
 
Guiding the design of bacterial signaling interactions using a coevolutionary landscape 

R. R. Cheng1*†, E. Haglund1*, N. Tiee2*, F. Morcos3,4, H. Levine1,5,6,7, J. A. Adams8, P. A. 
Jennings2, J. N. Onuchic1,6,7,9† 
  

 

Affiliations: 
1Center for Theoretical Biological Physics, Rice University, Houston, USA. 
2Department of Chemistry & Biochemistry, The University of California, San Diego, La Jolla, 
USA. 
3Department of Biological Sciences, University of Texas at Dallas, Dallas, USA. 
4Department of Bioengineering, University of Texas at Dallas, Dallas, USA. 
5Department of Bioengineering, Rice University, Houston, USA. 
6Department of Biosciences, Rice University, Houston, USA. 
7Department of Physics & Astronomy, Rice University, Houston, USA. 
8Department of Pharmacology, The University of California, San Diego, La Jolla, USA. 
9Department of Chemistry, Rice University, Houston, USA. 
*Authors contributed equally to this work. 

†To whom correspondence should be addressed:  R. R. Cheng (ryan.cheng@rice.edu), J. N. 
Onuchic (jonuchic@rice.edu)  

 
Abstract 
The selection of mutations that encode new interactions between bacterial two-component 
signaling (TCS) proteins remains a significant challenge. Recent work constructed a co- 
evolutionary landscape where mutations can readily be selected to maintain signal transfer 
interactions between partner TCS proteins without introducing unwanted crosstalk. A bigger 
challenge is to select mutations for a TCS protein from the landscape to enhance, suppress, or 
have a neutral effect on its basal signal transfer with a non-partner. This study focuses on the 
computational selection of 12 single-point mutations to a response regulator from Bacillus 
subtilis and its effect on phosphotransfer with a histidine kinase from Escherichia Coli. These 
mutations are experimentally expressed to directly test the theoretical predictions, of which 
seven mutants successfully perturb phosphotransfer in the predicted manner. Furthermore, 
Differential Scanning Calorimetry is used to monitor any protein stability effects caused by the 
mutations, which could be detrimental to proper protein function. 
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Introduction 

Bacterial two-component signaling (TCS) (1-6) is the primary means by which bacteria respond 
to external stimuli. TCS is carried out by two partner proteins working in tandem, i.e., a histidine 
kinase (HK) and a response regulator (RR). The HK detects a stimulus and proceeds to 
autophosphorylate, generating the signal as a phosphoryl group on a conserved histidine residue. 
Its partner RR can then bind to the HK and receive the phosphoryl group, thereby enabling its 
function as a transcription factor. Although there are as many as 102-103 homologous TCS pairs 
in a bacterium, each controlling the response to a different stimulus, a HK typically interacts 
preferentially with its partner RR. This ability for partners to preferentially bind to one another is 
encoded by the surface residues of the HK and RR, which form their mutual binding interface. 
 Selecting mutations that encode new interactions between non-partner TCS proteins 
remains a significant challenge in synthetic biology despite recent successes via extensive 
mutagenesis and selection. Mutagenesis studies have demonstrated that TCS interactions can be 
engineered through amino acid mutations in vitro (7, 8) and in vivo (8). Similar mutagenesis 
approaches have been used to restore autophosphorylation in a chimeric HK (9), which is 
composed of a dimerization domain and an ATPase domain from different HK proteins. 
Recently, a comprehensive mutational study (10) explored the full sequence-space of 4 residues 
on a HK that still maintained functional signal transduction with its partner RR in vivo. While it 
is clear that the technology to exhaustively mutate and interrogate the functionality of hundreds 
of thousands of mutations in vitro/vivo exists, it is not feasible to design new TCS interactions by 
experimentally constructing all amino acid possibilities. Therefore, the design of new TCS 
interactions would greatly benefit from computational, data-driven approaches, which learn from 
the amino acid combinations that have been naturally selected.  

 Recent developments in statistical methods, such as Direct Coupling Analysis (DCA) 
(11-13), have advanced the quantitative modeling of protein sequence data. These approaches 
infer a coevolutionary landscape,  H (

!σ ) , that governs the selection of protein sequences, 

 
!σ = (σ 1,σ 2 ,...,σ L ) , from a Boltzmann equilibrium distribution,  P(

!σ ) = exp −H (
!σ )( ) / Z . The 

inference of  H (
!σ ) , an Ising-like (Potts) model, is performed such that the probabilistic model 

reproduces the amino acid statistics observed in a collection of sequences of naturally selected 
protein homologs. In the context of sequence selection,  H (

!σ )  is proportional to the negative of 
an additive fitness landscape (14).  Recently, several approaches have inferred coevolutionary 
landscapes to quantify how amino acid mutations affect fitness in the case of Beta-lactamase 
TEM-1 (15) and bacterial two-component signaling (16). The latter case focused on interprotein 
coevolution between the HK and RR protein residues to construct a landscape,  HTCS(

!σ )  (Eq. 1), 
which can be calculated as a proxy for signal transfer efficiency between any arbitrary pair of 
TCS proteins with sequence,  

!σ .  

 As  HTCS(
!σ )  can be used to identify mutations in a TCS protein that maintained functional 

signaling with its native partner (16), consistent with the findings from in vivo experiment (10), 
the expansion of this approach toward non-native TCS proteins is necessary to test its 
predictions. The current study expands upon this idea of selecting mutations directly from 
 HTCS(

!σ )  to rationally encode new TCS interactions between a HK and a RR protein that are not 
native partners, henceforth called non-partners. Specifically, mutations are selected for the RR 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/116947doi: bioRxiv preprint 

https://doi.org/10.1101/116947


 
 

3 

protein, Spo0F from Bacillus subtilis, to enhance its in vitro signal transfer with a non-partner 
HK protein, EnvZ from Escherichia coli. Mutations are also selected from the landscape to 
suppress or have a neutral effect on the phosphotransfer between EnvZ and Spo0F. To test the 
predictions of the inferred model, the phosphotransfer between the mutant Spo0F and EnvZ is 
measured in vitro using a protein radiolabeling assay similar to that used for KinA/Spo0F 
phosphotransfer in vitro (17). This analysis is combined with in vitro experiments using 
Differential Scanning Calorimetry (DSC) to measure the effect of each specific mutation on the 
enthalpy of protein unfolding, ΔΔHDSC , to ascertain the mutational effect on folding and stability. 
The effect of mutations to Spo0F on other HK homologs (in vivo cross-talk) is not considered in 
this study, but can also be successfully recapitulated by the model, which is discussed in great 
detail in a recent theoretical study (16). 
 The results of this study are organized in three subsections: (i) The selection of mutations 
from the coevolutionary landscape, (ii) The comparison of the landscape predictions with the 
experimentally measured phosphotransfer between Spo0F and EnvZ, and (iii) The comparison of 
the computational predictions on Spo0F stability and the experimental finds using DSC.  
 

Results 
Inferring candidate mutations for the RR Spo0F 

Candidate mutations for Spo0F to encode its preferential interaction with the HK EnvZ are 
selected from the subset of mutations for which  ΔHTCS = HTCS(

!σ mutant )− HTCS (
!σ w.t . ) < 0  (Eq. 1), 

where  
!σ mutant  and  

!σ w.t .  are the mutant and wild-type sequences, respectively. Such mutations can 
be interpreted as increasing the signal transfer efficiency (16) between EnvZ and Spo0F, 
according to the inferred quantitative model.  
 In this study, the selection of mutations is limited to single residue sites on Spo0F that (i) 
form contacts with the HK in the representative HK/RR complex and that are also (ii) coevolving 
with the residues of the HK. Assuming that the HK/RR binding interface is preserved over the 
majority of TCS partners, the predicted KinA/Spo0F complex (18) is used as a representative 
structure (Figure 1). In B. subtilis, KinA is the HK that phosphorylates Spo0F in the sporulation 
phosphorelay (19). The predicted complex, used in this study, is consistent with an earlier 
predicted TCS complex (20) as well as an experimental crystal structure (21). Figure 1A shows 
the number of contacts, Ncontact , formed between Spo0F and KinA in the representative structure 
using a 10Å cutoff between all heavy atoms. Four main groups of residues on Spo0F form the 
contacts with the HK and are mapped to the sequence and secondary structure (1C), i.e., α1 
(Group 1), β3-α3 loop (Group 2), β4/β4- α4 loop (Group 3), and β5- α5 loop/α5 (Group 4).  
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Figure 1. Selecting mutants from highly coevolved regions of the HK/RR interface. 
(A) A histogram of the number of contacts, Ncontact , formed between the RR Spo0F and 
the HK KinA in a representative structure of the TCS complex is plotted as a function 
residue number on Spo0F (18). (B) Using coevolutionary analysis of HK/RR partner 
sequences, the top 200 coevolving HK/RR interprotein residue pairs are calculated using 
Direct Information (DI) (Eq. 3). For these top coevolving residue pairs, the number of 
HK residues coevolving with each RR residue, Ncoevolv , is plotted in a histogram as a 
function of the residue numbers of the RR protein family, which are mapped on to the 
corresponding residue numbers on Spo0F.  (C) The secondary structure of Spo0F is 
drawn as a cartoon, with strands denoted by arrows, helices by rectangles and loops and 
turns denoted by lines. Mutations in highly coevolving RR residues that formed contacts 
with the HK in this study were obtained from the four groups: α1 (Group 1), β3-α3 loop 
(Group 2), β4/β4- α4 loop (Group 3), and β5- α5 loop/α5 (Group 4). .  

The amount of coevolution between all interprotein residue pairs (i.e., HK/RR residue pairs) 
according to the inferred model is quantified using the Direct Information (DI) (Eq. 3) (11, 13). 
The coevolving interprotein residue pairs (between the HK and RR) form contacts that stabilize 
the TCS complex (13, 18, 20). Figure 1B shows the number of HK residues found to strongly 
coevolve with each RR residue, Ncoevolv . Spo0F residue positions with a high Ncoevolv  are 
interpreted as being candidate sites for encoding new TCS interactions.  
 
The primary candidates for enhancing the phosphotransfer between EnvZ and Spo0F are thus 
chosen from the overlap between Figures 1A and 1B, for mutations that satisfy ΔHTCS < 0  (Eq. 
1). These primary candidates are G14K, E21R, and V22Y from Group 1, M55L from Group 2, 
and I108L and I111L from Group 4. Additional mutations are also selected from the four contact 
groups. The mutations G14N and K56M are chosen because they are predicted to be highly 
deleterious to phosphotransfer between EnvZ and Spo0F (Figure 2A), i.e., ΔHTCS > 0 . The 
remaining mutations that are also explored include Q12E, I57L, M81L, and A103V, which are 
predicted to have a neutral effect on the phosphotransfer between EnvZ and Spo0F. 

The computational predictions of the signal transfer efficiency, ΔHTCS , for all mutants are shown 
in Figure 2A. Figure 2B shows the experimental results, which are discussed in the proceeding 
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subsection (vida supra). Figure 2C shows all of the single-site mutations plotted together on the 
representative structure of Spo0F. All of these mutational sites physically interact with the HK in 
the representative structure of a TCS complex (Figure 2D).  

 
Figure 2. Comparison of mutational predictions of ΔHTCS  with in vitro 
phosphotransfer rates. (A) The computational proxy for signal transfer efficiency, 
ΔHTCS  (Eq. 1), is plotted for each of the Spo0F mutations. By definition, ΔHTCS < 0  
represent mutations that are predicted to enhance phosphotransfer between EnvZ and 
Spo0F, while ΔHTCS > 0  represent mutations that suppress phosphotransfer. (B) The in 
vitro phosphotransfer rate between EnvZ and each of the Spo0F mutants, vmutant , is plotted 
normalized by the phosphotransfer rate between wild type EnvZ/Spo0F, vw.t. . Here, 
vmutant / vw.t. >1  shows mutations that enhanced the phosphotransfer rate. Four out of these 
six mutants were able to enhance phosphotransfer, showing the predictive capabilities of 
the coevolutionary model. Neutral and deleterious mutations were also successful, as 
discussed below. (C) The mutations (colored by group) are plotted on the representative 
structure of Spo0F (PDB ID: 1PEY) (22). (D) The mutations (colored in purple and 
represented as spheres) are shown on Spo0F bound to KinA in the representative TCS 
complex (18). The mutated residues are colored to match (B), where a darker purple 
represents a greater enhancement to the experimental phosphotransfer rate. The G14K/N 
mutations are shown in cyan.  The structural representations in (C) and (D) were 
generated using PyMOL (23). 
 

Comparison of phosphotransfer predictions with in vitro experiment 
Figure 2A shows the predicted effect of mutations to Spo0F on the EnvZ/Spo0F phosphotransfer, 
where mutants with ΔHTCS < 0  are predicted to exhibit a phosphotransfer enhancement with 
respect to the wild-type EnvZ/Spo0F interaction. The mutants G14K, E21R, V22Y, M55L, 
I108L and I111L are predicted to enhance phosphotransfer, whereas G14N and K56M are 
expected to decrease phosphotransfer. The remaining mutations are predicted to have a neutral 
affect on the EnvZ/Spo0F interaction. 
 The phosphotransfer reaction between EnvZ and Spo0F (wild-type and mutants) was 
measured in vitro to obtain phosphotransfer rates for wild-type and mutant Spo0F, denoted as 

0.0
0.5
1.0
1.5
2.0
2.5

ΔH
TC

S
0.0
0.5

I108L

M55L

G14K

V22Y

I57L

Q12E
M81L

K56M

I111L

G14N

A103V

E21R

-0.5
-1.0

v m
ut

an
t/v

w
.t.

A

B

ΔHTCS> 0 (predicted suppression)

ΔHTCS< 0 (predicted enhancement)

C

D

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/116947doi: bioRxiv preprint 

https://doi.org/10.1101/116947


 
 

6 

vw.t.  and vmutant , respectively. The ratio of the mutant phosphotransfer rate to the wild-type 
phosphotransfer rate, vmutant / vw.t. , is shown in Figure 2B. Of the 6 mutants predicted to enhance 
EnvZ/Spo0F phosphotransfer, M55L and I108L exhibited significant enhancement, G14K and 
V22Y maintained wild-type activity, and E21R and I111L exhibited a significant decrease in 
phosphotransfer. A previous exhaustive mutagenesis study (10) found that most amino acid 
mutations (~99%) are deleterious toward TCS signaling in vivo. While 2 out of 6 mutations 
significantly enhanced phosphotransfer, 4 out of 6 mutations retained or improved wild-type 
phosphotransfer activity. For the two mutants predicted to suppress phosphotransfer, G14N and 
K56M, both decreased the wild-type EnvZ/Spo0F phosphotransfer rate, i.e., vmutant / vw.t. <1 . Of 
the mutations predicted to be neutral, I57L, Q12E, and M81L exhibited a phosphotransfer rate 
comparable to that of the wild-type. The remaining neutral mutations were found to decrease 
phosphotransfer. With the exception of A103V, all mutations predicted to have a neutral effect 
were less deleterious to signal transfer than G14N and K56M. 
 

Mutational effects on protein stability measured using Differential Scanning Calorimetry (DSC)   
DSC is used to measure the enthalpy of unfolding, ΔHDSC , for the wild-type and mutational 
variants of Spo0F. The DSC data is available as Table S1. Figure 3 shows the mutational change 
in the enthalpy of unfolding, i.e., ΔΔHDSC = ΔHDSC

mutant − ΔHDSC
w.t .  Many of the mutations found to 

result in a reduced phosphotransfer between EnvZ and Spo0F (Figure 2B) appear to be 
destabilized (i.e., ΔΔHDSC < 0 ). The loss of folding stability offers an explanation as to why 
several of the mutations predicted to enhance or have a neutral effect on phosphotransfer were 
instead found to decrease in vitro phosphotransfer. In particular, the mutants E21R and I111L 
were the two most destabilized Spo0F mutants measured by DSC (Figure 3). The destabilization 
of Spo0F potentially explains why both mutations, which were predicted to enhance 
phosphotransfer (Figure 2A), were both found to decrease phosphotransfer in experimental 
studies (Figure 2B).  

  
Figure 3. The measured mutational change in the enthalpy of unfolding. The 
mutational change in the enthalpy of folding, ΔΔHDSC = ΔHDSC

mutant − ΔHDSC
w.t , is measured 

using DSC for each of the Spo0F mutants with respect to the wild-type protein. 
Stabilizing and destabilizing mutations to Spo0F are represented by ΔΔHDSC > 0  and
ΔΔHDSC < 0 , respectively.  

Discussion 

TCS partners have evolved to maintain interaction specificity, which is encoded in the residues 
that form the interface between HK and RR proteins. Selecting mutations to engineer new 
interactions between non-partner HK and RR proteins has remained a significant challenge in 
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synthetic biology. The current work selects mutations directly from a co-evolutionary landscape, 
ΔHTCS , which serves as a proxy for signal transfer efficiency between a HK and RR (16). 
Specifically, mutations are selected to enhance the signal transfer between the RR Spo0F from B. 
subtilis and the HK EnvZ from E. coli. These results show that 2 of the 6 mutations predicted to 
enhance EnvZ/Spo0F signal transfer exhibited significant enhancement in vitro. While it is 
possible to generate and interrogate the functionality of hundreds of thousands of mutations in 
vivo or in vitro (10), the design of new TCS interactions can be made more practical using data-
driven, computational approaches. Due to the low computational cost of generating predictions 
using ΔHTCS , one readily can search sequence-space for amino acid combinations that enhance 
signal transfer between non-partners. This combined computational and experimental approach 
would complement existing strategies for engineering bacterial responses that are based on 
modular design (24-28).  

 It was previously demonstrated by exhaustive mutagenesis that roughly 1% of mutations 
to the binding interface of a HK led to functional signaling in E. coli (10). While not all 
mutations predicted to enhance in vitro phosphotransfer would be expected to also generate 
interaction specificity in living systems, 1% could serve as a rough estimate to the expected 
fraction of mutations that lead to phosphotransfer enhancement from a random sample. Because 
the mutational sequence space for any given protein is astronomically large, deciphering which 
mutations will improve the activity is a daunting challenge. For the 6 mutations expected to 
enhance activity, 2 mutations significantly improved activity.  Randomly selecting 6 mutations to 
enhance signal transfer and generating 2 positive predictions yields a p-value of 10-3 using a 
binomial distribution, assuming that only 1% of mutations would enhance phosphotransfer. For 
comparison, it would take approximately 200 randomly selected mutations to obtain 2 successes 
on average.  Moreover, as the 1% estimate applies to a random search for functional mutations 
(99% will be deleterious), the predictive strength of the methodology increases substantially; 4 of 
the 6 mutations retain or improve the wild-type EnvZ/Spo0F phosphotransfer activity.  Though 
identifying mutations that greatly improve activity is considerably more challenging, simply 
assuming their statistical rarity, the methodology was also adept at determining neutral and 
deleterious mutations (5 of the 6 mutations correlate well with predictions).  Thus, the selection 
of mutations directly from a TCS co-evolutionary landscape offers a truly significant 
enhancement in the positive predictive value compared to design via either brute force 
generation of mutational variants or library selections, which are only able to scan through a 
fraction of the available mutational landscape.   
  

Materials and Methods 
Model structure of EnvZ/Spo0F complex 

The detailed crystal structure of a TCS complex was first obtained for HK853/RR468 of 
Thermatoga maritima (21), elucidating the binding interface between HK and RR partners. It 
was subsequently shown (20) that TCS complexes could be computationally predicted using 
highly coevolving interprotein (HK/RR) residue pairs as docking constraints for molecular 
dynamics simulations. In this present work, the computationally predicted structure for the 
KinA/Spo0F complex (B. subtilis) (18) is used as a model for selecting mutations to stabilize the 
EnvZ/Spo0F complex. This predicted complex is composed of a representative structure for the 
Spo0F monomer, obtained from crystallography (PDB ID: 1PEY) (22), and a representative 
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structure for the KinA homodimer, obtained from homology modeling using I-TASSER (29). 
The sequence of EnvZ is threaded into the template structure of KinA. 

 
Direct Coupling Analysis (DCA)  

Multiple-sequence alignments (MSA) of the HK (PF00512) and RR (PF00072) protein families 
are collected from Pfam (30) (Version 28). The HK and RR aligned sequences are then 
concatenated based on genomic adjacency (31, 32). The concatenated sequence of amino acids 
for a TCS partner pair,  

!σ = (σ 1,σ 2 ,...,σ L ) , is represented as a vector of length L=172 where amino 
acids 1 to 64 and 65 to 172 belong to the HK and RR, respectively. Additional details of the TCS 
partners used to parameterize the coevolutionary model can be found in a previous publication 
(16).  
 Methods such as Direct Coupling Analysis (DCA) (11-13) infer a probabilistic model, 

 P(
!σ ) = exp −H (

!σ )( ) / Z , for the selection of the sequence data,  
!σ = (σ 1,σ 2 ,...,σ L ) . The approach 

adopted in this study uses pseudolikelihood maximization (12) to infer the statistical couplings, 
Jij , and local fields, hi , of a Potts model, 

 
H ( !σ ) = − Jij (σ i ,σ j )− hi (σ i )i∑i< j∑ .  

 
Construction of the TCS coevolutionary landscape  

Focusing on the interprotein couplings between the HK and RR residues, a proxy for signal 
transfer efficiency between TCS proteins in constructed:       

  
   

HTCS(
!
σ ) = − Jij (σ i ,σ j )×Θ(c − rij )

j=65

172

∑
i=1

64

∑ − hi (σ i )
i=1

172

∑    (Eq. 1) 

where  
!σ  is the concatenated sequence of wild-type EnvZ (HK) and wild-type or mutant Spo0F 

(RR), the double summation is taken between all interprotein residue pairs (i.e., residues 1 to 64 
and 65 to 172 belonging to the HK and RR, respectively), Θ is a Heaviside step function, c is the 
a cutoff distance of 16Å, and rij  is the minimum distance between residues i and j in the 
representative structure. Mutational changes in Eq. 1 are expressed as 
 ΔHTCS(

!
σ ) = HTCS(

!
σ mutant )− HTCS(

!
σ w.t.)  between a mutant sequence,  

!σ mutant , and a wild-type 
sequence,  

!σ w.t. . Once again, the sequence  
!σ = (σ 1,σ 2 ,...,σ L )  is a concatenated sequence of the HK 

EnvZ and the RR Spo0F, where only single-site mutations are made to the Spo0F in this present 
work. The coevolutionary landscape (Eq. 1) was previously published (16), and is available 
online for download (http://utdallas.edu/~faruckm/PublicationDatasets.html). 
 It has previously been shown that coevolutionary landscapes can also be used to identify 
TCS partner interactions (16, 33), i.e., which HKs and RRs preferentially interact. These 
approaches are consistent with earlier approaches that used information-based scores (18, 34, 
35). 
 

Direct Information (DI) 
Coevolution between residue pairs i and j can be quantified using the Direct Information (DI) 
(11, 13, 36, 37): 
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DIij = Pij
(DCA) (σ i ,σ j )log

Pij
(DCA) (σ i ,σ j )
Pi (σ i )Pj (σ j )

⎛

⎝⎜
⎞

⎠⎟σ i=1

q

∑
σ i=1

q

∑
Pij
(DCA) (σ i ,σ j ) = N exp(Jij (σ i ,σ j )+ !hi (σ i )+ !hj (σ j ))

   (Eq. 3) 

where Pij
(DCA) (σ i ,σ j )  is the inferred pair distribution between residues i and j with amino acids σ i

and σ j , respectively; N is the normalization; and  !hi (σ i )  and 
 
!hj (σ j )  are chosen such that 

Pij
(DCA) (σ i ,σ j )  satisfies the marginalization conditions, Pij

(DCA) (σ i ,σ j ){σ j }
∑ = Pi (σ i )  and 

Pij
(DCA) (σ i ,σ j ){σ i }

∑ = Pj (σ j )  
(11, 13, 36, 37). The DI (a Kullback-Leibler divergence) quantifies 

the informational entropy difference between the inferred pair distribution, Pij
(DCA) (σ i ,σ j ) , with 

respect to a null model lacking pairwise correlations, Pi (σ i )Pj (σ j ) .  
 
Protein Purification 
All genes were purchased from Genescript. EnvZ was cloned into a pET-32b vector using 
restriction sites MscI and NcoI. Spo0F was cloned into a pET-20b(+) vector using restriction site 
NdeI and XhoI. Spo0F and EnvZ were transferred into BL21(DE3)pLysS and C43 competent 
cells, respectively, and grown in LB medium to an OD of 0.6. Protein expression was induced 
with the addition of 1mM IPTG for 4-5 hours at 37o C. Cells were harvested by centrifugation 
and resuspended in lysis buffer. Spo0F was sonicated and the supernatant was filtered through a 
20 kDa filter before being loaded onto a Q-column. EnvZ was sonicated and purified with a 
(His)6-tag using a Nickel column as described (38). In each case, fractions containing protein 
were pooled together, concentrated and dialyzed against phosphorylation assay buffer (see buffer 
conditions below). Protein purity was evaluated with SDS page. 
 
Phosphotransfer experiments 
The phosphotransfer between EnvZ and Spo0F was measured using a radiolabeled ATP 
phosphotransfer assay.  EnvZ and Spo0F were separately equilibrated in phosphorylation assay 
buffer (10 mM HEPES, 50 mM KCl, 10 mM MgCl2 and 0.1 mM EDTA).  100 m M ATP and 5 
µCi [γ32P]ATP (6000 Ci/mmol) was added to the EnvZ sample to allow the autophosphorylation 
reaction to reach equilibrium. Equimolar amounts of phosphorylated EnvZ and Spo0F were then 
combined to initiate the phosphotransfer reaction. The reactions were quenched with 4x SDS 
Page loading buffer after 1-5 minutes, loaded on a SDS poly-acrylamide gel, run at 100 V for 1.5 
hours and set to dry for 16 hours.  The dried gel was exposed to film for times ranging from 10-
60 minutes depending on activity, and individual protein bands corresponding to phosphorylated 
Spo0F were quantitated on the 32P channel in liquid scintillant. Reaction velocities for mutants 
were then calculated and expressed as a ratio compared to the wild-type enzyme. 
 
Thermal stability through Differential Scanning Calorimetry (DSC) measurements.   
To verify if the introduced point mutations have an effect on the overall protein stability, 
Differential Scanning Calorimetry (DSC) measurements were performed using a Microcal VP-
Capilllary DSC Instrument and scanned from 20 – 100o C. DSC measures the heat change 
associated with thermal unfolding at a constant rate, i.e., the thermal transition midpoint (Tm) is 
obtained together with the change in enthalpy (DHDSC) upon unfolding of the protein. Data 
analyses were performed using the MicroCal Origin Software, and the main transition 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/116947doi: bioRxiv preprint 

https://doi.org/10.1101/116947


 
 

10 

representing the unfolding curve of monomeric Spo0F is plotted in Figure 3. Data were collected 
data at a 90 deg/hr scan rate on protein concentration ca. 1mg/ml.   
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