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Abstract 

The processes that led to the demise of the Neanderthals and their replacement by modern 

humans have been the object of speculation, research, and heated debate. Most 

hypotheses fall into one of two categories: one highlights the role of climate change, 

epidemics, or other environmental pressures in the Neanderthals’ demise, and the other 

attributes it to direct or indirect competition with modern humans, who seem to have 

occupied the same ecological niche. The latter are based on the assumption that modern 

humans benefited from some selective advantage over Neanderthals that led to the latter’s 

extinction. We show that a scenario that includes migration and selectively neutral 

species drift can explain the Neanderthals’ replacement and is in line with the 

archaeological evidence. Our model offers a parsimonious alternative to those that invoke 

external factors or selective advantage, and can represent a null hypothesis in assessing 

such alternatives. We show that for a wide range of parameters this hypothesis cannot be 

rejected. Moreover, we suggest that although selection and environmental factors may or 

may not have played a role in the interspecies dynamics of the Neanderthals and modern 

humans, the eventual outcome of these dynamics, the replacement of the Neanderthals, 

was the result of the hominid migration dynamics at the end of the middle Paleolithic, 

namely repeated migration of modern humans from Africa into the Levant and Europe. 

 

Significance statement 

Multiple factors have been proposed as possible drivers of the extinction of the 

Neanderthals and their replacement by modern humans circa 40,000 years ago: climate 

change, epidemics, and – most prominently – a selective advantage, such as superior 

cognitive capacity of modern humans over Neanderthals. We propose an alternative 

model that includes only migration of modern humans out of Africa into the Levant and 
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Europe. We show that, given that the two species occupied a similar ecological niche, 

modern humans were destined to replace the Neanderthals even under a neutral scenario 

in which neither species has a selective advantage. 

 

Keywords: Neanderthals ; Out of Africa ; Modern Humans ; Species Drift ; Migration 

 

Introduction 

 

One of the most intriguing questions concerning the evolution of modern humans is 

their relationship with other hominid species, particularly in light of recent findings 

showing that the genomes of modern humans carry the traces of introgression events with 

Neanderthals and Denisovans (1–5). Although many details of the process are unclear, 

archaeological and genetic evidence suggests that near the end of the middle Paleolithic, 

modern humans (henceforth Moderns) migrated out of Africa, where they had evolved 

and where their population was large, into the Levant and thence to other parts of Eurasia 

(6–12). As migrating bands of Moderns expanded the species’ range they encountered 

small populations of other hominid species – Neanderthals, Denisovans, and perhaps 

others – that seem to have occupied an ecological niche very similar to their own (13–16; 

see (17) and following commentaries). Archaeological findings point to a period of 

10,000 to 15,000 years during which both Moderns and Neanderthals coexisted in the 

Levant and Europe, including a few thousand years in western Europe and including 

regional overlap and even recurring replacement of one species by another in particular 

dwelling sites (18–28; the period of coexistence is discussed in Supplementary 

Information, section A, SIA). The two species’ temporary coexistence ended in the 

complete disappearance of Neanderthals by 38,000 years BP ((29); Evidence in support 

of somewhat later Neanderthal existence is debated. Data regarding Denisovans are 

scarce, and not discussed in this study). A recent analysis of ancient DNA from an 

eastern Neanderthal suggests that introgression of Moderns into Neanderthal populations 

had occurred much earlier, roughly 100,000 BP; that is, the archaeologically-established 

period of overlap seems to have been preceded by earlier encounters between the two 

species (30, 31). This should not come as a surprise: Moderns’ remains are found in the 
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Levant as early as 120,000 BP, and the evidence suggests plausible contemporaneous 

overlap between the two species’ ranges in the Levant for tens of thousands of years, 

prior to the Moderns’ expansion into Europe (17, 27, 28). 

The underlying causes of Neanderthal replacement and its dynamics have attracted 

much interest and extensive study; hypotheses regarding this process fall into two broad, 

but not mutually-exclusive, categories. The first highlights environmental factors, such as 

climate change and epidemics as the causative agents (2, 32–37); The second attributes 

the Neanderthals’ replacement to direct or indirect competition with Moderns, in which 

Moderns had some selective advantage, possibly due to a wider dietary breadth, a more 

efficient mode of subsistence (38–41), advantageous differences in life history (42, 43), 

or – most prominently – a superior cognitive capacity, potentially reflected in material 

culture and tool use, symbolic thought as supported by artistic expression, and language 

(9, 44–49). A recent study has shown that even cultural differences alone, potentially 

interacting with population size differences, could have provided Moderns with a critical 

selective edge (50).  

Many studies that assign a major role to a selective advantage of Moderns in the 

Neanderthals’ demise do so based on the premise that such an advantage had to exist in 

order to explain the latter’s demise, and they focus on determining what the selective 

advantage could have been. In this study we show that this assumption is unnecessary: 

selection may have played a role in the Neanderthals’ replacement, but the replacement 

could also have been the result of selectively neutral demographic processes, a 

parsimonious alternative that should a-priori be preferred. In fact, our simple model 

suggests that the migration dynamics mentioned above – recurring migration from Africa 

into the Levant and Europe – even at a low rate – were sufficient to result in the 

Neanderthals’ replacement even if neither species had a selective advantage over the 

other, and regardless of possible differences in population size between the  two species. 

This replacement is found to have been extremely likely even if migration were bi-

directional, when the estimated demographic state of affairs at the time is taken into 

account: a small Neanderthal population in Europe and the Levant, and a larger Modern 

population in Africa.  
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Our model plays two roles in the study of the relations between Moderns and 

Neanderthals. First, it acts as a null model, a parsimonious alternative to models of 

replacement that invoke selective advantage or environmental factors to explain the 

replacement. Second, appreciation of the fact that Neanderthals are expected to have been 

replaced by Moderns regardless of any possible selective advantage to the latter is in 

itself paramount to our attempts to reconstruct hominin evolution. That is, our finding 

would be important as a baseline for understanding Neanderthal-Modern dynamics, even 

if there were clear evidence that selection did play a role in the replacement process. 

We first describe our model and present the results of numerical simulations. We then 

discuss these results in the wider context of archaeological and genetic findings, 

addressing alternative perspectives.  

 

The model 

We suggest that a model of migration and neutral species drift can explain the 

replacement of Neanderthals by Moderns and is in line with the evidence to date. Our 

model assumes no selective differences between the two species; that is, the competitive 

interaction between individuals or groups from the different species is identical to the 

competitive interaction between individuals or groups within the same species. Thus the 

two species are equivalent to two non-interbreeding subgroups of a single species. 

Although the two species did interbreed to some extent (4, 30, 51, 52), for simplicity we 

do not incorporate introgression into our model. In our model the only trait of interest is 

the species’ identity of individuals or groups; This formally equates the model with a 

simple, well-studied scenario: two selectively neutral alleles segregating at a genetic 

locus (53). Perhaps the most fundamental property of the dynamics in such a scenario (in 

the absence of mutation) is that random drift will ultimately lead to the fixation of one 

allele and the extinction of the other. Applied to species, the analogous process has been 

termed species drift (54, p. 735).  

This portrayal of the Neanderthals-Moderns situation is already sufficient to explain 

why one of the species had to eventually disappear, and is in line with the archaeological 

evidence that points to a period of co-occurrence of the two species in Europe and the 

middle-east. However, in order to understand how and why the two species’ history 
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would necessarily result in the Neanderthals’ extinction, we must take into account 

geographic and demographic aspects of the two species’ populations at the time. To do 

so, we model Europe and the Levant (deme 1, for simplicity, referred to henceforth as 

Europe) and Africa (deme 2, Africa) as separate demes with migration between them. 

The two demes have constant but possibly different hominid carrying capacities.  

For realism and simplicity, we consider the dynamics of bands of individuals. That is, 

the entities whose fate is tracked in our model are small groups of individuals: such a 

band may die out by chance and be replaced by a propagule from another band (similar to 

the propagule pool model described in (55); see also (56–58); a propagule should be 

regarded as a copy of its band of origin). The carrying capacity of bands that reside in 

deme x (x = 1,2) is the constant Nx. The probability of occurrence of outgoing migration 

of a propagule from deme x per time step is denoted Mx, and is proportional to a 

parameter mx and to Nx. The rate of migration is assumed to be small enough that at most 

a single propagule can migrate per time step; accordingly, if mx * Nx > 1, we set Mx = 1, 

in which case migration occurs with probability 1 at every time step. 

The population dynamics are those of a birth-death process akin to a Moran process 

with migration: at every time step a band chosen at random (regardless of its species’ 

identity) dies out, and is randomly replaced by a propagule from one of the other bands in 

its deme or by a migrant propagule that had arrived from the other deme during the most 

recent time step. We use the term establishment to describe the case in which a propagule 

migrated and was chosen to replace a band that died out. The probability of a migrant 

propagule’s establishment in deme x after arriving from deme y is thus 1/Nx. Only 

propagules of existing bands migrate; thus migration has no effect on the population in its 

deme of origin. These dynamics lead to a constant population size in each deme, equal to 

the carrying capacity of that deme, Nx. Both terms refer henceforth to the number of 

bands in a deme, except where noted otherwise. 

The following set of transition probabilities constitutes a full mathematical description 

of this model. Let ix denote the number of bands of Moderns in deme x, and !!Pix→ix+1
 

denote the probability per time step, at time t, of an increase by 1 of ix, !!Pix→ix−1
 the 

probability of decrease by 1 of ix, and 
!
Pix→ix

 the probability of no change to ix. As 
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indicated by the lower subscript of ix, equations 1-3 describe the dynamics in deme 1, 

representing Europe, and equations for the dynamics in deme 2, representing Africa, are 

obtained by replacing every 1 by 2 and 2 by 1 in equations 1-3. 

 

 
!!
Pi1→i1+1

=
N1 − i1
N1

⋅ 1−M2( )⋅ i1
N1 −1

+M2 ⋅
i2
N2

⎛

⎝⎜
⎞

⎠⎟
⋅
i1 +1
N1

+
N2 − i2
N2

⎛

⎝⎜
⎞

⎠⎟
⋅
i1
N1

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   

            (1)
 

 
!!
Pi1→i1−1

=
i1
N1

⋅ 1−M2( )⋅N1 − i1
N1 −1

+M2 ⋅
i2
N2

⎛

⎝⎜
⎞

⎠⎟
⋅
N1 − i1
N1

+
N2 − i2
N2

⎛

⎝⎜
⎞

⎠⎟
⋅
N1 − i1 +1

N1

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      (2) 

 !!Pi1→i1
=1− Pi1→i1+1

+Pi1→i1−1( )                                                                                   (3) 

 

These equations are derived as follows: In equation 1, 
!!
N1 − i1
N1  

is the probability that in 

the current time step, a Neanderthal band in deme 1 died out (otherwise an increase in the 

Modern’s population in this deme during this time step is impossible). The terms 

!! 1−M2( )  and !!M2 , respectively, represent the probabilities that migration from deme 2 did 

not occur and that it did occur. The term  
!!
i1

N1 −1
 

is the probability that the propagule 

chosen to replace the one that died out in deme 1 (Europe) is Modern, given that no 

migration occurred; thus the number of candidate propagules that can act as a 

replacement is !!N1 −1 . 
!!
i2
N2

 and 
!!
i1 +1
N1

 represent, respectively, the probabilities that the 

migrant propagule to Europe is Modern, and that a Modern propagule is chosen to 

replace the band that died out. Another possibility that increases the Modern population 

in Europe, given that migration had occurred, is represented by 
!!

N2 − i2
N2

⎛

⎝⎜
⎞

⎠⎟
⋅
i1
N1

, i.e. the 

migrant to Europe is Neanderthal, and yet a Modern propagule is chosen to replace the 

band that died out. Equation 2 is composed of analogous constituents, whose 

interpretation is analogous to the description above.  
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This model is similar (but not identical) to the Moran process with mutation that is 

studied, for example, by Ewens ((53), p. 106), if one of the migration probabilities is 

zero. 

In studying possible dynamics of Neanderthals and Moderns we shall limit the scope 

of our exploration to conditions in which one of the demes (deme 1, representing Europe) 

is initially populated only by bands of Neanderthals, and deme 2, representing Africa, is 

initially populated only by bands of Moderns. We first analyze the case in which 

migration occurs only from Africa to Europe (deme 2 to deme 1), the scenario that is 

widely believed to have taken place near to and during the interaction between the 

Neanderthal and Modern populations, based on the lack of evidence so far that would 

support Neanderthals’ existence in Africa. We then report simulation results for the case 

in which migration occurs in both directions.  

Results 

 

1. Unidirectional migration from Africa to Europe leads to Neanderthal exclusion 

We suppose that all individuals in deme 2 (Africa) are Moderns, and M2 > 0, M1 = 0 

(migration occurs only from deme 2 to deme 1, Europe). This results in complete 

replacement of Neanderthals by Moderns, regardless of the size of M2 or the relative 

values of N1, N2, the carrying capacities of the two demes. This is because there is 

constant influx of Moderns into Europe, while within Europe stochastic drift takes place. 

Thus the process can be viewed as a random walk with a single absorbing boundary: if 

the frequency of Neanderthal bands in Europe reaches zero, there is no further change, 

while zero Modern bands in Europe  is not an absorbing state due to continued migration 

from Africa. For the process described by equations (1)-(3) the expected number of time 

steps for the exclusion process to be realized can be calculated using equations 2.144 and 

2.160 in (53), and is not provided here. 

 

Effects of migration rate and carrying capacity  

Numerical stochastic simulations of the process described by equations (1)-(3) reveal a 

number of interesting aspects of the process of species replacement; for example, the 

relationship of the hominid band carrying capacity in Europe, N1, to the time scale on 
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which the replacement occurs and to the number of successful establishment events of 

migrating propagules. For a fixed probability of migration, M2, we find that as Europe’s 

carrying capacity, N1, becomes larger, proportionally more migrations are required before 

one of the propagules from Africa establishes and ultimately leads to species’ 

replacement (Fig 1A). The time that it takes for successful establishment and subsequent 

fixation to occur is nearly proportional to (N1)2 (Figure 1B), because the probability that a 

migrating propagule will establish is proportional to 1/N1 and the mean time from 

successful establishment to fixation is proportional to N1 (53). See Supplementary 

Information, section B (SIB), for analogous results with different migration rates. 

Another result concerns the effects of the rate of migration and the European carrying 

capacity, N1, on the mean number of migration events into Europe that may contribute to 

the Modern population at the time of fixation; that is, how many migrant propagules 

might eventually have offspring in the population? When migration is rare (M2 is small) 

or N1 is small, a single migrating propagule may establish and drift to fixation without 

any subsequent Modern establishment events taking place during the process. When 

migration is sufficiently large, it is likely that more than one establishment event occurs 

before fixation of Moderns, and each of these migrations may contribute to the eventual 

composition of the population of Moderns in Europe (Figure 1C). To demonstrate this we 

kept the migration rate constant and ran stochastic simulations of equations (1)-(3) with 

different population sizes N1 (keeping population size constant and altering migration rate 

gives similar results). Figure 1C shows that the number of potential contributors to the 

fixing population rises proportionally to the carrying capacity, N1. This is because the 

mean time that Moderns segregate in the population until fixation scales with the 

population size. This pattern bridges what may seem to be a gap between our model’s 

assumptions of ongoing migration from Africa to Europe, and suggestions that the 

archaeological record does not support more than a single out-of-Africa event into the 

Levant and from it to Europe: evidence of a single migration event is to be expected 

under our model if the rate of migration is low or if Europe’s carrying capacity is small 

(Figure 1C).  
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These relationships may be useful in testing our model with the accumulating of 

empirical evidence concerning the replacement process, because they should leave 

signatures in the archaeological and genetic records. 
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Figure 1: (A) Mean number of simulation time steps until complete replacement of 

Neanderthals by Moderns. Here and in (B) and (C), red error bars denote two 

standard errors around the mean, and blue bars denote the standard deviation; 500 

replicate simulation runs were conducted with each carrying capacity value. The 

green line is a fit of the means to a quadratic function, demonstrating that the 

number of time steps to fixation scales with (N1)2 . (B) The mean number of 

migrant establishments in Europe that take place until replacement occurs is linearly 

related to N1. Here and in (C) the green line is a fit to a linear function. (C) The 

number of migrant establishments that occur while the Moderns are segregating in 

Europe on their way to fixation (see text) scales with N1. For all panels, the 

probability of migration into Europe per time step, M2 = 0.1 (N2  = 100, m2 = 0.001). 
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The time trajectory of replacement 

 

A potential argument against the sufficiency of a neutral model to explain Neanderthal 

replacement is that the archaeological evidence within continental Europe seems to point 

to a clear process of directional selection in which Moderns increase in frequency while 

Neanderthals disappear, a pattern that might not seem to be in line with a drift 

explanation. This interpretation may be contested in light of recent re-assessment of 

archaeological finds that were initially assumed to be associated with Moderns based on 

their cultural complexity (59–62). Further, even if one accepts that the process was 

directional, two properties of the demographic processes should be considered: one is 

that, although neutral, the process we describe is biased by unidirectional migration, 

which may underlie an increase over time in the Moderns’ frequency, but may be 

unimportant if the probability of migration is low, particularly if the overall population 

size in Europe is not small. A second, somewhat less intuitive consideration, is that the 

trajectory we should expect to have left its mark in the archaeological record according to 

our model is drawn from a distribution different from the one we are used to attributing to 

random drift; it is conditional on having reached the point of one species’ fixation. A 

significant part of such a distribution is composed of trajectories that seem directional, 

particularly, as seen in Figure 2, in the period approaching final fixation. 
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Figure 2: Number of bands of Moderns in Europe over time in nine randomly selected 

simulation runs (A-I), with a carrying capacity of N1 = 500 bands in Europe, and 

migration probability from Africa to Europe, M2, of 0.1 per time step. Red and green 

circles denote, respectively, the last time that the Moderns and that the Neanderthals 

made up at least 10% each of the hominid population in Europe. Many trajectories, 

particularly in the final phase leading to Modern’s fixation, are highly directional. 

 

The duration of replacement 

The replacement of Neanderthals by Moderns seems to have occurred surprisingly fast 

when compared to archaeological and evolutionary time scales of the two species’ 

existence. This may be why many scholars assume that the process was necessarily 

driven by selection, but whether the process should be considered as having been rapid 

depends on properties of the model assumed, such as the Neanderthal population size at 

the time, and the expected duration of replacement. Our model, which takes into account 

major aspects of the two species’ demography at the time but does not include selection, 

may be regarded as a baseline, or a null model, for such an evaluation. To assess whether 

this null model can be rejected in favor of a selection scenario, we study the distribution 
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of replacement durations produced by the model and compare it to the replacement 

duration suggested by empirical evidence. Such an attempt faces a number of obstacles. 

First, it is notoriously hard to correlate the time units in evolutionary models with the 

time span of real life scenarios. This is also the case in our model, which entails the 

selectively neutral replacement of bands, whose empirical rate is hard to gauge and for 

which there are no clear estimates. Second, the species’ replacement duration in our 

model depends critically on the parameter N1, the number of bands in Europe. Estimates 

of hominid population sizes in Europe near the end of the middle Paleolithic vary over 

more than an order of magnitude and – according to reconstructions of paleo-climate 

during this era – are likely to have changed significantly while the replacement was 

taking place (15). Finally, the way in which replacement duration is estimated may affect 

the result by more than an order of magnitude. Comparison between the simulations and 

the archaeologically-supported period of co-existence of the two species should take into 

account the time point at which species’ co-existence is likely to be evident in the 

archaeological record. That is, the appropriate duration to be compared should not be the 

full duration of each model simulation, but the period during which both species are 

likely to have a demonstrable presence. This would be based on archaeological findings 

that can be clearly associated with the identity of the species that produced them, and 

could, for example, be the period from the initial crossing of some frequency threshold by 

the Moderns until the Neanderthals constitute less than this threshold in the overall 

European population, or the period between the last crossings of these thresholds (see 

SIA for a discussion of alternatives).   

Following these caveats, we have conducted statistical analyses for a range of 

combinations of parameters. Because our model serves as a null model relative to models 

of species replacement that are not neutral (for example, that assume selection), we test, 

for each combination of parameters, whether our model can be rejected at a significance 

level of  p<0.05. In other words, we attempt to assess, under a range of possible choices 

and assumptions, whether the time required for species replacement according to our 

model is within a reasonable range compared to the empirical evidence. Figure 3A 

presents the ranges of durations of species’ coexistence for various carrying capacities in 

deme 1 of our model, i.e., Europe, over 500 simulations per carrying capacity. These 
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ranges are split into the 5% fastest replacements (red) and the remaining 95% (green), 

thus providing the information about the distribution of replacement durations in our 

neutral model that allows a statistical test. The results are presented in units of the 

average number of times that each territory that supports a band of hominids changed 

hands during the replacement process. This unit is used for ease of interpretation, 

although the model is not spatially explicit, and is calculated as the overall number of 

events in which a band died out and was replaced by another (of the same or of the other 

species), divided by the population size, N1. The results are derived for a single rate of 

migration, of a migrant propagule arriving in Europe every 10 time steps on average, i.e. 

M2 = 0.1. Figure S1	
  compares the mean and median replacement durations for different 

rates of migration, and five possible methods for measuring the time period (SIA). Most 

methods yield similar results over a wide range of migration rates.  
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Figure 3: (A) Range of durations of species’ coexistence for various carrying 

capacities in Europe, N1, in units of average number of events of band 

replacement per band territory. The range that covers 95% of the results is 

marked in green, and the 5% of the simulations with the shortest coexistence 

durations is in red (500 simulation replicates were conducted for each carrying 

capacity). The mean and median values are marked in black and cyan circles, 

respectively. Coexistence duration is defined as the period during which both 

species exist in the population at frequencies above 10%, between the last 

crossings of this threshold by each of the species, as shown by the red and green 

circles in the time trajectories of Figure 2. See SIA for more details and 

discussion of alternative definitions. (B) Tests of the hypothesis of neutral 

replacement for a range of parameter combinations, assuming a species 

coexistence duration of 12,000 years: each point in the panel represents the result 

of a test at significance level p<0.05. The range of parameters for which neutral 

replacement should be rejected is denoted in red. The range for which the model 

should not be rejected is marked in green. 
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To test whether our model of neutral species drift should be rejected, we ask whether 

the archaeologically-supported duration of species coexistence falls in the range of the 

5% shortest coexistence durations or outside of this range (see Figure 3A). In order to 

compare the simulation results to the period of species’ coexistence in the archaeological 

record, one must assume a rate at which bands replace one another. This neutral 

replacement rate is a result of local extinctions due to stochastic (non-directional) 

environmental factors, stochasticity in reproductive success, or competition among bands 

that do not have any selective differences. This rate, the characteristic band size, and the 

hominid carrying capacity of Europe in the middle Paleolithic, are unknowns on which 

the rejection of our null model depends. Figure 3B depicts whether the model should or 

should not be rejected at a significance level of  p<0.05 for a range of band replacement 

rates (equivalent to the rate at which territories change hands) and for a range of carrying 

capacities in Europe, using 12,000 years as the archaeologically-supported period of 

species’ coexistence. In other words, every point in Figure 3B is the result of a hypothesis 

test for the combination of parameters depicted along the X and Y axes. Figure 3B is 

derived from the results presented in Figure 3A. The duration of species coexistence is 

the time from the last simulation time step in which Moderns comprised 10% of the 

population in Europe until the last time that they reached 90% of it (see SIA for a 

discussion of this choice and alternatives). The rates are described in units of the 

probability of band replacement per generation (25 years). See SIA for analogous results 

under the assumption of 5,000 years of species’ overlap, and further discussion of 

estimates of the duration of the species’ coexistence. 

Interpretation of figure 3B depends on the assumed band size and Europe’s carrying 

capacity. For example, for a carrying capacity of 5000 individuals, a slightly higher 

estimate than the mean population size in Eurasia suggested by Bocquet-Appel et al. (63) 

during this period, with a band size of 50 individuals (see in this regard (56–58)), our 

model should be rejected only if one asserts that the rate at which band territories change 

hands corresponds to a probability of replacement per generation of 0.05 or lower; that is, 

if a territory changes hands on average less than once in every approximately 500 years. 

For a carrying capacity of 50,000 individuals (the order of magnitude according to figures 

suggested by Hassan (64) applied to the known habitation region in Europe in the 
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beginning of the upper Paleolithic) but band size of 500 (in line with the definition of a 

tribal group in (65), following (66)), the rejection threshold remains the same. Rates of 

replacement for contemporary traditional populations summarized by Soltis et al. (67) are 

between 2% and 30%, but refer to group sizes on the order of many hundreds or 

thousands of individuals, who are sedentary and rely to a great extent on farming of crops 

and livestock. Bocquet-Appel et al. (15) review numerous population size estimates for 

the Neanderthal population, based on different methods, and conclude that it was in the 

range of 5,000-70,000 individuals. Even if one adopts the high end of this range, 70,000 

individuals, our null model should be rejected only for the lowest extreme of the range of 

replacement rates suggested by Soltis (67) when considering – in accord with the 

accounts reported there – a deme size of 1000 individuals.  

In sum, the above analysis suggests that the time scale on which species replacement 

took place according to the archaeological record is well within the range predicted by 

our model. Moreover, this null model should be rejected only if one assumes a rate of 

neutral band replacement or an overall hominid carrying capacity in Europe that are 

extreme according to ranges that have been suggested for these two variables. 

 

2. Bidirectional migration between Africa and Europe: migration probabilities and 

carrying capacities strongly influence outcome 

 

Archaeological evidence suggests that the Levant was the southernmost tip of the 

Neanderthal population, and thus does not support migration of Neanderthals into Africa. 

However, it is possible that such migrations occurred, and we explore a number of 

scenarios for this bidirectional migration. 

Because the two populations in our model are finite, all scenarios - apart from the case 

in which there is no migration between the two demes – inevitably end in fixation of one 

species and extinction of the other. Thus the question is how the probability of each 

species’ fixation depends on the migration parameters and the carrying capacities of the 

two demes. 

The initial condition in all scenarios that we explore is that deme 1 (Europe) is 

populated by Neanderthals and deme 2 (Africa) by Moderns. Without loss of generality, 
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we treat only cases in which the population size in deme 2 is equal to or greater than the 

population size in deme 1, i.e. N2 ≥ N1. Arguments supporting this assumption include:  

1. The effective population size that is inferred based on genetic diversity for 

Moderns is larger than that of Neanderthals by a factor of 2 or more (see, e.g., 

(15, 63, 68, 69)).  

2. Population size estimates based on archaeological evidence suggest that 

Neanderthal population size was significantly smaller than that of the Modern 

population in Africa (e.g., (15, 63, 68)). 

3. Based on its size and biological productivity, Africa could have supported a 

much larger hominid population, and this difference is likely to have been 

greatly magnified during ice ages in which large parts of Europe were 

uninhabitable (70, 71). 

Some accounts of the archaeological record suggest, however, that populations in 

much of Africa near the transition from the middle to upper Paleolithic were small (e.g. 

(72)). Contemporaneous bottlenecks and reductions in the Neanderthal population size, 

potentially driven by glaciation, can consolidate these accounts with the inference from 

genetic data, which points to a significantly smaller Neanderthal population size than of 

Moderns.    

 

Symmetric migration 
 

If the parameters of outgoing migration are equal, i.e. m1 = m2, one might expect that 

the relative probabilities of fixation of the two species would be equal to the ratio of 

population sizes in the two demes. Somewhat non-intuitively, this is not the case; the 

species that is initially in the larger of the two demes (deme 2, Africa) has a fixation 

probability in Europe that is greater than its relative initial population size would suggest. 

This is because the initial conditions increase this species’ probability of early success in 

a number of ways: First, to a good approximation, once established, progeny of a migrant 

from deme x will drift to fixation with probability inversely proportional to Ny. The 

probability ratio of this occurrence is Nx/Ny  for a migrant from x to fix compared to that 

of a migrant from y. Second, the number of migrants is biased in favor of outgoing 
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migration from the larger deme: we defined the probability of migration in our model as 

dependent on both the migration parameter and on population size, and so migration 

occurs more frequently from the larger deme. Third, a migrant from deme x has a 

probability proportional to 1/Ny of establishing in deme y following its arrival, and thus 

the probability of establishment following arrival of a migrant from deme x is more likely 

by a factor of Nx/Ny  than the establishment probability in deme x of a migrant from deme 

y. This potential advantage is corrected for in our simulation by our definition of a time 

step: at each time step a band in one of the demes dies, and since the choice of band is 

random, more time steps are realized as dying events in the larger deme; thus migrants 

from the smaller deme have a smaller probability of establishing, but a proportionally 

larger number of time steps in which such establishments may occur. 

Put together, these effects suggest that the ratio of fixation probabilities, P1/P2, should 

reflect an advantage to the species from the larger deme that is proportional to the ratio of 

the population sizes to the power of two. However, these intuitions are exact only when 

the initial conditions have not changed, and each deme is still composed of a single 

species. The bias in favor of the species that originated in the larger deme is somewhat 

attenuated through time, and we should thus expect a ratio of fixation probabilities that 

reflects an advantage that is somewhat smaller than (Nx/Ny)2 to the species that originates 

in the larger deme. Figure 4 shows the probability of the fixation of Moderns as a 

function of the ratio between the two demes’ population sizes.  
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Figure 4: (A) Probability of Modern’s fixation. (B) Ratio between Moderns’ and 

Neanderthals’ probabilities of fixation, which is approximated by the square of 

the inverse of the ratio of population sizes (red) for much of the range of this 

ratio. It is slightly lower for scenarios in which the Moderns’ population is 

much larger than the Neanderthals’.  For all runs, m1 = m2 = 0.0001, N2 = 500 

(Africa), N1 refers to Europe. 
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Asymmetric migration 

 

If m2 > m1, i.e. the parameter of migration out of Africa is larger, we find that the 

probability of Moderns’ eventual fixation is greater than that of Neanderthals, as is 

expected since N2 > N1. This holds true even for some cases in which m2 < m1, as a result 

of the effects of the larger population size. Although unrealistic given the archaeological 

findings, study of various ratios between the two migration parameters, in which the 

parameter of migration from Europe into Africa is greater than its counterpart, i.e. m1 > 

m2, is of interest as it allows us to explore the effects of population size differences 

(Figure 5). For a population size ratio of 1:10 between Europe and Africa, we find – in 

line with the previous analysis – that even with a 10:1 ratio of migration rates, which 

creates equal probabilities of migration in the two directions, i.e. M1 = M2, the probability 

of Neanderthal fixation remains very low (~0.1). Only when the migration rate out of 

Europe (m1) is greater by a factor of 100 than its counterpart (m2) do Neanderthals and 

Moderns have the same probability of fixation (Figure 5). 

 
Figure 5: The probability of Moderns’ replacement of the Neanderthals for a range 

of ratios between the migration parameters, m1/m2, with a constant ratio of 

population sizes. For all runs, N1 = 50, N2 = 500, m2 = 5*10-6. 
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Discussion 

 

We have shown that a simple selectively neutral model of population dynamics, 

namely random drift in finite populations with migration, can account for the replacement 

of the Neanderthals by Moderns that occurred near the transition between the middle and 

upper Paleolithic. Although a stochastic process, this replacement was certain to occur, 

even in a selectively neutral setting, given the estimated migration pattern near the onset 

of the interaction between the two populations, namely repeated migration of small 

propagules of Moderns out of Africa into the Levant and Europe. Replacement of the 

Neanderthals was certain to occur even for very low migration rates, as long as migration 

was unidirectional, regardless of the ratio between the population sizes in the two demes. 

We have also demonstrated that even if bi-directional migration between Europe and 

Africa had occurred, Moderns would have been extremely likely to eventually replace 

Neanderthals, given the estimated differences in population size between the species, in 

favor of Moderns. This stems from a  disproportionate impact of initial population size 

differences on the probability of eventual fixation.   

Our model is a parsimonious alternative to a model in which selection is the major 

driver in the replacement of the Neanderthals. We show that the time scale on which the 

replacement occurred according to the archaeological record is within the range of 

replacement durations predicted by our model for a wide range of parameter values, 

unless fairly extreme values for demographic parameters, such as Europe’s carrying 

capacity, are assumed. As demonstrated in SIA, many alternative measures for the 

duration of the process would yield results of the same order of magnitude. Under a wider 

range of demographic parameters than we used, as well as incorporation of geographical 

structure within Europe into the model, our model might produce results that are 

incompatible with empirical evidence. However, the difference would not be by orders of 

magnitude, suggesting that a model of selectively neutral replacement could be 

reasonable under a wide range of demographic and geographical scenarios. 

In addition to the duration of the replacement process, it would be desirable to discern 

other patterns that might distinguish a scenario of neutral species’ replacement from one 

that is driven by selection. The characteristics of the Moderns’ frequency trajectory over 
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time may provide such a pattern: although many trajectories of neutral fixation seem very 

directional and do not differ significantly from the near-deterministic trajectory expected 

under a selection scenario, some trajectories are far from monotone (e.g. Figure 2, panel 

I) in their eventual ascent towards fixation, and many are characterized by early phases 

that seem disjoint from the final phases of the fixation process. In these early phases, the 

Moderns’ frequency reaches intermediate values and then decreases (e.g. panels B, C, D, 

F, G in Figure 2). Such a pattern is not expected under a selective scenario, which is 

predicted to produce a near-deterministic trajectory once some minimal frequency 

threshold is crossed (53). In other words, an increase of Moderns to intermediate 

frequency, followed by a significant drop, is expected to occur in some, but not in all, 

cases of neutral replacement, and is extremely unlikely under a selection-driven 

replacement process. If evidence of a transient Moderns’ intermediate frequency were 

found, it would argue against the role of (strong) selection in the replacement process. 

Such early increases to intermediate frequency are likely to go undetected in the 

archaeological record for many reasons – its sparseness, the low likelihood of uncovering 

skeletal remains in a site populated for a short time, and the disconnect from a long-term 

archaeological context that would help to shed light on the species’ identity. Also, early 

Moderns in Europe were characterized by material cultures different from those 

associated with the species during their later, well-established, period of existence there, 

which may increase the likelihood that the remains would be misclassified as Neanderthal 

(see also SIA); indeed, a recent detailed analysis of lithic technologies suggests that such 

misclassification may have occurred, and supports a model of multiple early Modern 

migrations out of Africa that reached intermediate frequencies in Eurasia (73). Similarly, 

findings of anatomically modern humans in the Levant in multiple sites from the late 

middle Paleolithic suggest a probable species’ overlap in this region in considerable 

numbers over potentially long durations (27). Recent developments in the field of ancient 

genomics may shed light on this question by providing evidence of early introgression 

events (30, 31). The probability of detectable successful introgression as a result of any 

single contact between two species is low, with reasons ranging from the low likelihood 

of the occurrence of productive sexual contact in the first place, to potential hybrid fitness 

disadvantage, and drift and possible selection acting to obscure or eliminate the genomic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/116632doi: bioRxiv preprint 

https://doi.org/10.1101/116632
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   24	
  

traces of such introgression (52, 69, 74, 75). Thus, observed introgression is likely to be a 

reflection of a history of substantial interspecies contact, which is most likely to have 

occurred when both species were in the same region at intermediate frequencies. 

Evidence of at least one early introgression from Moderns into a subgroup of 

Neanderthals has recently been found (31), and is estimated to have occurred well before 

Moderns are identified in the European archaeological record. This lends support – 

according to the prediction in the previous paragraph – to a reevaluation of the time 

trajectory of Moderns in Europe and the Levant that is not in line with their having a 

(strong) selective advantage. 

Effectively-neutral replacement could also have occurred under a fairly broad range of 

conditions, in which selection acts on differences between the two species: under a range 

of conditions, efficiency of selection is approximately proportional to population size 

(53). Because of the relatively small population sizes of both species, even if differences 

between the species had led one to have a selective advantage, this advantage may have 

had little effect at the population level, leaving the system in a nearly-neutral regime for 

which our model holds. This would have been the case for a fitness advantage s such that 

!N ⋅s  is near 1, i.e. for an overall fitness advantage of s=10-4 or lower. Because the initial 

interaction between the groups was probably more localized than in our model and 

probably occurred between small subgroups of the two populations, the range of selection 

coefficients for which the species’ interaction would have been within the nearly-neutral 

regime, at least during part of the demographic process, is realistically even broader, 

perhaps up to an advantage of s=10-3 or s=10-2 to one of the species, if the sizes of the 

interacting populations were on the order of hundreds or thousands of individuals. In 

other words, even if Neanderthals had a selective advantage, unless it was very large, 

they are likely to have been eventually replaced by species drift. Introgression between 

the two species might have mitigated this effect, potentially allowing one or both species 

to incorporate advantageous alleles from the other species and to radically reduce the 

selective differences between the two species, even if admixture was limited and even if 

hybrid lineages initially had some selective disadvantage (75–81). 

We do not suggest that there were no differences between the species that had an 

effect on fitness; on the contrary: morphological and genetic differences between the two 
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species suggests that they differed phenotypically in ways that are highly likely to have 

affected fitness. Which of these differences conferred a selective advantage is debatable, 

and how such selective differences in various traits acted jointly to affect the overall 

fitness will likely remain unknown. Arguments in favor of a selective advantage to either 

species with regard to sets of traits are compelling, ranging from potential advantage to 

the Neanderthals stemming from adaptation to local conditions such as climate and 

pathogens (9, 78), to selective advantage of Moderns due merely to their greater overall 

population size and proportionally smaller predicted mutational load (69), to differences 

in morphology, mode of subsistence, cultural aspects such as tool use, and, possibly, 

cognitive capacity. Such studies are important and insightful in our attempts to unravel 

the evolutionary history of the two species, but their findings’ interpretation in this 

context must be careful. Alongside providing support for probable selective advantages to 

each species over its counterpart with regard to particular traits and thus not providing a 

decisive conclusion regarding the overall species’ relative fitnesses, many of these studies 

compare material findings associated with the two species  in sites that are not 

contemporaneous (see, e.g. (82, 83)), a comparison whose findings’ should be interpreted 

with great caution in our reconstruction attempts of the dynamics of species’ replacement 

(84). Our study demonstrates that species replacement is expected under a neutral model, 

in a manner compatible with the replacement that took place, and that neutral processes 

are able to account for the inter-species interaction regardless of whether selective 

differences between the two species existed.  

An extensive review of the arguments related to the possible selective advantage of 

Neanderthals over Moderns or vice versa is beyond the scope of this study. We find it 

important to address one major line of argument in this context, which suggests that 

Moderns had a cognitive and cultural advantage, potentially in the form of symbolic 

thought or language, over Neanderthals (9, 44–49, 72, 85). To date, genetic and cranio-

morphological comparisons between the species have not produced any unequivocal 

evidence that would support this argument, which is grounded mostly in the material 

archaeological record of artifacts and cave drawings that seemingly provide fairly 

convincing circumstantial evidence: during the period of co-habitation in Europe of the 

two species and within the first ten millennia that followed it, a demographic and cultural 
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revolution occurred in Europe (86). Population densities increased by a factor of 2-10 in 

many localities (87), previously uninhabited regions were colonized (88, 89), forms of 

artistic expression became much more common than before (86), and the repertoire and 

complexity of tools grew dramatically (72, 90, 91).  

Whether Neanderthals were responsible for some of these novelties and whether the 

revolution was as sudden as initially thought has attracted much discussion (60, 61, 92–

98), as has the possibility that Neanderthals and Moderns had significant cultural 

exchange, suggesting that they were – at the least – comparable, if not on par, in their 

cognitive abilities (91, 99).  

We suggest a number of additional arguments that call for a guarded interpretation of 

the demographic and cultural shifts as reflecting a selective advantage of Moderns. 

Undoubtedly, the living conditions of both species changed extensively during this period 

of time: Moderns’ migration to new localities exposed them to novel challenges, and both 

species were faced with increased hominin competition and exposure to new ideas and 

practices together with – potentially – direct competition different from any that preceded 

it. These may have been accompanied or preceded by significant independent 

environmental changes (33, 34, 36, 100, 101). In light of these changes, extensive 

demographic and/or cultural changes were likely to have occurred in both species (98, 

102), even if the species did not differ in their cognitive capacities and even if no change 

in cognitive abilities occurred throughout this period (as has been widely speculated, e.g. 

(9, 72)). Dramatic punctuated changes occur in many biological systems (54, 103), and 

are particularly likely to be triggered by extensive changes such as the ones that the 

Neanderthals and Moderns went through. In previous work we have demonstrated that 

such sudden change is specifically to be expected in the evolution of culture (104), 

especially upon exposure to cultural novelties, which can easily trigger innovations by 

analogy or by combination with existing practices. Such cultural changes can lead to a 

further rapid, possibly exponential, rise in cultural complexity (104–107), which may in 

turn prompt demographic change. In other words, we suggest that the increase in cultural 

complexity that is found in Europe near the replacement of Neanderthals by Moderns 

may be the result of the Moderns’ geographic expansion and of the two species’ 

interaction, rather than the cause of the replacement or its driver (see also (28)).  
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A second relevant observation is that if a cognitive and cultural advantage were a 

driver of the Moderns’ spread from Africa into the Levant and from there to Europe, one 

might expect to find cultural continuity between archaeological sites along this route near 

the transition from the middle to the upper Paleolithic. As has been pointed out and 

widely discussed, there is no clear-cut evidence for such continuity (see, e.g., (20, 28, 86, 

98, 102, 108)). Moreover, the material cultures associated with Moderns and 

Neanderthals in the Levant during the late middle Paleolithic, in the period preceding the 

replacement, are indistinguishable from one another (see, e.g., (27, 28)). The appearance 

of advanced cultural features in Europe and the Levant only after species’ interaction was 

likely to have taken place is in line with our suggestion that advanced culture is an 

outcome of this interaction (and see, e.g., (95, 109)). Similarly, if the cultural burst is a 

result of the species’ interaction, one may expect to find in the emerging cultures some 

characteristics of the individual cultures that preceded them, including continuity of some 

local features in some regions. This may be the case in variants of the Ahmarian, 

Aurignacian and transitional techno-complexes from this period (see, e.g., 89, 109–111, 

and 112 and ensuing comments). Finally, the “full package” of upper Paleolithic 

modernity appears in most of the regions that were populated after the Neanderthals’ 

replacement – Siberia, East Asia, and the Sahul – only between 10,000-20,000 years 

later, suggesting it may have developed only in particular populations after the 

replacement had occurred or as it was taking place, and that its role in the replacement 

and the moderns’ geographic spread was limited (113–118)). 

In sum, we do not endorse any particular stance as to whether Moderns did or did not 

have a cognitive or cultural advantage over Neanderthals, but point out that much of the 

evidence in support of this claim should be interpreted cautiously. 

We suggest that migration dynamics together with events of local dispersal and 

replacement, in a selectively neutral model, can explain the Neanderthal-Modern 

interaction and subsequent replacement of the former by the latter, without invoking 

selection or external environmental factors, and even – under some scenarios – regardless 

of possible difference in population size between the species. Advanced methods of 

dating archaeological findings and new methods in ancient genomics are expected to 

provide more detailed information within the next few years; Combined with models of 
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the two species’ interaction that take into account geographical sub-units, population 

substructure, and introgression, new empirical data may soon enable us to further 

elucidate the dynamics that led to the Neanderthals’ replacement and to assess in more 

detail whether a neutral model such as that we propose is sufficient to explain this 

process and its outcome.  
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