each of 

the three datasets using PLINK [33]. No significant evidence was found to support the 

hypothesis that the association with the phenotype of the rule is driven by a single SNP 

(Table S6). 

We furthermore performed an association study of the genotype pattern of rule #12978 in 

cases versus controls. No differential distribution of the genotype pattern was observed 

between (a) the BD_nonED cases and controls and (b) between all BD cases and controls: 

However, the genotype pattern was significantly associated with BD_ED cases compared to 

controls (p-value=4.937e-14, OR=4.107 [.95 CI: 2.735-6.040]) (Table S5). 

 

Association finding with simple phobia 

The second finding, rule #6221, showed an association with ‘simple phobia’. The genotype 

frequencies were 5.4-6.9% in cases and 5.1-7.2% in controls. In the combined analysis of all 

cases, we observed a p-value=3.476e-13 (adjusted p-value=3.427e-02) and an OR=3.551 

[.95 CI: 2.453-5.063]. Thus, within the group of patients carrying the genotype pattern, the 

frequency of a co-morbid simple phobia increased on average by a factor of 3.5. As was the 

case for the rule including eating disorder, the association was not conferred by the single 

SNPs taken separately but only in combination (Table S6). Likewise a case-control analysis 

showed: (a) no differential distribution of the genotype pattern between the BD_nonSP cases 

and controls nor (b) between all BD cases and controls. However, we observed (c) a 

significant differential distribution between BD_SP cases and controls  (p-value=1.686e-11, 

OR=3.195 [.95 CI: 2.220-4.523]) (Table S5). 

 

Discussion 

Application of the ARM data mining approach identified significant associations between sets 

of candidate SNPs and BD subgroups characterized by two specific comorbid conditions: 

eating disorder and simple phobia. 

 

Our top finding (rule #12978) highlights an association between the genotype pattern of rule 

#12978 and the subgroup of BD patients with an eating disorder. The association was 

conferred by the combination of three SNPs but not by the individual SNPs. While the 

proportion of BD patients with an eating disorder was very small (n=192 patients; i.e. 6.8% of 
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our sample), this frequency is comparable to that reported in other studies [34, 35]. Thirty-

seven of these patients displayed the genotype pattern of rule #12978, which was present in 

182 of all BD patients. Despite the small sample size, the association finding (p-

value=4.937e-14) is rather strong with an OR=4.107 in the combined case-control analysis, 

an effect size typically not seen for diagnosis-based studies.  

The likelihood that our findings may be due to chance is further decreased when considering 

the following two points: Firstly, the replication sample was comprised of two smaller 

samples, and in both of these samples, the effect was in the same direction (with test-wide 

significance being achieved in neither). Secondly, our findings fall in line with reports on the 

function of the genes involved. SNP rs3769745 of rule #12978 is located in the intron region 

of the cyclic nucleotide gated channel alpha 3 gene (CNGA3) on chromosome 2. In humans, 

CNGA3 is implicated in total color blindness (achromatopsia) [36,37]. Animal studies have 

shown that CNGA3 is required for normal vision [38], olfactory signal transduction [39], and 

involved in nociceptive processing [40]. Further, it is expressed in the mouse brain and is 

reported to influence synaptic plasticity and behaviour [41]. Research has also shown that 

the specialized olfactory subsystem to which CNGA3 belongs is required for the acquisition 

of socially transmitted food preferences (STFPs) in mice. Mice that lack this gene fail to 

acquire STFPs from other mice, and exhibit an absence of neuronal activation of the ventral 

subiculum of the hippocampus, a brain region implicated in STFP retrieval [42]. According to 

the KEGG Database, CNGA3 is in a common pathway, .e., olfactory transduction (KEGG ID 

hsa04740), with CALM1, a candidate gene for anorexia nervosa [43]. To the best of our 

knowledge, no association between this variant and eating disorder has been reported so far. 

For the other two variants, a plausible support from biological data is not available. SNP 

rs6733011 is located in an intron region of the KIAA1211-like (KIAA1211L) gene on 

chromosome 2 that encodes the uncharacterized protein C2orf55 (chromosome 2 open 

reading frame 55). The location is within a 500 kb window to rs3769745, but not in the same 

LD block (r² = 0.027 and D’ = 0.343 in the discovery dataset). Its function remains unknown. 

SNP rs4113925 is located on chromosome 12q24.21 in an intron of the T-box transcription 

factor (TBX5) gene. This T-box gene has been implicated in heart development and disease 

as well as specification of limb identity [44]. 

 

To investigate whether our finding identified genetic markers specific to BD with an eating 

disorder subphenotype or eating disorder per se, we tested a potential association of the 

genotype pattern of rule #12978 with an eating disorder phenotype comprising anorexia and 

bulimia in a population-based sample from Australia (n=1672, 12.9 % with a diagnosis of 

anorexia or bulimia). We did not see an association of the genotype pattern of rule #12978, 
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suggesting that our approach has detected a genetic marker for BD with comorbid eating 

disorder rather than for eating disorder per se. 

 

Our second finding, rule #6221, showed an association with simple phobia. Two of the three 

contributing SNPs are located within genes. SNP rs4757144 is located in an intron region of 

the aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, and rs3130781 is 

located in an intron region of the diffuse panbronchiolitis critical region 1 (DPCR1) gene. The 

third SNP, rs858057, is located at an intergenic region of 20p11.21. An implication of ARNTL 

in the etiology disorders via its influence on the circadian system has been discussed 

repeatedly. 45-50], There is further report that genes homologous to ARNTL may be  

implicated in the etiology of anxiety. Sipilä and colleagues [50] tested several anxiety 

phenotypes for association with 13 circadian genes and found association between social 

phobia and ARNTL2. Thus the ARNTL gene family may be involved in this co-morbid 

phenotype. The second gene, DPCR1, is located in the major histocompatibility complex 

(MHC), which hosts genes that are crucial for the functioning of the immune system.  

 

While we observed several other genotype-phenotype rules that may warrant further in-depth 

investigation (Table 1 and Supplementary Notes, Further results), we focused on the rules 

implicating BD subtypes with comorbid eating disorder and simple phobia, respectively, as 

only these two survived our stringent multi-tiered evaluation of potential type I error. These 

steps help minimize -if not eliminate- type I error rate in ARM due to the overfitting of rules in 

a particular dataset [28]. 

 

We would like to point out that the two reported association rules were associated with very 

low frequency phenotypes. This is due to the characteristics of the z-score approach applied. 

Since small proportions of the data are more likely to deviate strongly from the random 

distribution, larger effects and thus larger z-scores are expected. As only those rules that 

show a z-score of greater or equal 5 are extracted as candidates, this particular rule measure 

is biased towards associations with low frequency phenotypes. This further explains the 

relatively small number, i.e. 4 out of 15 (Supplementary Notes, Methods-Phenotype cluster), 

of phenotype clusters that consisted of more than one phenotype. We may thus have 

discarded many potentially true findings. Given that our study can be considered a proof-of-

concept for the application of ARM on GWAS-derived data for a complex phenotype, we 

opted for statistical stringency rather than a merely exploratory pattern mining. While this 

approach resulted in only two findings, they are characterized by effect sizes up to four times 

larger than typically seen in GWAS of BD or other complex traits.  
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In summary, using already available GWAS data sets on BD, we have established and 

implemented a novel data mining process for complex genetic data. We identified genotype-

phenotype patterns highlighting subtypes of BD characterized by specific comorbid 

conditions. These two comorbid conditions, eating disorder and simple phobia, may delineate 

more homogenous subgroups of BD that warrant further study in genomic studies of BD.  

An important limitation of our approach is that our approach was only based on 5487 SNPs 

that showed some evidence of association with BD. As association rule mining may detect 

hidden association of specific phenotypes with previously un-identified SNPs, our approach 

may have missed several novel associations. This restriction, however, was due to our 

motivation to perform genotype-phenotype dissection on SNPs that showed some evidence 

of association. We were further bound by some computational runtime constraints. Further 

extensions of the algorithm will be required to allow for a variety of assumed genetic models 

(here we used a dominant genetic model), to optimize computational feasibility for an 

increased number of SNPs (Supplementary Notes, Methods-Runtime), and to determine the 

optimal correction methodology for highly correlated data  

 

Our approach highlights a strategy for genotype-phenotype dissection and for the 

identification of genetic susceptibility variants beyond initial GWAS of heterogeneous 

disorders. Finally, our results emphasize the importance of thorough phenotyping, 

particularly with regard to comorbidity. 
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Tables 

 

Table 1. Top 10 association rules regarding their p-values in the replication dataset (TGEN+BoMa). 

PID Groups Statistics Adjusted p-value 

 GP Gp gP gp p_chisq odds ratio (.95 CI) Bonferroni FDR 

12978 25 105 107 1598 3.576e-08 3.566 [2.169-5.681] 0.00075 0.00075 

6221 26 84 162 1563 1.780e-06 2.995 [1.841-4.730] 0.03717 0.01859 

12681 33 103 187 1512 4.648e-06 2.596 [1.682-3.917] 0.09706 0.02771 

12981 25 129 107 1574 5.720e-06 2.860 [1.751-4.520] 0.11944 0.02771 

6225 25 84 163 1563 6.635e-06 2.862 [1.747-4.545] 0.13855 0.02771 

6228 26 93 162 1554 1.585e-05 2.690 [1.661-4.225] 0.33102 0.05517 

4428 31 88 212 1504 2.021e-05 2.505 [1.600-3.830] 0.42198 0.06028 

6111 21 109 111 1594 4.096e-05 2.779 [1.636-4.529] 0.85530 0.10654 

6183 20 66 168 1581 4.592e-05 2.864 [1.652-4.765] 0.95887 0.10654 

6178 20 68 168 1579 7.577e-05 2.777 [1.604-4.611] 1 0.15823 
Listed are the rule identifier (PID), the counts per group of the contingency tables, the p-values based on the chi-squared test 

along with the odds ratios including confidence intervals (CI), and results from two multiple correction methods (based on 

20,882 tests). The coding of the groups is as follow: G, if genotype pattern is present, g if not; P, if phenotype pattern is present, 

p if not. FDR = False discovery rate 

 

Figure Legends 

Figure 1. Outline of the overall approach. A main goal of market research is to identify 

rules that predict customer habits based on market baskets. In the cartoon, a male customer 

between 20 and 25 without children living in the city favours junk food and beer and when he 

goes shopping he will most likely buy brands. Adapting this idea to genetic research we try to 

identify those genetic factors from the plethora of genetic factors in the “market basket“ that 

are characterized by specific phenotypic features (like specific phobia or restlessness). The 

cartoon contains graphical depictions by Benjamin Albiach Galan and Konstantinos Kokkinis. 

 

Figure 2. Illustration of the implemented version of the association rule mining 

algorithm. The lattice shown left is traversed starting from root { } to all leaves. Each 

genotype pattern (node in the tree) represents a subgroup of patients shown in the genotype 

matrix G. Additionally, using the p phenotype information of the patients from matrix P, we 

can count genotype and phenotype occurrences in contingency tables. Here illustrated for 

the genotype pattern g1g2gn with ‘a’ counting all patients where genotype g1g2gn and 

phenotype pi are present, ‘d’ were neither of both are present, and ‘b’ and ‘c’ counting 

patients with presentation of genotype g1g2gn but not phenotype pi and visa versa. The lattice 

is traversed as long as there are unprocessed genotype patterns that cannot be pruned 

before.  
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