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 2

Abstract 18 

 19 

Recent studies of somatic and germline mutations have led to the identification of 20 

a number of factors that influence point mutation rates, including CpG 21 

methylation, expression levels, replication timing and GC content. Intriguingly, 22 

some of the effects appear to differ between soma and germline: in particular, 23 

whereas mutation rates have been reported to decrease with expression levels in 24 

tumors, no clear effect has been detected in the germline.  Distinct approaches 25 

were taken to analyze the data, however, so it is hard to know whether these 26 

apparent differences are real. To enable a cleaner comparison, we considered a 27 

statistical model in which the mutation rate of a coding region is predicted by GC 28 

content, expression levels, replication timing, and two histone repressive marks. 29 

We applied this model to both a set of germline mutations identified in exomes 30 

and to exonic somatic mutations in four types of tumors. Germline and soma 31 

share most determinants of mutations; notably, we detected an effect of 32 

expression levels on germline mutations as well as on somatic ones. However, 33 

whereas in somatic tissues, increased expression levels are associated with 34 

greater strand asymmetry and decreased mutation rates, in ovaries and testes, 35 

increased expression leads to greater strand asymmetry but increased mutation 36 

rates. This contrast points to differences in damage or repair rates during 37 

transcription in soma and germline. 38 

  39 
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Introduction 40 

 41 

Germline mutations are the source of all heritable variation, including in disease 42 

susceptibility, and it is increasingly clear that somatic mutations also play 43 

important roles in human diseases, notably cancers (Muller 1927; Stratton, 44 

Campbell, and Futreal 2009). Understanding the rate and mechanisms by which 45 

mutations occur is therefore of interest to both evolutionary biologists and to 46 

human geneticists aiming to identify the underlying causes of genetic diseases 47 

(Shendure and Akey 2015; Gao et al. 2016). In particular, an accurate estimate 48 

of the local mutation rate is key to testing for an excess of disease mutations in 49 

specific genes among cases (Lawrence et al. 2013; Samocha et al. 2014). 50 

Characterization of the variation in mutation rate along the genome can also yield 51 

important insights into DNA damage and repair mechanisms (Stratton 2011; 52 

Ségurel, Wyman, and Przeworski 2014). 53 

 54 

Until recently, our understanding of germline point mutations came mainly from 55 

analysis of diversity along the genome or divergence among species (Green et al. 56 

2003; Webster et al. 2004; Polak and Arndt 2008; Hodgkinson and Eyre-Walker 57 

2011; Park, Qian, and Zhang 2012). In the past several years, analyses have 58 

also been based on resequencing exomes or whole genomes from blood 59 

samples of human pedigrees and identifying variants present in the offspring but 60 

absent in the child (reviewed in Campbell and Eichler 2013 and Ségurel, Wyman, 61 

and Przeworski 2014; Shendure and Akey 2015; Francioli et al. 2015; Rahbari et 62 
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al. 2016; Goldmann et al. 2016; Besenbacher et al. 2016). This approach is more 63 

direct than analyzing divergence data and presents the advantage of being 64 

almost unaffected by selection, but the analysis is technically challenging and, 65 

with current study designs, some mutations may be missed, notably those that 66 

occur in the early post-zygotic divisions (Rahbari et al. 2016; Moorjani, Gao, and 67 

Przeworski 2016; Harland et al. 2016).  68 

 69 

Our knowledge of somatic point mutations, in turn, relies primarily on 70 

resequencing tumors. In these analyses, mutation calls are made by sequencing 71 

tumor and non-cancerous tissue pairs from the same individual and then 72 

excluding the variants shared between the two tissues (as the shared mutations 73 

are likely to be germline). Because, in this approach, a large population of cells is 74 

sequenced, the mutations identified tend to predate the tumorigenesis and thus 75 

are mostly somatic mutations that occurred in normal tissues (see, e.g., 76 

Martincorena et al. 2015; Alexandrov et al. 2015). 77 

 78 

Studies of both germline and soma reveal that the point mutation rate varies 79 

across the genome, from the scale of a single base pair to much larger scales 80 

(Hodgkinson and Eyre-Walker 2011; Hodgkinson, Chen, and Eyre-Walker 2012; 81 

Ségurel, Wyman, and Przeworski 2014). At the single base pair level, the largest 82 

source of variation in germline mutation rate is the identity of the adjacent base 83 

pairs (Hwang and Green 2004; Hodgkinson and Eyre-Walker 2011). Notably, the 84 

mutation rate of CpG transitions (henceforth CpG Ti) is an order of magnitude 85 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/117325doi: bioRxiv preprint 

https://doi.org/10.1101/117325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

higher than other mutation types (e.g., Kong et al. 2012). Most CpG dinucleotides 86 

are methylated in the human genome; when the methylated cytosine undergoes 87 

spontaneous deamination to generate thymine and is not corrected by the time of 88 

replication, the damage leads to a mutation. Among other types of sites, rates of 89 

mutation vary by 2 to 3 fold (Kong et al. 2012). In the soma, the mutation rate at 90 

CpG sites is also elevated, although the extent of the increase differs across 91 

tumor types (Pleasance, Stephens, et al. 2010; Pleasance, Cheetham, et al. 92 

2010; Lee et al. 2010). More generally, tumors vary in their mutation spectrum: 93 

analyses of mutations and their two neighboring base pairs (i.e., considering 96 94 

mutation types) point to enrichment of distinct mutational signatures for different 95 

types of cancers, a subset of which have been shown to reflect particular 96 

mutagens or differences in the efficiency of repair (Alexandrov et al. 2013). 97 

 98 

Over a larger scale of megabases, germline mutation rates have been 99 

associated with a number of additional factors, including transcription level (in 100 

testis), replication timing (in lymphoblastoid cell lines), chromatin state (both in 101 

lymphoblastoid cells and in ovary), meiotic crossover rates and GC content 102 

(Hodgkinson and Eyre-Walker 2011; Michaelson et al. 2012; Park, Qian, and 103 

Zhang 2012; Francioli et al. 2015; Goldmann et al. 2016; Besenbacher et al. 104 

2016). Somatic mutation rates have also been associated with replication timing 105 

(in Hela cell lines) and with average transcription levels across 91 cell lines in 106 

Cancer Cell Line Encyclopedia (Lawrence et al. 2013). 107 

 108 
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In many cases, little is known about the mechanistic basis for the association of a 109 

given factor with mutation rates. However, the association of somatic mutation 110 

rates with transcription levels appears to be a byproduct of transcription-coupled 111 

repair (TCR), a sub-pathway of nucleotide excision repair (NER) (Hanawalt and 112 

Spivak 2008; Nouspikel 2009). NER is a versatile repair pathway that senses 113 

lesion-causing distortions to DNA structure and excises the lesion for repair. 114 

Another subpathway of NER, global genome repair (GGR), can repair lesions on 115 

both transcribed strand (henceforth TS) and non-transcribed strand (henceforth 116 

NTS), including transcribed regions as well as transcriptionally-silent ones. In 117 

contrast, TCR operates only within transcribed regions, triggered by lesions on 118 

the TS, which it repairs off the NTS. This mechanism gives rise to a mutational 119 

strand asymmetry as well as a compositional asymmetry between strands. For 120 

example, TCR leads to more A to G mutations (A>G henceforth) on the NTS than 121 

TS; acting over long periods of time, this phenomenon generates an excess of G 122 

over A (and T over C) on the NTS (Green et al. 2003; McVicker and Green 2010). 123 

Such mutational strand asymmetry has been found in both germline and soma 124 

(Green et al. 2003; Polak and Arndt 2008; Rubin and Green 2009; Lawrence et al. 125 

2013; Martincorena et al. 2015; Francioli et al. 2015).  126 

 127 

While many of the same determinants appear to play important roles in both 128 

germline and soma, there are hints of differences as well. For instance, studies of 129 

pre-neoplastic somatic mutations indicate that, over a 100 kb scale, the mutation 130 

rates in somatic tissues decrease with expression levels and increase with 131 
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replication timing (Lawrence et al. 2013). Similarly, two studies that focused on 132 

somatic mutations in non-cancerous somatic tissues, normal eyelid tissue and 133 

neurons, found mutations to be enriched in regions of low expression and 134 

repressed chromatin (Martincorena et al. 2015; Lodato et al. 2015). A similar 135 

effect of replication timing was identified in studies of germline mutation 136 

(Stamatoyannopoulos et al. 2009; Francioli et al. 2015; Besenbacher et al. 2016; 137 

Carlson et al. 2017). However, the effect of expression levels on germline 138 

mutation rates remains unclear: one study reported increased divergence 139 

between humans and macaques with greater germline expression (Park, Qian, 140 

and Zhang 2012), but others found no discernable effect of expression levels on 141 

mutation rates (Green et al. 2003; Webster et al. 2004; Polak and Arndt 2008; 142 

Hodgkinson and Eyre-Walker 2011; Francioli et al. 2015). This difference 143 

between germline and soma is particularly puzzling in light of the observation that 144 

the strand asymmetry of mutation rates between TS and NTS is seen in the 145 

germline as well as the soma (Pleasance, Cheetham, et al. 2010; Pleasance, 146 

Stephens, et al. 2010; McVicker and Green 2010; Lawrence et al. 2013). 147 

Together, these observations suggest that the determinants of mutation rates 148 

may differ between germline and soma, raising the more general possibility that 149 

the damage rate or the repair efficacy differs among cell types (Lynch 2010).   150 

 151 

A limitation, however, is that studies have used different statistical approaches, 152 

rendering the comparison hard to interpret. As an illustration, whereas some 153 

studies binned the genome into windows of 100 kb (e.g., Lawrence et al. 2013) 154 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/117325doi: bioRxiv preprint 

https://doi.org/10.1101/117325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

or 1Mb regions (e.g., Polak et al. 2015), other studies have compared the mean 155 

mutation rate in transcribed regions and non-transcribed regions or in genes 156 

grouped by expression levels (Hodgkinson and Eyre-Walker 2011; Francioli et al. 157 

2015; Lodato et al. 2015). Studies of somatic mutation also vary in whether they 158 

group different tissues or distinguish among them (e.g., Pleasance, Stephens, et 159 

al. 2010; Lawrence et al. 2013). An additional limitation of earlier studies of 160 

germline mutation is that, by necessity, they relied on human-chimpanzee 161 

divergence as a proxy for de novo mutation rates (Green et al. 2003; Webster et 162 

al. 2004; Hodgkinson and Eyre-Walker 2011), even though divergence reflects 163 

not only the mutation process but also effects of natural selection in the human-164 

chimpanzee ancestor and biased gene conversion (McVicker et al. 2009; Duret 165 

and Galtier 2009).  166 

 167 

To our knowledge, only one study has used a uniform approach to study 168 

germline and soma. Their findings point to possible differences in their 169 

determinants: for instance, the histone mark H3K9me3 accounts for more than 170 

40% of mutation rate variation at 100 kb in tumors, when a much weaker 171 

association is seen in the germline (Schuster-Böckler and Lehner 2012; 172 

Goldmann et al. 2016). This analysis relied on pairwise correlations, however, 173 

and therefore the results may be confounded by other factors that are correlated 174 

to the histone marks and differ between tissues. Moreover, to our knowledge, 175 

there has been no parallel treatment of strand asymmetry in germline and soma. 176 

 177 
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To overcome these limitations, we built a multivariable regression model, in 178 

which the mutation rates of CpG Ti and other types of mutations in a coding 179 

region are predicted by GC content, expression levels, replication timing and two 180 

histone repressive marks. To this end, we used the expression levels, replication 181 

timing and histone marker levels of matched cell types. We applied the model to 182 

a large set of germline point mutations identified in exomes from recently 183 

published studies on developmental disorders and to somatic point mutations in 184 

exomes found in four types of tumors and reported by the Cancer Genome Atlas 185 

(see Materials and Methods). In addition, we considered the mutational strand 186 

asymmetry in the two sets of data. 187 

  188 
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Materials and Methods 189 

 190 

Datasets. To study germline mutations, we relied on de novo mutation calls 191 

made from 8681 trios surveyed by exome sequencing. We combined results from 192 

two main sources: studies of neurodevelopmental disorders (NDD), which 193 

considered 5542 cases and 1911 controls (unaffecteds), and studies of 194 

congenital heart defect (CHD), conducted by the Pediatric Cardiac Genomics 195 

Consortium, which included 1228 trios. The NDD cases include 3953 cases of 196 

Autism Spectrum Disorder (ASD), 1133 cases of deciphering developmental 197 

disorders (DDD), 264 cases of epileptic encephalopathies (EE), and 192 cases of 198 

intellectual disability (ID). All these studies applied similar capture and 199 

sequencing methods, and most samples were at >20X coverage (see Table 1). 200 

We tested for an effect of the study, which could potentially arise from differences 201 

in design or analysis pipeline, by adding a categorical variable (by an analogous 202 

approach to the one described below to test for differences among tissues). We 203 

found a marginally significant interaction between the study and the expression 204 

level in testis (our proxy for expression levels in the germline), driven by one 205 

study (CHD cases; Homsy et al. 2015), as well as for interactions between the 206 

studies and the effects of H3K9me3 and GC content, driven by two small studies 207 

(EE and ID) (see Figure S1). Given these very minor differences and in order to 208 

increase our power, we combined all the germline mutation datasets in what 209 

follows (see Supplementary Materials Table S1 for list of mutations).  210 

 211 
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Table 1. Summary of germline datasets 212 

 213 

Datasets Trios References Capture Sequencing 

Autism Spectrum 

Disorder (ASD) 

3953 De Rubeis et al. 

2014; Iossifov et al. 

2014 

Exome Illumina and 

SOLiD 

Simons Simplex 

Collection, 

unaffected  

1911 Iossifov et al. 2014 Exome Illumina 

Congenital heart 

disease (CHD) 

1213 Homsy et al. 2015 Exome Illumina 

Deciphering 

Developmental 

Disorders Study 

(DDD) 

1133 The Deciphering 

Developmental 

Disorders Study 

2015 

Exome Illumina 

Epileptic 

Encephalopathies 

(EE) 

264 Epi4K Consortium 

and Epilepsy 

Phenome/Genome 

Project 2013 

Exome Illumina 

Intellectual 

Disability (ID) 

192 de Ligt et al. 2012; 

Rauch et al. 2012; 

Hamdan et al. 2014 

Exome Illumina 
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To examine determinants of mutation rates in somatic tissues, we downloaded 214 

somatic mutation calls identified in four types of cancer from the Cancer Genome 215 

Atlas (TCGA) portal (in July 2015): breast invasive carcinoma (BRCA), cervical 216 

squamous cell carcinoma and endocervical adenocarcinoma (CESC), brain lower 217 

grade glioma (LGG), and liver hepatocellular carcinoma (LIHC). The numbers of 218 

samples are listed below (Table 2). In all cases, both non-cancerous and tumor 219 

tissues of patients were sampled and the exomes were sequenced using an 220 

Illumina platform. In the studies, mutation calls shared by the normal and tumor 221 

samples were removed (on the presumption that they are germline). What 222 

remains are somatic mutations found at high enough frequency to be seen in a 223 

large population of cells, which are therefore likely to predate the tumorigenesis, 224 

i.e., mutations that occurred in the pre-neoplastic tissues (Martincorena et al. 225 

2015).  226 

 227 

For each type of cancer with more than one mutation annotation file available in 228 

the TCGA data portal, we selected the file that included the largest number of 229 

patient samples. We removed the ~7.6% of samples that had an unusually large 230 

number of mutations per sample (p<0.05 by Tukey’s test), because they are 231 

likely to reflect loss of some aspect of the DNA mismatch repair and hence their 232 

mutational mechanisms likely differ (Supek and Lehner 2015).  233 

 234 

Datasets Sample sizes 

Breast Invasive carcinoma (BRCA) 904 
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Cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) 

181 

Low grade glioma (LGG) 502 

Liver hepatocellular carcinoma (LIHC) 171 

Table 2. Sizes of TCGA datasets 235 

 236 

Possible determinants of mutation rates. We considered the main factors 237 

previously reported to be significantly correlated with mutation rates, namely 238 

expression levels, replication timing, GC content and histone modification levels. 239 

To quantify expression levels, we relied on gene expression data (measured as 240 

RPKM) from the Genotype-Tissue Expression (GTEx) for breast, uterus, brain 241 

cortex and liver tissues. We used gene expression levels of testis and ovary as 242 

our proxy for germline expression.  243 

 244 

The effect of the replication timing on somatic mutation rates was argued to be 245 

cell-type specific (Supek and Lehner 2015). We therefore relied on Repli-Seq 246 

measurements (provided per base pair) in ENCODE cell lines that match the four 247 

types of cancer, namely MCF-7 (breast cancer), Hela-S3 (cervical cancer), SK-N-248 

SH (neuroblastoma), and HepG2 (liver hepatocellular carcinoma) cell lines. 249 

These measurements were obtained from the UCSC Genome Browser.  In all 250 

cases, the replication timing reported is a smooth measure of the relative 251 

enrichment of early vs. late S-phase nascent strands, with high values indicating 252 

early replication. For each gene, we computed the average replication timing by 253 
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taking the mean value of the data points that overlap with gene start-to-end 254 

coordinates in UCSC Refseq gene database. For genes with multiple transcripts, 255 

we took the union of all exons in all transcripts.  For germline mutations, there 256 

are no data for the appropriate cell types, so we used replicating timing estimates 257 

for lymphoblastoid cell lines (LCL) (provided in 10 kb windows) (Koren et al. 258 

2012). We also tried using replication timing data from three somatic tissues 259 

instead; the replication timing data are highly correlated among the tissues and 260 

therefore the effects of mutation were estimated to be very similar (see Figure 261 

S2). 262 

 263 

We also considered the effects of chromatin marks that had been shown to 264 

correlate individually with somatic and germline mutation rates (Schuster-Böckler 265 

and Lehner 2012; Carlson et al. 2017): specifically, histone modification 266 

H3K9me3 and H3K27me3, two repressive marks associated with constitutively 267 

and facultatively repressed genes, respectively. Levels of these marks were 268 

downloaded from roadmap epigenomics data browser (Dec 2015, hg19) and 269 

converted to gene-based histone modification levels by averaging across the 270 

gene. We used the histone modification levels of adult ovary, breast 271 

myoepithelial cells, brain hippocampus and adult liver as proxies for germline, 272 

breast, brain and liver, respectively. In the following regression analysis, we 273 

considered only three of four somatic tissues, as we could not obtain histone 274 

modification data for CESC. Finally, we computed exonic GC content as the 275 

fraction of G or C residues in the union of exons in all isoforms of a given gene.  276 
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 277 

Germline mutation studies relied on the UCSC Refseq gene annotation, whereas 278 

TCGA uses GENECODE annotation, which contains more transcripts (Larsson et 279 

al. 2005; Zhao and Zhang 2015). To make the comparison cleaner, we focused 280 

on exonic regions considered in both types of studies by using gene and exon 281 

coordinates of Refseq database in build hg19 from UCSC genome browser. 282 

 283 

Statistical model. Our main goal was to investigate possible relationships 284 

between mutation rates and gene expression levels, while controlling for 285 

replication timing, GC content and some histone modification levels. Because our 286 

mutation counts are over-dispersed, with greater variance than mean, we used a 287 

negative binomial regression model (instead of, e.g., a Poisson regression 288 

model). Specifically, for every protein-coding gene, we counted the number of 289 

CpG Ti or other types of mutations in the coding exons of a gene and treated it 290 

as an outcome of a sequence of independent Bernoulli trials with probability λ�, 291 

where λ� is the probability of a mutation occurring in gene i.  292 

 293 

Transitions at CpG sites are thought to primarily occur due to spontaneous 294 

deamination at methylated cytosines, a distinct mutational source, and thus their 295 

determinants may be distinct from other mutation types (reviewed in Ségurel, 296 

Wyman, and Przeworski 2014). However, within CpG islands, most CpGs are 297 

hypomethylated (Takai and Jones 2002). To focus on a more homogeneous set 298 

of methylated CpGs, we therefore excluded CpG islands from the analyses of 299 
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CpG Ti. CpG island annotations were downloaded from UCSC browser (track: 300 

CpG Islands). 301 

 302 

We considered gene expression levels measured in RPKM (X1), replication 303 

timing (X2), mean histone modification levels (H3K9me3 as X3, H3K27me3 as X4) 304 

and GC content (X5) as predictors. We also included L, the total number of CpG 305 

sites (when considering CpG Ti) or all nucleotides (when considering all other 306 

types of mutations) in the exons of the given gene, as an exposure variable, to 307 

account for the variation in gene length. The logarithm of λ� is then modeled as a 308 

linear combination of these features scores: 309 

log�λ�� �  β� 
 ∑ β�X��
�
��� 
 log�L� + ε 310 

We used R function glm.nb to estimate the coefficients, where β� is an intercept 311 

term, β� is the effect size of feature j, and X�� is the score for feature j in gene i. In 312 

order to make the effect sizes of different features comparable within a model, 313 

we normalized all the predictor variables to have a mean of 0 and a standard 314 

deviation of 1. The gene expression levels measured in RPKM originally range 315 

from 0 to a few hundred thousand. As is standard (e.g., Green et al. 2003; 316 

Francioli et al. 2015), we added half of the smallest non-zero value in the 317 

corresponding expression data sets and then log-transformed the expression 318 

level before normalization. 319 

 320 

We note that in this model, we are considering possible effects one at a time. 321 

Including interaction terms affects the estimates and significance levels but 322 
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changes none of the qualitative results, with the exception of results for 323 

H3K27me3, which become less significant (see Figure S3).  324 

 325 

To examine whether the predictors have significantly different effects across 326 

tissues, we combined the models into one by including a categorical variable C 327 

for the tissue type (see Figure 2). In this approach: 328 

C = 1 for somatic tissues, C = 0 for germline; 329 

log�λ��� �  β� 
 � β�X��

�

���


 C �β� 
 � β�X��

��

��	

� 
 log�L� 
 ε 

X1, X2, X3, X4 and X5 are the same genomic or epigenomic features as in the 330 

separate model, β1, β2, β3, β4, β5 are the effect sizes of features X1 to X5 for testis, 331 

and β7, β8, β9, β10, β11 are the differences of effect size in the somatic tissue of 332 

features X1 to X5 compared to those in testis. We used the R function glm.nb to 333 

estimate the coefficients. 334 

 335 

Similarly, in order to ask whether effects differ between CpG Ti and other type of 336 

mutations in the same tissue, we included a binary variable C for the two 337 

mutation types (see Figure S4).  338 

C = 1 for CpG Ti, C = 0 for all other mutations; 339 

log�λ��� �  β� 
 � β�X��

�

���


 C �β� 
 � β�X��

��

��	

� 
 log�L� 
 ε 

All variables are set up the same way as in the combined model described 340 

previously, except for that β7, β8, β9, β10, β11 are now the differences of the effect 341 
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sizes for CpG Ti compared to those for all other mutation types. 342 

 343 

Mutation spectrum and strand asymmetry analysis. We annotated the 344 

direction of transcription using the UCSC CCDS track and filtered out genes that 345 

are transcribed off both strands (1.7% of genes in Refseq), which left around 346 

19,000 genes to consider. This annotation allowed us to classify mutations into 347 

six types of mutation (A>C, A>G, A>T, G>A, G>C, G>T) on either TS or NTS. 348 

There are thus 12 possible changes (each of the six on both strands). We then 349 

calculated the mutation rate of any given type on NTS and TS separately, by 350 

considering the number of corresponding mutations in the combined data sets, 351 

divided by the total number of nucleotides that could give rise to such a mutation 352 

in the exons. To obtain the confidence intervals on the mutation rates (reported in 353 

Figure 3, 4 and Figure S5) as well as for the mutation asymmetry ratio (Figure 4 354 

and Figure S5), we used bootstrap. Specifically, we created 100 samples, of the 355 

same size as the original sample, by drawing randomly from the original sample 356 

with replacement, and estimated the 95% CI from those 100 samples.  357 

We tested for strand asymmetry by a Chi-squared test. Because A>G strand 358 

asymmetry shows the greatest asymmetry (Green et al. 2003) and is the only 359 

mutation type that we found in all tissues (Figure 3), we focused primarily on this 360 

type, though we also considered A>T mutational patterns (see Figure S5). To 361 

test if the extent of strand asymmetry changes with transcription levels, we 362 

grouped genes into expression level quantiles and calculated A>G strand 363 
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asymmetry. Our measure of strand asymmetry is the ratio of the mutation rate on 364 

NTS to that on TS.   365 

 366 

Data availability. Germline mutations are provided in Table S1. TCGA somatic 367 

mutations can be downloaded from GDC data portal (https://gdc-368 

portal.nci.nih.gov/search/s?facetTab=cases). The gene RPKM data are available 369 

at GTEx website (http://www.gtexportal.org/home/datasets). The replication 370 

timing data of LCL and other tissues are available from (Koren et al. 2012) and 371 

ENCODE website 372 

(https://www.encodeproject.org/search/?type=Experiment&assay_title=Repli-seq) 373 

respectively. The histone modification data can be freely accessed at epigenome 374 

roadmap website (http://www.roadmapepigenomics.org/data/tables/all). 375 

  376 
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Results 377 

 378 

We began by applying our multivariable regression model (see Materials and 379 

Methods) to compare the determinants of mutation rates per gene between the 380 

two germline tissues and among the three somatic tissues (Figure 1). Results for 381 

germline mutations are very similar using testis or ovary expression profiles. In 382 

both, there is no discernable effect of replication timing, other than a marginally 383 

significant negative effect for mutations other than CpG Ti. However, in contrast 384 

to a previous study using de novo mutations (Francioli et al. 2013) and most 385 

previous studies of divergence, we found a significant increase of germline 386 

mutation rates with expression levels for both CpG Ti and other mutation types 387 

(Figure 1; see also Figure S2 for similar results with replication timing for different 388 

tissues). The difference with a previous analysis of de novo mutations may be 389 

due to the scale of a gene considered here (rather than 100 kb windows).  390 

 391 

The effect of expression levels is most clearly seen using testis expression (P = 392 

0.03 for CpG Ti; P = 1.4x10-5 for other mutation types) than using ovary 393 

expression, possibly due to the fact that over three quarters of germline 394 

mutations are of male origin (Kong et al. 2012; Rahbari et al. 2016; Goldmann et 395 

al. 2016). Alternatively, the ovary expression profile may be a poorer proxy for 396 

female germ cells than the testis expression profile is for male germ cells. In any 397 

case, henceforth, we use testis expression profile for analysis of the germline 398 

mutation rates.  399 
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 400 

We note that our analysis of germline mutation relies on calls made in exome 401 

studies of blood samples from six sets, including five cases and unaffected 402 

controls (see Table 1). A previous study reported that in one set of cases, 403 

individuals with congenital heart disease (CHD), there is an increased number of 404 

putatively damaging mutations in the genes most highly expressed in the 405 

developing heart and brain (Homsy et al. 2015). Since the mutations are thought 406 

to be germline mutations (rather than somatic mutations), this association cannot 407 

be causal, instead reflecting an enrichment of damaging mutations in important 408 

heart developmental genes in CHD patients. To evaluate whether our findings of 409 

increased mutation rates with germline expression levels could be driven by a 410 

similar ascertainment bias, we excluded the CHD set and obtained the same 411 

results (see Figure S6). We also reran the analysis, comparing the effects in the 412 

five cases compared to the controls; none of the qualitative results differed, 413 

though as expected from the smaller size of the control sets, the estimated effect 414 

sizes were more uncertain (see Figure S7). Thus, our results suggest that the 415 

increase in mutation rates with expression levels in testes is not a result of 416 

focusing primarily on cases. 417 

 418 

Germline mutation rates are also associated with H3K27me3 levels. We also 419 

found that, other than for CpG Ti, mutation rates in a gene increase with its GC 420 

content. This observation is consistent with previous findings of a high rate of GC 421 

to AT mutations relative to other types (e.g., Kong et al. 2012). Moreover, it is 422 
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thought that mis-incorporated bases during DNA replication in an AT rich regions 423 

are more easily accessible and thus more easily repaired than GC rich regions 424 

(Petruska and Goodman 1985; Bloom et al. 1994). In contrast, we found a 425 

marginally negative effect of GC content on germline rates of CpG Ti. A possible 426 

explanation for this observation is that spontaneous deamination, the likely 427 

source of most CpG Ti, occurs more readily when DNA is single stranded, which 428 

is more likely in AT-rich than GC-rich regions (Fryxell and Moon 2005; Elango et 429 

al. 2008). 430 

 431 

The effects of determinants on mutation rates are also concordant across 432 

somatic tissues. Notably, mutation rates decrease with expression levels in all 433 

three tissues, though the magnitudes of the effects differ. This finding is 434 

consistent with previous studies and thought to be a result of TCR (Lawrence et 435 

al. 2013). Intriguingly, in a model comparing the effects on CpG Ti and other 436 

mutation types directly, in all three somatic tissues, the effect of expression levels 437 

on mutation rates is most pronounced for CpG Ti (see Figure S4). This finding 438 

suggests that damage or repair of CpG Ti is tightly coupled to transcription. 439 

 440 

In all three somatic tissues, there is also a decrease in mutation rate with 441 

replication timing and H3K27me3 levels, as well as an increase with H3K9me3 442 

levels (Schuster-Böckler and Lehner 2012; Behjati et al. 2014; Blokzijl et al. 443 

2016). The effect of replicating timing on mutation rate has been attributed to the 444 

depletion of free nucleotides within later replicating regions, leading to the 445 
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accumulation of single-stranded DNA and thus rendering the DNA more 446 

susceptible to endogenous DNA damage (Stamatoyannopoulos et al. 2009). An 447 

alternative hypothesis is that DNA mismatch repair (MMR), which is coupled with 448 

replication, is more effective in the early replicating regions of the genome; this 449 

possibility is supported by the finding that this association is not detected in the 450 

tissue of MMR-deficient patients (Supek and Lehner 2015). While on face value, 451 

it may seem surprising that replication timing is a significant determinant for the 452 

LGG samples, given that neurons are post-mitotic, glial cells still retain their 453 

ability to divide and a substantial fraction of mutations detected in neuronal 454 

samples may have occurred at earlier stages in development. 455 

 456 

The only difference in the determinants of mutation rates across somatic tissues 457 

appears to be the effect of GC content on CpG Ti rates: mutation rates decrease 458 

with GC content in brain tissues and increase with GC content in liver and breast 459 

tissues. This finding raises the possibility that damage or repair rates of CpG 460 

sites differ in brain tissues (Lodato et al. 2015). 461 

 462 

Figure 1 also hints at a difference between testes (also ovaries) and somatic 463 

tissues in the directional effect of expression levels on mutation rates, with a 464 

marginally significant positive effect for germline mutations (P = 0.03 for CpG Ti, 465 

P = 1.4x10-5 for other mutation types) and a significantly negative effect for 466 

somatic tissues (e.g., BRCA: P = 8x10-16 for CpG Ti; P<2x10-16 for other mutation 467 

types). When we tested for this difference explicitly, by adding a binary variable 468 
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for soma and germline (see Materials and Methods), we found that expression 469 

levels and replication timing differ in their effects, for both CpG Ti and other 470 

mutation types (Figure 2).  471 

 472 

Specifically, replication timing has a positive effect on both tissue types but its 473 

effect is stronger in soma (Figure 2). The simplest explanation is that a larger 474 

fraction of mutations in the soma are introduced by errors related to replication, 475 

as opposed to other non-replicative sources. Another (not mutually-exclusive) 476 

possibility is that the effect of early replication versus late replication differs to a 477 

greater extent in the soma than in the germline. For example, if MMR is much 478 

more efficient in early replicating regions (Supek and Lehner 2015) and more 479 

efficient in soma than germline. 480 

 481 

To examine this possibility further, we considered a signature of TCR—strand 482 

asymmetry—in the different tissues, finding it among germline mutations as well 483 

as in all four somatic tissues (Figure 3). Consistent with previous studies (Green 484 

et al. 2003; Francioli et al. 2015), one type in particular, A > G, stands out. While 485 

the asymmetry is significant in all five data sets, with more mutation on the NTS 486 

than the TS, the degree of asymmetry is significantly different among the five 487 

data sets (χ2 test, P = 3x10-8), with the strongest seen in germline. Intriguingly, 488 

other mutation types, notably G>C mutations, show even more pronounced 489 

differences among tissues, with significant excess on the transcribed strand in 490 

the germline and LGG samples but a significant paucity on the NTS in BRCA and 491 
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CESC. These findings indicate a potential difference in either strand-biased 492 

damage or in TCR (or both) among somatic tissues. In summary, the total 493 

mutation rate appears to behave quite differently as a function of expression 494 

levels in the germline and the soma (Figure 1 and 2), despite the fact that we 495 

observed clear evidence for TCR in both types of tissues (Figure 3).  496 

 497 

To examine this difference in more detail, we focused on A>G mutations and 498 

considered how the mutation rate and degree of asymmetry covary with 499 

expression (Figure 4). A striking contrast emerges: in the germline, as expression 500 

levels increase, mutation rates and asymmetry increase, whereas in the soma, 501 

asymmetry increases while mutation rates decrease. The same pattern is seen 502 

when A>T mutation rate and asymmetry are considered (see Figure S5). This 503 

difference in behavior with expression levels strongly suggests that the balance 504 

between damage and repair rates during transcription differs between germline 505 

and soma.  506 
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Figures 507 

  508 

Figure 1. Coefficients of multivariable binomial regression model fit to germline and somatic 509 

mutation data. In panel A, are results for CpG Ti and in panel B, for other mutation types. Red, 510 

blue and green, purple and orange bars represent the 95% CI for the estimate of the regression 511 

coefficient in germline data set using ovary expression and testis expression, BRCA (breast 512 

invasive carcinoma), LGG (brain lower grade glioma) and LIHC (liver hepatocellular carcinoma) 513 

data sets respectively. For all replication timing data, high value means early.  514 
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 515 

Figure 2. Coefficients of combined model comparing each somatic data set to germline data set 516 

using testis expression. In panel A, results for CpG Ti and in panel B, for other mutation types. 517 

Red, blue and green bars represent the 95% CI of the deviation of the estimated coefficient from 518 

the germline estimate; they are shown for BRCA (breast invasive carcinoma), LGG (brain lower 519 

grade glioma) and LIHC (liver hepatocellular carcinoma) data sets respectively. For all replication 520 

timing data, high value means early. 521 
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 522 

Figure 3. Strand asymmetry for six mutation types. In panel A are results for the germline; in 523 

panel B, for BRCA (breast invasive carcinoma); in panel C, for CESC (cervical squamous cell 524 

carcinoma and endocervical adenocarcinoma); in panel D, for LGG (brain lower grade glioma); 525 

and in panel E, for LIHC (liver hepatocellular carcinoma). The error bars of the mutation rate 526 

denote 95% confidence intervals estimated by bootstrapping (see Materials and Methods). 527 

  528 
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 529 

Figure 4. The degree of A>G strand asymmetry and the A>G mutation rate as a function of gene 530 

expression level quartiles. Shown are in panels A and B are results for the germline using testis 531 

expression levels and ovary expression levels, respectively; in panel C, for BRCA (breast 532 

invasive carcinoma); in panel D, for CESC (cervical squamous cell carcinoma and endocervical 533 

adenocarcinoma); in panel E, for LGG (brain lower grade glioma); and in panel F, for LIHC (liver 534 

hepatocellular carcinoma). The error bars for both the strand asymmetry and the mutation rate 535 

per quartile were estimated by bootstrapping (see Materials and Methods).  536 
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Discussion 537 

 538 

We compared the determinants of mutation in the soma and the germline, using 539 

the same unit of analysis (a coding region) and the same statistical model, and 540 

applied it to similar exome data for germline de novo mutations and four types of 541 

tumors, in which mutations largely predate tumorigenesis. We recapitulated 542 

previous findings of the effects of GC content and of a histone mark indicative of 543 

repression on germline and somatic mutations, as well as those of expression 544 

levels and replicating time on somatic mutations (Schuster-Böckler and Lehner 545 

2012; Lawrence et al. 2013). Strikingly, we also found clear differences in the 546 

determinants of mutation rates between germline and soma, consistent with 547 

earlier hints based on divergence data (Hodgkinson and Eyre-Walker 2011). 548 

Notably, our results confirmed that somatic mutation rates decrease with 549 

expression levels and reveal that, in sharp contrast, de novo germline mutation 550 

rates increase with expression. This contrast suggests that transcription is 551 

mutagenic in germline but not in soma, and that the DNA damage or repair 552 

processes differ between them. 553 

 554 

One limitation of our comparison—and of previous studies of germline and 555 

somatic mutation—is the need to rely on proxies for determinants of interest, 556 

such as replication timing data from cancer cell lines instead of normal cells. A 557 

second limitation is that we considered only two types of mutations (CpG Ti and 558 

other). Other work indicates that while these two types capture most of the 559 
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variation in mutation rates, the larger context (adjacent base pairs, but also 560 

7mers) also impacts mutation rates (Hwang and Green 2004; Hodgkinson and 561 

Eyre-Walker 2011; Aggarwala and Voight 2016). These different mutation 562 

subtypes are likely affected somewhat differently by the determinants considered 563 

here (Carlson et al. 2017). Despite these limitations, our work provides a 564 

framework to contrast possible determinants of mutation rates in soma and 565 

germline while controlling for some confounding effects, and results will only 566 

improve as data sets increase and the measurements of salient genomic and 567 

cellular features become more accurate. What is already clear is that the 568 

divergent effect of expression on mutation rates in germline and soma is not 569 

attributable to well-known covariates (included in our model). Moreover, the 570 

differences that cannot readily be explained by the noise introduced by imperfect 571 

proxies or limited data. 572 

 573 

Notably, our results indicate that the tradeoff between damage and repair 574 

associated with transcription must differ between germline and soma. 575 

Transcription plausibly increases the rate of damage by opening up the DNA 576 

helix, rendering the single strands more susceptible to mutagens (Polak and 577 

Arndt 2008; Jinks-Robertson and Bhagwat 2014). One possibility is that, in the 578 

germline, the rate of transcription-associated mutagenesis (TAM) swamps TCR, 579 

leading to higher mutation rates with increased transcription, whereas in the 580 

soma, TCR is relatively more efficient and the balance of TAM and TCR leads to 581 

decreased mutagenesis with increased expression. Another possibility, which is 582 
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not mutually exclusive, is the presence of additional repair mechanisms in 583 

somatic tissues. In support of this possibility, global genome repair (GGR) is 584 

attenuated in differentiated cells, yet mutations on the NTS appear to 585 

nonetheless be repaired efficiently (Nouspikel and Hanawalt 2000; Marteijn et al. 586 

2014). This evidence led to the hypothesis of transcription-domain-associated 587 

repair (DAR), which might repair damage on both strands in addition to TCR 588 

(reviewed in Nouspikel 2007). From an evolutionary standpoint, the increased 589 

efficiency of TCR relative to TAM in soma versus germline may be explained by 590 

selection pressure on the repair of somatic tissues to prevent aging and cancer 591 

(Lynch 2010). 592 

 593 

Mounting evidence suggests that per cell division mutation rates differ across 594 

tissues (Greenman et al. 2007; Lynch 2010; Alexandrov et al. 2013) and in 595 

particular that they may be higher in early embryonic development than at other 596 

stages of development (Ségurel, Wyman, and Przeworski 2014; Rahbari et al. 597 

2016; Harland et al. 2016; Lindsay et al. 2016). This study further suggests that 598 

at least part of the explanation may lie in the balance between damage and 599 

repair, with TCR operating at different efficiencies relative to TAM or jointly with 600 

other repair pathways, thereby maintaining low mutation rates in soma. As 601 

mutation data from more tissues become available, it will be both feasible and 602 

enlightening to examine tissue-specific differences in repair. 603 

 604 
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