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Abstract

Integrating the costs and benefits of collective behaviors is a fundamental chal-
lenge to understanding the evolution of group living. These costs and benefits
can rarely be quantified simultaneously due to the complexity of the interactions
within the group, or even compared to each other because of the absence of com-
mon metrics between them. The construction of ‘living bridges’ by New World
army ants - which they use to shorten their foraging trails - is a unique example
of a collective behavior where costs and benefits have been experimentally mea-
sured and related to each other. As a result, it is possible to make quantitative
predictions about when and how the behavior will be observed. In this paper,
we extend a previous mathematical model of these costs and benefits into a
general framework for analyzing the optimal formation, and final configuration,
of army ant living bridges. We provide experimentally testable predictions of
the final bridge position, as well as the optimal formation process for certain
cases, for a wide range of scenarios, which more closely resemble common terrain
obstacles that ants encounter in nature. As such, our framework offers a rare
benchmark for determining the evolutionary pressures governing the evolution
of a naturally occurring collective animal behavior.

Keywords: swarm intelligence, collective behavior, army ants, optimality,
self-assembly

1. Introduction and Background

Over the past four decades, studies have revealed the functional consequences
of collective animal behaviors, which are often driven by interactions between
individuals with little or no global knowledge [1, 2, 3, 4, 5]. The cohesive move-
ment of bird flocks and fish schools, some of the most visually striking examples5

∗Corresponding author
Email address: jason.graham@scranton.edu (Jason M. Graham)

1The authors contributed equally to this work.

Preprint submitted to Journal of Theoretical Biology March 14, 2017

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/116780doi: bioRxiv preprint 

https://doi.org/10.1101/116780
http://creativecommons.org/licenses/by-nc-nd/4.0/


of how animal groups can dynamically self-organize, allow for improved migra-
tion accuracy [6], predator avoidance [7], and resource finding [8]. However,
collective behavior also operates at less conspicuous, but equally functionally
important, scales, in order to generate division of labor [9], pattern formation
[10, 11], or physical construction [12, 13] across many animal taxa.10

One of the principal challenges in studying collective behavior is simultane-
ously quantifying both the benefits and costs associated with group living in
order to understand the overall selective pressure on the behavior and hence
its evolution. In some cases, the benefits, such as the improvements in navi-
gation [14], or the costs, such as an increase in the risk of disease [15], have15

been measured in isolation. However, since the proximate currencies of fitness
related to benefits and costs are often very different (e.g. navigation direction
and disease risk), and operate at different spatial or temporal scales, it is often
difficult to measure both benefits and costs simultaneously in order to estimate
the ultimate fitness consequences of group living.20

The construction of living bridges by the army ant Eciton hamatum is a
unique example of a collective behavior that is amenable to measurements of
both costs and benefits [16]. Therefore, it allows for quantitative predictions
about when and how the behavior will be observed. Found in the tropical
forests of Central and South America, army ants are nomadic, moving their25

entire colony (sometimes exceeding a million individuals) to a new location
each day in search of new sources of food while the colony has developing young
[17, 18, 19]. As a consequence of this nomadic lifestyle, these ants - unlike most
other ants - face severe time constraints when generating new foraging routes
each day. While ants living in a permanent nest site may thoroughly explore30

their environment [20, 21] or clear trails of vegetation [22, 23, 24, 25] in order
to create relatively straight and efficient foraging paths, army ant trails often
weave tortuously through the complex tropical forest floor [26, 19].

In order to improve the efficiency of their trails, army ants are capable of
linking their own bodies together to dynamically create physical structures along35

the foraging path [18, 19, 27, 28, 16]. These structures may be used to widen
paths to increase the flux of ants, or to form bridges over gaps in the terrain
(reaching spans of over 12 cm, or approximately 12 ant body lengths) to decrease
the tortuosity of their trails [29, 16]. Ants modulate their bridge-building behav-
ior in response to local information, allowing these bridges to adapt to current40

traffic conditions, recover from damage, and dissemble when underused [28], so
that they exist as needed at particular points along the trail.

While the living bridges can increase the flow of ants and resources along
trails, they also impose a cost on the colony. The ants forming the bridges
are locked into the structure, sometimes for several minutes at a time [28],45

preventing them from participating in other important foraging activities such
as capturing and killing prey or transporting food items along the trail. Un-
derstanding the overall effect of these living structures on the colony’s foraging
rate requires a quantification of both the benefit (here, shortening the travel dis-
tance) and cost (here, removing ants from the foraging pool) of each structure,50

and converting these to the common currency of overall foraging rate.
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In a recent study, Reid et al. [16] experimentally manipulated living bridges
built by colonies of E. hamatum and measured these benefits and costs. The
researchers inserted deviations into an existing foraging trail (Figure 1) and
recorded the formation of bridges on the experimental apparatus. They showed55

that bridges typically initiated at the bend of the deviation but over time grew
and moved away from the initiation point to increasingly shortcut the deviation.
However, the final, steady state, position of the bridges tended to not fully min-
imize the trail length. Instead, the distance that the bridge traveled depended
on the angle of the apparatus deviation [16].60

Reid et al. [16] also counted the number of ants required to build a bridge of a
certain length. Crucially, the bridges were observed to widen as they lengthened,
so that while the travel distance saved increased linearly with bridge length, the
number of ants diverted from the foraging pool increased quadratically with
bridge length. Changes in travel distance and the number of available foraging65

ants can be converted directly to changes in the density of foraging ants on
the trail, which the researchers used as a proxy for foraging rate. Maximizing
the foraging rate as a function of bridge position led to a unique, non-trivial,
optimal position, which the researchers showed could be matched closely to the
empirically observed bridge positions.70

Here, we propose to extend the mathematical model introduced by Reid et al.
[16] into a much broader theoretical framework. This framework can be used to
derive optimization models for bridge formation patterns that occur in response
to a much wider range of geometrical scenarios along a trail. We demonstrate
this framework for two new classes of scenarios. First, we explore asymmetric75

deviations along the foraging trail, for which the optimal bridges, unlike those
observed in Reid et al. [16], are predicted to be generally not parallel to the
main foraging trail. For this scenario, we also demonstrate the optimal forma-
tion process, which optimizes foraging rate throughout the duration of bridge
construction. Second, we study scenarios with multiple consecutive deviations,80

which we predict will lead to multiple bridges. In such scenarios, the position
of one bridge constrains the possible positions of the other bridges, so that the
geometry forces more complex coordination in optimal bridge positioning. Our
results produce quantitative predictions about the number of bridges, their po-
sition relative to the apparatus (or natural obstacle) and to other bridges, and85

their angle relative to the main foraging trail, which can be directly tested in
field experiments. In addition to allowing us to derive some specific predictions,
consideration of these two classes of scenarios simultaneously shows how to
adapt the modeling paradigm used here for additional scenarios not considered
in this work.90

2. Methods

2.1. General model framework

As in Reid et al. [16], we consider a foraging trail of total length LT and
N army ants. If an experimental apparatus (or natural obstacle) is introduced,
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then this adds an additional length of LA to the distance over which the ants
must travel (Figure 1). Thus, in the absence of any living bridges the overall
foraging density of ants is

Number of ants

Total distance
=

N

LT + LA
. (1)

The additional length LA added to the travel path by the placement of a
particular apparatus within the trail depends on the geometric configuration of
the apparatus, due to the physical implementation of the experimental set-up, as95

well as our assumption that ant trails tend to follow the edge of the apparatus in
order to minimize travel distance (see Reid et al. [16]). We estimate the number
of ants N by multiplying the average empirically measured density of foraging
ants by LT + LA, as in Reid et al. [16].

The presence of one (or more) bridges will modify both the number of ants
moving on the trail (since the bridges are themselves comprised of ants) and
the distance of travel, both of which will modulate the traffic density on the
trail. The number of available foraging ants becomes N minus the number of
ants sequestered in the bridge structures, i.e.

N − nb. (2)

However, there are substantial functional differences between a typical bridge-
building and non-bridge-building (i.e., foraging) ant. Ants that take up posi-
tions in bridges tend to be smaller and less effective at capturing and carrying
prey items [30, 31]. Therefore, if our unit of ants is assumed to be foraging
ants, then the cost of including a (smaller) ant into the bridge structure will
actually be less than one foraging ant. In order to account for these size and
functional differences between bridge-building and foraging ants, we introduce
a free parameter α in order to make direct comparisons between model results
and experimental data. Thus we modify equation (2) to become

N − nb
α
, (3)

where we set α = 17.02 as in Reid et al. [16], but which may need to be refit100

when testing new ecological conditions (such as nighttime colony migrations,
where the functional differences between ants of different sizes may not be the
same as when foraging).

In the presence of bridges, the distance of travel, f , becomes

f = Linear dist. w/o bridges− distance saved + length of bridges. (4)

Thus, in the presence of bridges, the density function to be optimized is

ρ =
N − nb/α

f
. (5)

In order to maximize the density of foraging ants for a particular geometric
configuration of apparatuses (or obstacles in nature), all that is left is to describe105

how the number of ants in the bridge nb and trail length f vary with bridge
position.
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2.2. Asymmetric scenario

2.2.1. Optimal bridge position

While the experimental apparatus of Reid et al. [16] was symmetric relative110

to the main trail axis (Figure 1), in nature obstacles will generally be asymmet-
ric. This may yield optimal bridges that are at a nonzero angle with the main
trail axis, unlike the parallel bridges observed in Reid et al. [16]. In our first
extended model, we allow for a difference in the angle that the left (θ) and right
(φ) arms of the apparatus respectively make with the line perpendicular to the115

main trail axis (Figure 2). Furthermore, we allow for a difference in the lengths
of each arm of the apparatus.

Let L0,S and L0,L be the hinge-to-hinge distance along the left and right
arms, respectively, of the apparatus. Then the lengths along each arm from the
apex of the apparatus to the unconnected end of each arm is

LA,S = LS,0 −
wA
2

cot

(
θ + φ

2

)
, (6)

LA,L = LL,0 −
wA
2

cot

(
θ + φ

2

)
, (7)

where wA is the width of the apparatus arm. Thus, LA = LA,S +LA,L, and the
maximum possible vertical distances that a living bridge could travel relative to
the left and right arms respectively is

Dmax,1 = LA,S cos(θ), (8)

Dmax,2 = LA,L cos(φ). (9)

In this case, the linear length of a living bridge formed to cross from the left
arm to the right, according to the law of cosines, will be

b2 =

(
LA,S
Dmax,1

d1

)2

+

(
LA,L
Dmax,2

d2

)2

− 2d1d2
LA,SLA,L cos(θ + φ)

Dmax,1Dmax,2
, (10)

where each of the parameters and variables is listed and described in Tables 1
and 2. Furthermore, the linear distance of travel for the ants is now

f = LT + LA + b− LA,S
Dmax,1

d1 −
LA,L
Dmax,2

d2, (11)

and we obtain our density function

ρ =
N − nb

α

f
, (12)

where the number of ants sequestered for the formation of a bridge is

nb =
wΩ

(
1− wΩ tan

(
θ+φ

2

))
lnwn

b2, (13)
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again with all relevant parameters listed and described in Tables 1 and 2. This
equation for the number of sequestered ants takes into account the length (ln)
and width (wn) of a typical bridge ant, as well as the scaling wΩ between the120

width and length of a living bridge (see Reid et al. [16]).
In order to determine the optimal bridge position, we optimize the density as

a function of d1 and d2 for a range of fixed values of θ and φ. Since it is difficult
to reliably solve for the maxima of (12) analytically, the optimization is carried
out via numerical routines using the R package DEoptim [32, 33, 34, 35, 36].125

We note that the density function described by equation (12) is continuous and
is to be maximized over the rectangle [0, Dmax,1]× [0, Dmax,2]. This guarantees
the existence of a maximum value. The results are presented in the next section.
As will be seen, an interesting consequence of asymmetry is that there may be
transitions in the orientation of bridges that are formed at an angle to the main130

trail axis.

2.2.2. Optimal bridge formation process

We also derive the optimal bridge formation process by asking, for a fixed
bridge length, what the position is that maximizes foraging rate. We then vary
the bridge length from 0 to the final optimal length and calculate the optimal135

bridge position for each length, thereby constructing the optimal bridge-building
trajectory that maximizes foraging rate for the entire duration of the bridge
formation process.

Let bf represent the bridge length parameter. When bf is fixed, through
equations (10)-(12) we arrive at a constrained optimization problem. That is,
we seek to optimize the density

ρ =
N −

nbf

α

f
, (14)

subject to the constraint

b2f =

(
LA,S
Dmax,1

d1

)2

+

(
LA,L
Dmax,2

d2

)2

− 2d1d2
LA,SLA,L cos(θ + φ)

Dmax,1Dmax,2
, (15)

where

f = LT + LA + bf −
LA,S
Dmax,1

d1 −
LA,L
Dmax,2

d2, (16)

and

nbf =
wΩ

(
1− wΩ tan

(
θ+φ

2

))
lnwn

b2f . (17)

We note that nbf and hence N −
nbf

α are now held constant since bf is fixed.
The values for LA,S , LA,L, Dmax,1 and Dmax,2 are obtained just as before.140

In the appendix, we derive the values of d1 and d2 in the intervals [0, Dmax,1]
and [0, Dmax,2] respectively that maximize equation (14) subject to the con-
straint given by equation (15).
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2.3. Multiple obstacles scenario

In addition to asymmetric obstacles, in nature there may frequently be mul-145

tiple consecutive obstacles, leading to multiple deviations from a straight trail
(e.g., Figures 3 and 4). In these scenarios, more than one bridge may form in
sequence, and the position of one bridge may constrain the possible positions
of downstream bridges. Thus, this introduces a coupling between bridges that
must be accounted for in the optimization process. In our second model, we150

consider multiple, but symmetric, deviations from the trail, which we predict to
produce more than one bridge that coordinate in a striking fashion. Figures 3
and 4 illustrate apparatuses that could be expected to lead to the formation of
two and three bridges, respectively.

For the two bridge case illustrated in Figure 3, let L0 be the hinge-to-hinge
length along each of the three segments of the apparatus. Then we have that
the distance from the apex along each arm is

LA1
= LA2

= LA3
= L0 −

wA
2

cot

(
θ

2

)
, (18)

so LA = LA1
+ LA2

+ LA3
= 3LA1

, and the maximum vertical distance each
bridge can travel is

Dmax =
LA
3

cos

(
θ

2

)
. (19)

Then, our density function will take the form

ρ =
N − nb1

α −
nb2

α

f
, (20)

where the number of ants sequestered in each bridge is

nbi =
wθ
(
1− wθ tan

(
θ
2

))
lnwn

b2i , i = 1, 2, (21)

and the length of each bridge is

bi = 2di tan

(
θ

2

)
, i = 1, 2. (22)

Then, the linear distance of a trail with two bridges will be

(length of distance along arm 1 - savings from bridge 1) + bridge 1

+ distance along arm 2 between bridges + bridge 2

+ (length of distance along arm 3 - savings from bridge 2). (23)

Thus, we have

f = LT +

(
1− d1

Dmax

)
LA1

+

(
1− d2

Dmax

)
LA3

+

∣∣∣∣∣Dmax − d1

cos
(
θ
2

) − d2

cos
(
θ
2

) ∣∣∣∣∣+ b1 + b2, (24)
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where all of the parameters are listed and described in Tables 1 and 3.155

Putting the last four equations together gives a complete expression for the
density as a function of the variables d1 and d2, which when optimized provides
the best positioning of the two bridges to maximize the density of foraging ants
on the trail. Again, the optimization is carried out via the DEoptim package in
R, and the results are presented in the next section.160

A straightforward extension of the two bridge case leads to the following
model for a situation such as illustrated in Figure 4, that may lead to the
formation of three bridges. In this case we obtain

ρ =
N − nb1

α −
nb2

α −
nb3

α

f
, (25)

with

f = LT +

(
1− d1

Dmax

)
LA1 +

(
1− d3

Dmax

)
LA4

+

∣∣∣∣∣Dmax − d1

cos
(
θ
2

) − d2

cos
(
θ
2

) ∣∣∣∣∣+

∣∣∣∣∣Dmax − d2

cos
(
θ
2

) − d3

cos
(
θ
2

) ∣∣∣∣∣
+ b1 + b2 + b3, (26)

and with the bridge lengths and the number of ants sequestered for bridge
formation given by the same expressions as in the two bridge case. This model
can easily be extended to arbitrary numbers of obstacles, and can be generalized
to multiple asymmetric obstacles. A term of the form∣∣∣∣∣Dmax − di

cos
(
θ
2

) − di+1

cos
(
θ
2

) ∣∣∣∣∣ (27)

such as appears in equations (24) and (26) is called the mid-distance between
two consecutive bridges.

We note that each of the density functions in equations (12), (20) and (25)
is guaranteed to have a biologically relevant maximum value since it is a con-
tinuous function maximized over a closed and bounded set of possible distance165

values. Also, in each of the equations (12), (20) and (25), the number of ants
sequestered for bridge formation depends quadratically on the distance(s), while
the linear distance of travel f depends on the distance(s) in such a way as to
be of order to the first power. The consequence of this observation for the cost-
benefit trade-off of living bridge formation is already pointed out in Reid et al.170

[16]. However, unlike in Reid et al. [16], the presence of square roots, e.g. in (11),
and absolute values, e.g. in (26), make the equations much less tractable to solv-
ing analytically for exact expression for optimal bridge-positioning. Additional
discussion of this and some related points are provided in the appendix.

2.4. Model parameters175

In order to implement the models derived from the theory in the previous
subsections, we choose parameter values that are either taken directly from
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Reid et al. [16], or chosen to be consistent with values from Reid et al. [16].
Specifically, for the lengths of the sides of a proposed or theoretical apparatus, we
choose parameter values that are on the order of the lengths of the experimental180

apparatus from Reid et al. [16]. The values for all parameters used to obtain
the following results are listed in Tables 1 - 4. Note, however, that the theory
does not depend on the explicit values of the geometric parameters. Therefore,
our approach can be adapted to the specifics of an experimental apparatus or
a naturally occurring obstacle, provided that it can be described with a similar185

set of geometric parameters that completely specifies its configuration.

2.5. Model extensions

As part of supplementary material, we have developed freely available code
using the R programming language, R Core Team [37], that can be used to
implement the models from this paper or any similar models that one may190

derive. This package can be found at https://goo.gl/zam27s.
The derivations for the density functions given by equations (12), (20) and

(25) illustrate how an appropriate density function may be derived for any
number of different configurations, and for an apparatus or obstacle that an
army ant foraging trail may encounter that could result in the formation of195

one or more living bridges. This work serves to show that we have a general
theory that can be used to predict army ant living bridge positioning for a
variety of actual and conceivable scenarios. Further, the theory may also be
coupled with agent-based simulations or other dynamic modeling approaches
to provide even more detailed computational studies of living bridge formation,200

such as the individual behavioral rules that may lead to the dynamic formation
of such optimal structures. In the next section, we present the quantitative and
qualitative results predicted by our theory for the three specific configurations
captured by equations (12), (20) and (25).

3. Results and Discussion205

3.1. Asymmetric scenario

In general, optimal bridges in asymmetric apparatuses are not parallel to
the main trail axis. Examples of optimal bridge positions are illustrated in
Figure 5(a)-5(b). To obtain these results, we fixed one of the arm angles, θ,
to be either 20◦ or 10◦, and varied the other angle, φ, from 5◦ to 30◦. We210

then calculated the optimal bridge position for each combination of angles as
the maximizing distances2, d1 and d2, that the two ends of the optimal bridge
travel down each arm of the apparatus from the apex (Figure 2), and plotted the
the difference between these two lengths. Here, a negative difference indicates
that the optimal bridge travels further down the arm associated with the angle215

2Although a slight abuse of notation, throughout section 3 we use d1, etc. to denote not
variables, but the value of the distance variables that actually maximize the relevant density
function ρ.
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φ, whereas a positive difference indicates that the bridge travels further down
the arm associated with the angle θ.

Typically, the optimal bridge travels further down the apparatus arm with
a smaller angle (Figure 5(a)). This is shown by the difference in bridge end
positions being negative when φ < θ and positive when φ > θ. Specifically, we220

find as derived in the appendix that

d1 =
cos(θ)

cos(φ)
d2. (28)

This relationship implies that when the two angles φ and θ are equal, the
optimal bridge tends to be parallel to the main trail axis. Therefore, the sym-
metric experimental apparatus studied in Reid et al. [16] is shown to be a special
case of the more general asymmetric apparatus.225

However, when the angle θ is small, we observe deviations from the above
behavior. In this case, bridges parallel to the main trail axis can form even when
the two angles are not equal (Figure 5(b)). When the two angles are equal, the
bridge is skewed such that it is further down the arm associated with the angle
φ. This is due to the unequal lengths of the two arms of the apparatus (Figure230

2). The arm associated with the angle θ is shorter than that associated with
angle φ, and the arm lengths define the maximum distance that the bridge can
travel. In this regime, one end of the bridge meets the maximum distance of the
shorter arm, but the other end continues to travel further down the longer arm.
This phenomenon also explains the presence of a ’kink’ in the curve in Figure235

5(b).
Nonetheless, the trend that the difference in distance increases as the angle

φ increases is still observed, such that a similar transition from a negative dif-
ference to a positive difference occurs, albeit when φ > θ. Therefore, in general
we predict bridges to travel further down the arm associated with angle φ when240

φ is small, and travel further down the arm associated with angle θ when φ is
large. This prediction holds as parameters are varied and for a wide range of
angles.

We can predict not only the optimal final position of a living bridge, but
also the optimal bridge formation process, by constraining the bridge length to245

certain values shorter than the final length and solving for the optimal bridge
at each length (the appendix contains the details of solving this constrained
optimization problem). Because equation (28) is true for any bridge length, it
predicts that a living bridge forms at the apex of the apparatus and quickly
establishes an angle with respect to the main trail axis that is completely de-250

termined by the ratio cos(θ)
cos(φ) . This angle with respect to the main trail remains

constant as the living bridge moves down the apparatus to its equilibrium po-
sition, at least until the bridge “runs out of road” along one arm or the other.
That is, for fixed θ and φ, the orientation of the living bridge only changes as
the bridge moves down the apparatus if it reaches the bottom of the shorter255

side before establishing its equilibrium position.
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3.2. Multiple obstacles scenario

When there are multiple obstacles, we find that multiple bridges form, al-
though, as with asymmetric obstacles, the position of the bridges depends on
the angle of the apparatus (Figures 6 and 7. For the case of two obstacles (6),260

small and moderate angles result in optimal bridges which are situated halfway
between the two apexes, such that the two bridges form a straight path. In this
regime, as the angle of the apparatus increases, the maximal possible distance
that a bridge can move from the apex, Dmax, increases, and both bridges have
distance Dmax

2 from each apex (note that Dmax increases, rather than decreases,265

with the apparatus angle because of the nonzero width of the apparatus arm, see
Methods and [16]). Furthermore, the distance between the two bridges remains
0. At large angles, however, the bridges are predicted to separate and move
closer to their respective apex as the angle increases further. This is illustrated
by the distance of the two bridges from the apex decreasing and the distance270

between the two bridges increasing.
For the case of three obstacles, there are three, rather than two regimes

(Figure 7). For small apparatus angles, only two bridges form, which together
extend the main trail axis in a straight line. Here, as the angle increases, the
maximum possible distance from the apexes (Dmax) increases, and the outer275

bridges remain at the maximum distance d1 = d2 = Dmax, while the inner
bridge has zero length. For moderate angles, there are three bridges, which
together form a straight line. As the angle increases in this regime, the bridges
move increasingly toward the middle of the apparatus. At large angles, the three
bridges separate, as in the two-obstacle case, and all three bridges have equal280

length. As the apparatus angle increases further, each bridge moves towards its
respective apex.

3.3. The role of ant density

In nature, the density of ants on a trail can vary dramatically, depending
on the time of day, the size of the colony, and the amount of available food in285

the trail’s vicinity. We investigated how ant density affects our previous results.
We show results for the asymmetric apparatus, although we find qualitatively
similar results for the two-obstacle and three-obstacle scenarios.

In general, the effects of changing the angle of the apparatus become larger as
ant density increases (Figures 8(a) and 8(b)). However, the qualitative features290

of our results remain the same across densities. Thus, performing experiments
on trails with higher densities of ants will improve the ability to detect the
patterns of bridge formation that we predict, if ants build bridges in order to
maximize foraging rate as hypothesized in Reid et al. [16].

4. Conclusion295

Determining the details of the construction of army ant living bridges is im-
portant to understanding the collective behavior of army ants. We extended a
mathematical model for a specific case living bridge construction into a broad
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theoretical framework that may be applied to a variety of increasingly com-
plex natural and experimental obstacles, which are predicted to result in the300

formation of a living bridge by foraging army ants. Using this framework, we
made explicit predictions that can be experimentally tested. In particular, for
each scenario, we identified qualitatively different bridge-building regimes, de-
pending on the configuration of the experimental apparatus, which will be more
amenable to testing in the field. If the living bridges that army ants construct305

function mainly to maximize foraging rate, then these different regimes will be
observed in nature.

Appendix

In this appendix, we expound additional properties of the theory presented
in the main body of this work by carrying out a more detailed mathematical310

analysis of density functions such as the one from Reid et al. [16] and those of
equations (12) and (20). We note that in the interest of mathematical generality,
in this appendix we adopt slightly different notation than is used in Reid et al.
[16] and section 2.

We begin with the observation that the density function (3) applied to the
configuration from Reid et al. [16] can be written as

ρ(x) =
N (x)

f(x)
=
ax2 + b

px+ q
, (29)

where a, b, p, q are parameters. The biological interpretation of equation (29) is315

that the quadratic function N (x) = ax2 + b describes the relevant number of
ants while the linear function f(x) = px+q describes the relevant linear distance
of travel. The only a priori assumption that we place on the coefficients a, b, p, q
is that p, q must be chosen so that f(x) = px+ q is positive for all biologically
reasonable values of the independent variable x. As discussed in Reid et al.320

[16], the fact that N (x) is quadratic, while f(x) is linear and positive is a key
point of the cost-benefit trade-off aspect of the theory of army ant living bridge
formation.

We proceed with our analysis by computing the first and second derivatives
of (29) with respect to the independent variable x thus obtaining

ρ′(x) =
apx2 + 2aqx− pb

(px+ q)2
, (30)

ρ′′(x) =
2(aq2 + bp2)

(px+ q)3
. (31)

Now we seek to determine conditions under which equation (29) is maximized
for a unique positive value x∗ ∈ [0,M ], where M represents the maximum
possible distance value. Thus, we seek to determine a positive value of x in the
interval [0,M ] such that ρ′(x) = 0 and ρ′′(x) < 0. Using the assumption that
f(x) = px+q is positive for all biologically reasonable values of the independent
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variable x, this will happen whenever apx2 + 2aqx− pb = 0 and aq2 + bp2 < 0,
and therefore whenever x∗ satisfies

0 < x∗ = −q
p

+

√(
q

p

)2

− b

a
≤M, (32)

and

b

a
< −

(
q

p

)2

. (33)

Note that in order to obtain a positive maximizing value of x in the interval
[0,M ], it must be the case that b

a < 0.325

Conditions (32) and (33) can easily be used to recover the results on optimal
bridge positioning from Reid et al. [16]. The benefit of the different approach
taken here is that it is applicable in situations not necessarily covered by the
analysis of Reid et al. [16], provided that the configuration is such that the
positioning of the army ant living bridge is completely determined by a single330

distance variable x. More interestingly, the analysis just given suggests how to
move to multi-variable problems via analogy.

Consider the two-variable function

ρ(x, y) =
N (x, y)

f(x, y)
=
ax2 + bxy + cy2 + d

px+ qy + r
, (34)

where now the only assumptions on the parameters a, b, c, d, p, q, r is that p, q, r
are such that f(x) = px+ qy+ r is positive for all biologically reasonable values
of the independent variables x, y. We note two points regarding equation (34):335

While we restrict our analysis to the two-variable case for notational simplicity,
our work makes clear how to proceed in cases of three or more variables. More
importantly, while (34) is similar in form to equations (12) and (20) of section
2; it is only locally equivalent due to the presence of the square root in (11)
and the absolute value in (24). Nevertheless, an analysis of (34) still provides340

valuable insight into the results we obtain from equations (12) and (20), namely
it aids in the explanation for the symmetry of the results derived from (20).

As before, we proceed with our analysis by computing the first and second
derivatives of (34) with respect to the independent variables x, y thus obtaining

∂ρ

∂x
=
apx2 + 2aqxy + (bq − cp)y2 + 2arx+ bry − dp

(px+ qy + r)2
, (35)

∂ρ

∂y
=

(bp− aq)x2 + 2cpxy + cqy2 + brx+ 2cry − dq
(px+ qy + r)2

, (36)

∂2ρ

∂x2
=

(2aq2 − 2bpq + 2cp2)y2 + (4aqr − 2bpr)y + 2(ar2 + dp2)

(px+ qy + r)3
, (37)

∂2ρ

∂y2
=

(2aq2 − 2bpq + 2cp2)x2 + (4cpr − 2bqr)x+ 2(cr2 + dq2)

(px+ qy + r)3
, (38)

∂2ρ

∂x∂y
=

2(bq − cp2 − aq2)xy + r(bp− 2aq)x+ r(bq − 2cp)y + 2dq + br2

(px+ qy + r)3
. (39)
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We would again like to find conditions for unique positive values for x and y
in intervals [0,M ] and [0, N ] respectively that maximize the function (34)). In
general, the complexity of the expressions in equations (35)-(39) make solving
explicitly for maximizing values of x and y difficult. However, there are sim-
plifying assumptions that can be made that are relevant to the multi-bridge
configurations studied in section 2, that is, the case whenever b = 0, a = c, and
p = q. This is in perfect analogy with the density function (20) from section 2.
Under these assumptions, we get

∂ρ

∂x
=
apx2 + 2apxy − apy2 + 2arx− dp

(px+ py + r)2
, (40)

∂ρ

∂y
=
−apx2 + 2apxy + apy2 + 2ary − dp

(px+ py + r)2
, (41)

∂2ρ

∂x2
=

2(2ap2y2 + 2apry + (ar2 + dp2))

(px+ py + r)3
, (42)

∂2ρ

∂y2
=

2(2ap2x2 + 2aprx+ (ar2 + dp2))

(px+ py + r)3
, (43)

∂2ρ

∂x∂y
=
−2(2ap2xy + aprx+ apry − dp)

(px+ py + r)3
, (44)

from which one can see that there is a value t satisfying x = y = t and

t = −1

2

r

p
+

1

2

√(
r

p

)2

+ 2
d

a
(45)

so that ∂ρ
∂x (t, t) = ∂ρ

∂y (t, t) = 0. That is, there is a symmetric critical point for

equation (34). Moreover, it is easy to see that when evaluated at (t, t) we have

D =
∂2ρ

∂x2

∂2ρ

∂y2
−
(
∂2ρ

∂x∂y

)2

> 0. (46)

Thus, if 2ap2t2 + 2aprt + ar2 + dp2 < 0, then the symmetric critical point345

(t, t) is at least a local maximum for (34). In addition, one can conclude from
(45) when t will be in an interval of the form [0,M ]. This analysis aids in
our understanding of the symmetry of the results summarized in figure 6(b)
obtained for the optimal bridge-position in the two-bridge configuration such
as illustrated by figure 3. Similar reasoning for three independent variables can350

help to explain the symmetric results for the three-bridge configuration.
Now, we derive the results for the constrained optimization problem de-

scribed in section 3. Specifically, we derive what is predicted to happen when
the overall living bridge length is interpreted as a parameter. Doing so provides
insight into the process of optimal bridge formation. Let bf represent the bridge
length parameter. When bf is fixed, through equations (10)-(12) we arrive at a
constrained optimization problem. That is, we seek to optimize the density

ρ =
N −

nbf

α

f
, (47)
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subject to the constraint

b2f =

(
LA,S
Dmax,1

d1

)2

+

(
LA,L
Dmax,2

d2

)2

− 2d1d2
LA,SLA,L cos(θ + φ)

Dmax,1Dmax,2
, (48)

where

f = LT + LA + bf −
LA,S
Dmax,1

d1 −
LA,L
Dmax,2

d2, (49)

and

nbf =
wΩ

(
1− wΩ tan

(
θ+φ

2

))
lnwn

b2f . (50)

We note that nbf and hence N −
nbf

α are now held constant. The values for
LA,S , LA,L, Dmax,1 and Dmax,2 are obtained just as before.

Examining equations (47) and (48) we see that we need to maximize a func-
tion of the form

ρ(x, y) =
N

A− px− qy
, (51)

subject to a constraint of the form

g(x, y) = p2x2 + q2y2 − 2pqCxy = k2, (52)

where N , A, k, p, q and C are parameters. To simplify the problem, we observe
that maximizing (51) subject to (52) is equivalent to minimizing f(x, y) =
A − px − qy subject to the same constraint. This is done in a straightforward
manner using the method of Lagrange multipliers. That is, we solve

−p = λ(2p2x− 2pqCy), (53)

−q = λ(2q2y − 2pqCx), (54)

k2 = p2x2 + q2y2 − 2pqCxy, (55)

for λ, x and y that minimize f(x, y) = A − px − qy. This is easily done using
(53) and (54) to set px− qCy = qy − pCx and then substituting into (55) and
solving for the remaining variable. This gives solution

x =
k

p

√
1

2(1− C)
, (56)

y =
k

q

√
1

2(1− C)
, (57)

where we have retained only the positive square roots since in our application
we seek positive distance values. Setting k = bf , p =

LA,S

Dmax,1
, q =

LA,L

Dmax,2
and
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C = cos(θ + φ)

d1 =
Dmax,1

LA,S

√
1

2(1− cos(θ + φ))
bf , (58)

d2 =
Dmax,2

LA,L

√
1

2(1− cos(θ + φ))
bf . (59)

Keep in mind that we must set di = Dmax,i if bf is such that the predicted
value of either d1 or d2 is greater than or equal to Dmax,1 or Dmax,2 respectively.
Furthermore, using the expressions (8) and (9) together with equations (58) and
(59), we see that the ratio of optimal distance values d1 and d2 satisfies

d1

d2
=

cos(θ)

cos(φ)
. (60)

From this equation we can deduce interesting predictions. In particular, rear-
ranging equation (60) gives

d1 =
cos(θ)

cos(φ)
d2. (61)

The biological consequences of this are described in 3.1.
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5. Figures

(a)

(b)

Figure 1: 1(a) Field apparatus used in Reid et al. [16] to experimentally manipulate living
bridges built by colonies of army ant Eciton hamatum. 1(b) Schematic representation of the
experimental apparatus introduced into a foraging trail of army ants in Reid et al. [16]. The
introduction of such an apparatus has the effect of adding an additional length LA to the
distance (LT ) foraging ants must travel. In order to short-cut this additional distance, army
ants construct a living bridge that initially forms at an apex of angle θ, and moves down
toward the main trail axis until reaching some optimal position. Here wA is the width of an
apparatus arm.
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Figure 2: Schematic of a theoretical apparatus that is predicted to result in the construction of
army ant living bridges that are not necessarily parallel to the main trail axis. The additional
length of such an apparatus added to the path of travel is LA,S +LA,L. Here wA is the width
of an apparatus arm. All other variables and parameters are described in tables 1 and 2.
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Figure 3: Schematic of a theoretical apparatus that is predicted to result in the construction
of two distinct army ant living bridges. The additional linear length of such an apparatus
added to the path of travel is well-approximated by LA = LA1

+ LA1
+ LA1

. Note that,
due to symmetry LA1 = LA2 = LA3 . Here wA is the width of an apparatus arm. All other
variables and parameters are described in tables 1 and 3.
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Figure 4: Schematic of a theoretical apparatus that is predicted to result in the construction
of three distinct army ant living bridges. The additional linear length of such an apparatus
added to the path of travel is well-approximated by LA = LA1

+ LA2
+ LA3

+ LA4
. Note

that, due to symmetry, LA1
= LA2

= LA3
= LA4

. Here wA is the width of an apparatus
arm. All other variables and parameters are described in tables 1 and 4.
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(a) θ = 20◦ (b) θ = 10◦

(c)

Figure 5: Quantitative (5(a) - 5(b)) and qualitative (5(c)) results described in section 3.1.
These results show the predicted arrangement of optimal living bridge configurations for an
asymmetric apparatus as a function of the angle φ with the angle θ fixed at 20◦ (5(a)) and
10◦ (5(b)) respectively. Equation (60) implies that a living bridge forms at the apex of
the apparatus and quickly establishes an angle with respect to the main trail axis that is

completely determined by the ratio
cos(θ)
cos(φ)

. This angle with respect to the main trail remains

constant as the living bridge moves down the apparatus to its equilibrium position, at least
until the bridge “runs out of road” along one arm or the other. That is, for fixed θ and φ,
the orientation of the living bridge only changes as the bridge moves down the apparatus if it
reaches the bottom of the shorter side before establishing its equilibrium position. Computed
for a foraging density of approximately 2.2.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/116780doi: bioRxiv preprint 

https://doi.org/10.1101/116780
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

(b)

Figure 6: Figure 6(a) shows, as a function of angle θ, the greatest possible vertical distance
a living bridge can travel along an apparatus, the distance values d1 and d2 that optimize the
density function (20) and determine the optimal positioning of a living bridge, and the linear
distance between two bridges at their optimal positioning. Thus, the theory predicts that
optimal bridge formation for an apparatus such as Figure 3 is such that the linear distance
between two bridges along a common arm is minimized as much as the availability of bridge-
building ants allows for under the given geometric constraints imposed by apex angle. For
the quantitative results presented here, a foraging density value of approximately 2.2 is used.
Qualitatively similar results are obtained for a variety of different parameter values.
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(a) (b)

(c)

Figure 7: Figure 7(a) shows, as a function of angle θ, the greatest possible vertical distance a
living bridge can travel along an apparatus and the distance values d1, d2, and d3 that optimize
the density function (25) and determine the optimal positioning of a living bridge. Figure 7(b)
shows the linear distance between two consecutive bridges at their optimal positioning. Thus,
the theory predicts that optimal bridge formation for an apparatus such as Figure 4 is such
that the linear distance between all three bridges along common arms is minimized as much
as the availability of bridge-building ants allows for under the given geometric constraints
imposed by apex angle. For the quantitative results presented here, a foraging density value
of approximately 2.2 is used. Qualitatively similar results are obtained for a variety of different
parameter values.
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(a) foraging density = 0.5

(b) foraging density = 5.0

Figure 8: In nature, the density of ants on a trail can vary dramatically. Motivated by this,
we investigated how ant density affects our previous results. For example, we compare the
quantitative results as shown in figure 5(a) with those obtained by decreasing (8(a)) and
increasing (8(b)) the density. In general, the effects of changing the angle of the apparatus
become more larger as ant density increases. However, the qualitative features of our results
remain the same across densities. The situation is highly similar for the other apparatus
configurations considered in this work. Thus, the predictions made by the theory are robust
with respective to the qualitative behavior predicted.
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6. Tables

Table 1: Fixed parameters used in all models.

Notation Description Value Units

LT trail length without bridges 100 cm

ln length of an average ant when
occupying a position within the
bridge structure

0.691 cm

wn width of an average ant when
occupying a position within the
bridge structure

0.107 cm

wA width of apparatus arm 3.3 cm

α free parameter to adjust the
space occupied by an ant on the
trail

17.02
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Table 2: Geometric parameters and variables corresponding to asymmetric model representing
an apparatus such as shown in Figure 2.

Notation Description Value Units

LS,0 Hinge-to-hinge length of left ap-
paratus arm

22 cm

LL,0 Hinge-to-hinge length of right ap-
paratus arm

44 cm

θ, φ Angle of left and right arm re-
spectively from the vertical

0 to 45 degrees

wΩ Ratio between width and length
of a bridge, value from Reid et al.
[16]

4.799(θ + φ)−0.5014 N/A

LA,S Travel length along left arm from
apex to opposite hinge

LS,0 − wA

2 cot
(
θ+φ

2

)
cm

LA,L Travel length along right arm
from apex to opposite hinge

LL,0 − wA

2 cot
(
θ+φ

2

)
cm

LA Sum of travel lengths along each
arm

LA,S + LA,L cm

Dmax,1 Maximum vertical distance from
apex to bottom of left arm

LA,S cos(θ) cm

Dmax,2 Maximum vertical distance from
apex to bottom of right arm

LA,L cos(φ) cm

d1 Vertical distance of bridge from
apex to position on left arm

0 to Dmax,1 cm

d2 Vertical distance of bridge from
apex to position on right arm

0 to Dmax,2 cm
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Table 3: Geometric parameters and variables corresponding to two-apex apparatus such as
shown in Figure 3.

Notation Description Value Units

L0 Hinge-to-hinge length of each
arm

22 cm

θ Angle of each apex 0 to 60 degrees

wθ Ratio between width and length
of a bridge, value from Reid et al.
[16]

4.799θ−0.5014 N/A

LA1 , LA2 , LA3 Travel length along each arm of
apparatus from apex to opposite
hinge

L0 − wA

2 cot
(
θ
2

)
cm

LA Sum of travel lengths along each
arm

LA1
+ LA2

+ LA3
cm

Dmax Maximum vertical distance from
apex to end of each arm

LA

3 cos
(
θ
2

)
cm

d1 Vertical distance of bridge from
apex to position on arms forming
first apex

0 to Dmax cm

d2 Vertical distance of bridge from
apex to position on arms forming
second apex

0 to Dmax cm
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Table 4: Geometric parameters and variables corresponding to three-ape apparatus such as
shown in Figure 4.

Notation Description Value Units

L0 Hinge-to-hinge length of each
arm

22 cm

θ Angle of each apex 0 to 60 degrees

wθ Ratio between width and length
of a bridge, value from Reid et al.
[16]

4.799θ−0.5014 N/A

LA1 , LA2 , LA3 , LA4 Travel length along each arm of
apparatus from apex to opposite
hinge

L0 − wA

2 cot
(
θ
2

)
cm

LA Sum of travel lengths along each
arm

LA1
+ LA2

+ LA3
+ LA4

cm

Dmax Maximum vertical distance from
apex to end of each arm

LA

4 cos
(
θ
2

)
cm

d1 Vertical distance of bridge from
apex to position on arms forming
first apex

0 to Dmax cm

d2 Vertical distance of bridge from
apex to position on arms forming
second apex

0 to Dmax cm

d3 Vertical distance of bridge from
apex to position on arms forming
third apex

0 to Dmax cm
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