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Abstract
Antimicrobial  resistance (AMR) is  one of  the major  threats to human and animal  health
worldwide, yet few high-throughput tools exist  to analyse and predict  the resistance of a
bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies
AMR-associated genes and single nucleotide polymorphisms directly from short reads, and
generates detailed and customisable output. The accuracy and advantages of ARIBA over
other  tools  are  demonstrated  on  three  datasets  from Gram-positive  and  Gram-negative
bacteria,  with  ARIBA  outperforming  existing  methods.  ARIBA  is  available  at
https://github.com/sanger-pathogens/ariba.
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Background
Antimicrobial resistant infections have become one of the leading threats to human health,
with a conservative estimate of 700,000 directly attributed deaths per year worldwide [1]. If
we do not address this threat, this figure is estimated to rise to 10 million by 2050 [1]. An
important component of any strategy to tackle antimicrobial resistance (AMR) is having rapid
and  accurate  methods  for  identifying  markers  of  resistance.  Our  understanding  of  the
mechanisms and diversity of AMR is improving, in part due to the increased availability of
genome sequence data, with the use of genome sequencing in personalised medicine set to
become  one  key  tool  in  the  fight  against  AMR.  However,  there  are  currently  few
bioinformatics tools that can identify AMR determinants directly from the data produced by
widely-used sequencing technologies.  The methods that  are  available  are  limited in  the
types  of  AMR mechanisms  they  can  detect  and/or  are  not  scalable  to  high-throughput
environments.

Limitations of existing tools include being available only via web services that are not high
throughput,  being  restricted  to  a  specific  set  of  reference  sequences  which  may  not
exhaustively  represent  current  knowledge  of  AMR  for  all  microbial  species,  requiring
assembled  genome  sequences  as  input,  an  inability  to  identify  and  interpret  single-
nucleotide-polymorphism (SNP)-based AMR determinants and having high computational
resource  requirements.  Most  tools  fall  into  one  of  two  categories:  those  that  align
sequencing reads to a set of reference genes, and those that search for reference gene
matches in de novo assembled sequences. The widely-used SRST2 [2] is an example of a
method based on aligning reads to a set of reference sequences in order to predict  the
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presence of those genes in a sample. KmerResistance [3] employs a similar approach, but
uses  k-mer  matching  between  sequencing  reads  and  reference  genes  to  identify  gene
presence. Although SRST2 and KmerResistance can be used with custom reference gene
sets, they cannot directly identify or interpret variants, such as SNPs that confer resistance,
and so are limited to identifying resistance that is conferred by the presence of a gene, or a
particular pre-defined allele of a gene. Mykrobe predictor  [4] is an extremely fast tool that
matches  k-mers in reads to a reference graph, and although it can identify variants, it  is
currently limited to  Staphylococcus aureus and  Mycobacterium tuberculosis,  and it  is not
possible  for  users  to  provide  their  own  databases  of  AMR  determinants  with  which  to
interrogate their data.

The majority of other AMR detection tools require assembled sequences as input, which are
computationally expensive to generate from reads, and assembly errors or failures caused
by the complexity of assembling complete genomes de novo can lead to AMR determinants
being missed. For these reasons, alignment based approaches have previously been shown
to be superior to the use of  de novo assembled sequences  [2,3] for AMR gene detection.
Tools  that  use  assembled  sequences  as  input  include  ResFinder  [5],  ARG-ANNOT  [6],
SSTAR [7], and RAST [8]. These methods match assembled sequences to reference genes,
usually using the BLAST [9] algorithm, in order to identify AMR genes.

Here  we  present  a  new  tool,  called  ARIBA (Antimicrobial  Resistance  Identification  By
Assembly), that uses a combined mapping/alignment and targeted local assembly approach
to  identify  AMR  genes  and  variants  efficiently  and  accurately  from  Illumina  paired
sequencing reads. Using targeted local assembly considerably reduces the complexity of the
assembly process,  while providing contiguous gene or nucleotide sequences without  the
ambiguity of the interpretation of aligned data. ARIBA can easily be provided with custom
reference sequence-sets,  and includes support  for  a number  of  public  databases:  ARG-
ANNOT  [6],  CARD  [10],  MEGARes  [11],  and  ResFinder  [5].  It  distinguishes  between
sequences that are coding or non-coding, and provides details on each sequence present in
the sample. It verifies whether or not identified genes are complete, truncated or fragmented
in the sample, and reports SNPs and indels within sequences with interpretations of their
effect, such as frameshifts, non-synonymous changes or nonsense mutations. To facilitate
easier interpretations of results, ARIBA includes functions to summarise results for multiple
samples. These summaries are compatible with the Phandango interactive visualisation tool
[12]. If minimum inhibitory concentration (MIC) data are available for samples, ARIBA allows
statistical analysis and plotting of MIC against genotype. Beyond AMR, ARIBA can be used
more generally to find any input sequences of interest. It  provides inbuilt  support for the
PlasmidFinder  [13] and VFDB  [14] databases,  and functionality  for  multi-locus sequence
typing (MLST) using data from PubMLST [15].

Results
We developed ARIBA to identify AMR determinants from public or custom databases using
Illumina paired read data as input. Figure 1 provides an overview of the approach - complete
details can be found in the Methods section and Supplementary Material (Supplementary
Figures S1-4). Briefly, reference sequences in the AMR database are clustered by similarity
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using CD-HIT [16]. Reads are mapped to the reference sequences using minimap  [17] to
produce a set of reads for each cluster. These reads map to at least one of the sequences in
that  cluster.  The  reads  for  each  cluster  and  their  sequence  pairs  are  assembled
independently  using  fermi-lite  [18] under  a  variety  of  parameter  combinations,  and  the
closest reference sequence to the resulting contigs is identified with the program  nucmer
from the MUMmer package [19]. The assembly is compared to the reference sequence to
identify  completeness  and  any  variants  between  the  sequences  using  the  nucmer and
show-snps programs from MUMmer. The reads for the cluster are mapped to the assembly
with Bowtie2  [20] and variants are called with SAMtools  [21]. Finally,  a detailed report is
made of all the sequences identified in the sample, including, but not limited to, the presence
or absence of variants pre-defined to be of importance to AMR.

Figure 1. Overview of the ARIBA mapping and targeted assembly pipeline.
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The performance of ARIBA was evaluated on three datasets, to illustrate all aspects of its
functionality and to benchmark against other available methods. For these comparisons, we
focussed on command line tools that can use custom reference data. 

Enterococcus faecium
The  first  dataset  comprises  41  isolates  of  the  Gram-positive  bacterium  Enterococcus
faecium, for which the phenotypic resistance to vancomycin is known for each sample [22]
(Supplementary Table S1). This dataset, which was used to evaluate SRST2 in its initial
publication [23], allowed validation of the accuracy of ARIBA when identifying the presence
or absence of genes of interest in each sample. Seventeen of the samples are known to
have VanB-mediated resistance to vancomycin (i.e., are vancomycin resistant enterococci,
VRE) and the remaining 24 samples are known to be susceptible (i.e.,  are vancomycin
susceptible  enterococci,  VSE).  The  phenotypic  resistance is  due to  the presence  of  an
operon comprising up to seven genes vanB, vanH, vanR, vanS, vanW, vanX, and vanY [24].
However, vanW and vanY are not required for resistance [24][25]. We have also used these
data to test the sensitivity of ARIBA and other methods at varying depths of read coverage.

First, we used ARIBA and SRST2 to identify the sequence type of each sample, using the E.
faecium MLST scheme [26] downloaded from PubMLST. Given that MLST loci are chosen to
be conserved, single-copy housekeeping genes, identification of MLST should be a simple
test for any gene-detection method. As expected, we found that the results generated by
both tools were in complete agreement with the known sequence types provided in  [22]
(Supplementary Table S1). However, the running time of ARIBA was approximately one-fifth
that of SRST2 (Supplementary Table S2). Next, ARIBA, KmerResistance and SRST2 were
evaluated on all 41 samples using the antimicrobial resistance reference set of genes from
SRST2, which is based on ARG-ANNOT and includes all seven genes of interest. All three
tools made identical calls on the 17 VRE samples in the vanB, vanH, vanR, vanS, and vanX
genes, except for the choice of closest reference sequence in sample SRR980582, which
differed for the vanB gene (Supplementary Table S1). Several of the VSE samples contain
low-level contamination with VanA-B sequences [2]; here, in most cases only ARIBA flagged
the genes as partially present at a low read depth, and SRST2 and KmerResistance did not
make any prediction about the presence of these genes (Supplementary Table 1).

The remaining differences between the tools were in the identification of vanW and vanY in
the VRE samples.  The discrepancies  demonstrate the benefits  of  the detailed  output  of
ARIBA, when compared to the other tools. A complete description of the differences between
the output of the three tools is given in the Supplementary Material. For example, in sample
SRR980557, SRST2 reported that the vanW gene was present but with one SNP (“1snp” in
the output), and KmerResistance also reported the gene as present. ARIBA reported a SNP,
but provided the further information that it was a nonsense mutation and therefore the gene
is likely to be non-functional in that sample.

The effect of read depth was assessed on the 17 VRE samples by uniformly sampling from
the reads at depths ranging from 1 to 100X coverage of the vancomycin resistance operon.
The total number of calls for the five required resistance genes made by each tool across all
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17 samples is shown in Figure 2, and a per-gene breakdown is given in Supplementary
Figure S5. KmerResistance appears to be optimised for coverage below 5X, and its ability to
call the presence of genes decreases in the range 2X-18X before recovering in the range
50-75X. The ability of ARIBA and SRST2 to identify genes improves with read depth, with
ARIBA marginally  outperforming  SRST2.  When  partial  matches  to  genes  are  included,
ARIBA and SRST2 become more sensitive at lower coverages and ARIBA becomes more
sensitive than KmerResistance (Supplementary Figure S6).

Figure 2. Effect of read depth on the number of gene calls for all five van genes in the 17 
vancomycin resistant E. faecium samples.

Shigella sonnei
The  second  dataset,  published  by  Holt  et  al.  [23],  consists  of  130  globally  distributed
genomes  of  S.  sonnei  (Supplementary  Table  S3),  a  Gram-negative  bacterium  that  is  a
causative  agent  of  dysentery.  The  phenotypic  resistance  profile  for  a  number  of
antimicrobials  is  known for  each  isolate,  and  is  attributable  to  both  acquired  resistance
genes and SNPs. This enabled a comparison of ARIBA, SRST2, and KmerResistance with
the manual method employed in [23], confirming the accuracy of ARIBA for identifying known
resistance SNPs as well as the presence or absence of genes of interest. The three tools
were run on all 130 samples using the reference database from CARD [10], version 1.1.2. To
ensure our results were comparable with those originally reported in Supplementary Table 1
of  [23], we manually added those AMR genes listed on page 4 of their supplementary text
not  already included in  the database (Supplementary Table S4).  The AMR determinants
originally reported in [23] were identified from mapping data, and reported as the proportion
of bases in the gene sequence that were covered by reads from each isolate. From these
originally reported data, we used a cut-off of > 90% to indicate that a gene was present by
their method.

With  seven  antimicrobials  and  130  isolates,  there  was  a  potential  for  910  AMR  calls
(identification of a gene, set of genes, or SNP). In 546 cases, no calls were made by any
method. 364 AMR calls were made by at least one of the four methods; 60% (218/364) were

6

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2017. ; https://doi.org/10.1101/118000doi: bioRxiv preprint 

https://paperpile.com/c/rz48Qp/2m3i
https://paperpile.com/c/rz48Qp/2m3i
https://paperpile.com/c/rz48Qp/ZUAb
https://paperpile.com/c/rz48Qp/2m3i
https://paperpile.com/c/rz48Qp/2m3i
https://doi.org/10.1101/118000
http://creativecommons.org/licenses/by-nc/4.0/


found by all four methods (Figure 3 and Supplementary Table S5). Overall, this results in an
agreement between the four methods of 84%: (218 calls in agreement + 546 non-calls in
agreement) / (910 potential AMR calls).

Figure 3. Concordance between AMR calling methods on the S. sonnei data. A coloured dot
indicates which methods were in agreement. The first column illustrates where no resistance
mechanisms were predicted.

For the 146 calls where there were discrepancies between the methods, we observed some
general trends explaining most of the discordance. First, neither KmerResistance nor SRST2
identify specific SNPs conferring resistance, whereas this is possible with ARIBA and Holt et
al. SNPs in the gyrA gene, which cause resistance to quinolone antimicrobials, were found
by both ARIBA and the manual method of Holt  et al. in 22 isolates. Second, there were 20
cases where a resistance gene was called by KmerResistance, but not by any other method.
Upon further investigation, KmerResistance reported these genes at a low coverage (1.4 -
4.9X). Third, although KmerResistance appears to be the best at detecting genes present at
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very low coverage, it made fewer calls of genes at higher coverage than ARIBA and SRST2
(Supplementary  Figure  S8).  For  example,  in  isolate  ERR028689  dfrA1 is  found  at  31X
coverage by ARIBA and at 37X by SRST2, but is not reported by KmerResistance. When
partial  matches  are  allowed  by  SRST2  and  ARIBA,  there  are  no  calls  made  only  by
KmerResistance (Supplementary Figure S9). However, less stringency could result in false-
positive calls.  A full  report  of  the calls made by each method for each antimicrobial  and
isolate examined is in Supplementary Table S5.

There were only two cases where ARIBA did not match any other method. These involved
either differences in identifying SNPs, or a large insertion into an AMR gene. In the first,
ARIBA differed from the results reported in  [23] for samples ERR028676 and ERR028677
when identifying SNPs in the  gyrA gene that confer resistance to quinolone drugs. ARIBA
was confirmed to be correctly reporting the SNPs in each sample by analysing the mapped
reads, as described in Supplementary Material.

The second case relates to streptomycin resistance, one mechanism for which requires the
presence of both the  strA and  strB genes. Sample ERR024606 has an insertion into the
AMR gene  strA, which renders it non-functional. The  strA gene was called as present by
SRST2 with high confidence and a depth of 150X, and at 179X by KmerResistance, and at
100%  coverage  by  Holt  et  al. However,  ARIBA  correctly  characterised  strA as  not
functionally present as it did not assemble into a single contig; this was manually confirmed
to be due to the insertion of  dfrA14 into the middle of  strA (Supplementary Figure S10),
similar  to  that  described  previously  [27].  We  found  a  second  instance  of  an  insertion
disrupting  an  AMR  gene,  in  this  case  strB (Supplementary  Figure  S11)  in  isolate
ERR028673, and again ARIBA made the correct call.  We note that KmerResistance also
made the correct AMR call for streptomycin for this isolate, but only because although it
called strB, it did not call strA (called at 80X and 101X by ARIBA and SRST2 respectively).

Neisseria gonorrhoeae
The sexually-transmitted pathogen N. gonorrhoeae is under strict public health surveillance
because  isolates  resistant  to  the  first-line  antimicrobials,  azithromycin  (AZM)  and  the
extended  spectrum  cephalosporins  (ESCs;  i.e.,  cefixime  and  ceftriaxone)  have  been
reported worldwide. Here, we use a combined collection of 1,517 N. gonorrhoeae isolates to
illustrate  some  of  the  extended  features  of  ARIBA,  including  the  creation  and  use  of
customised AMR databases, identification of resistance mutations (SNPs and deletions) in
coding and non-coding regions and identification of heterozygous resistance mutations in
multicopy rRNAs. The data are from five recent studies [28–32] (Supplementary Table S6)
that include phenotypic data on resistance to four antimicrobials. We note that this example
is intended to be for illustrative purposes only, not an in-depth analysis of gonococcal AMR
determinants.

First,  we  created  a  custom database  of  gonococcal  AMR determinants  (Supplementary
Table  S7).  Unique  alleles  for  each  gene  from  the  2016  World  Health  Organization
gonococcus reference collection  [33] and five available  N. meningitidis complete genomes
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(H44 - GCA_000191445.1; MC58 - GCA_000008805.1; M01-240149 - GCA_000191465.1;
FAM18 - GCA_000009465.1; Z2491 - GCA_000009105.1) were included in the database to
allow identification of recombinant genes. For the purposes of this example, we concentrate
on AZM resistance and associated mutations in the 23S rRNA and the  mtrR gene, which
encodes  a  repressor  to  the  mtr  (multiple  transferable  resistance)  efflux  system.  Our
database includes two 23S mutations, A2045G (A2059G E. coli  numbering) and C2597T
(C2611T  E.  coli numbering),  which  are  linked to  high-level  [34] and low-level  [35] AZM
resistance, respectively.  For  mtrR,  both a G45D substitution and interruption of the gene
have  been  linked  to  increased  efflux  leading  to  reduced  susceptibility  to  multiple
antimicrobials.

Visualisation  of  the  ARIBA results  in  Phandango  allows  patterns  of  the  presence  and
absence of variants to be viewed against a tree of isolates. ARIBA can create a dendrogram
of  isolates  based  on  the  identified  resistance  variants,  so  that  when  visualised  in
Phandango, isolates are clustered by shared resistance-determinant profiles. Alternatively, a
phylogenetic tree based on SNPs in the core genome of the isolates can be provided to
Phandango, as in Supplementary Figure S12, making it possible to visualise interactively the
distribution  of  resistance  mechanisms  across  the  pathogen  population.  Based  on  the
occurrences of 23S and mtrR variants on independent branches within the phylogenetic tree,
it is clear that the variants in our database have emerged multiple times in the gonococcal
population. 23S-mediated resistance, in particular, has often emerged but failed to spread,
suggesting it may be associated with a fitness cost.

Next, we explored the distribution of the Minimum Inhibitory Concentration (MIC) for AZM in
isolates with all AZM-related genetic resistance determinants as identified from our database
(Supplementary Figure S13) using the “micplot”  function of ARIBA. This function outputs
publication-quality  images along with  pairwise Mann-Whitney  U Test  p-values and effect
sizes. Although, as expected, the 23S mutations in our database show clear evidence of
association with resistance, the results for the mtrR variants are less clear-cut, being found
in  both  resistant  and  sensitive  isolates.  Visualising  MICs  of  combinations  of  resistance
determinants allows improved understanding of causal versus linked AMR determinants, and
of combinations of determinants which may produce a cumulative effect. By default, ARIBA
micplot draws all observed combinations of variants output by ARIBA against user-provided
MIC data,  so that  linked and combinatorial  determinants are easier  to  identify.  Figure 4
shows that when separated from linked 23S mutations, the 45D substitution or interruption of
mtrR  alone showed no increase in MIC relative to isolates without a proposed resistance
determinant, consistent with other studies [28].
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Figure 4. Distribution of MICs (represented on a logarithmic scale) for AZM for all observed
combinations of relevant AMR determinants in our custom database. Dotted horizontal lines
mark  clinical  breakpoints.  The  lower  line  marks  the  lowest  EUCAST
(http://www.eucast.org/clinical_breakpoints/) breakpoint (0.25 μg/mL) and the upper line the
post-2005 breakpoint used in the US (2 μg/mL) [28].

Although most  of  the isolates with the 23S mutations exhibited MICs above the 2μg/mL
breakpoint, some would be identified as susceptible if this breakpoint was strictly applied. N.
gonorrhoeae usually carries four copies of the ribosomal operon. The C2597T mutation can
occur in any number of the 23S copies, with increasing number of copies of the mutated
allele  having  been  previously  associated with  increasing MIC  [31,36].  ARIBA allows the
detection  of  such  heterozygous  mutations,  which  can  be  important  for  understanding
genotype-phenotype relationships. Supplementary Figure S14 shows how excluding isolates
for  which the 23S mutations are heterozygous alters the plots in Figure 4,  reducing the
number of isolates falling below the 2μg/mL breakpoint. Figure 5 shows the percentage of
reads (a proxy for the number of gene copies) carrying the mutation, as reported by ARIBA,
and its correlation with AZM MIC, confirming that increasing copies of the mutation are linked
to increased phenotypic resistance in this dataset.
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Figure 5.  Correlation between the number of alleles containing the 23S C2597T mutation
(C2611T in E. coli) in AZM-resistant isolates and their MIC values for this antimicrobial.

Discussion
Increasing  antimicrobial  resistance  threatens  to  produce  untreatable  infections,  with
catastrophic consequences for public health. While new antimicrobials must be developed,
we also need to use our current antimicrobials effectively, using those that are appropriate
for the resistances and sensitivities of the infection to be treated. One approach to this will
be to use rapid genomics-based approaches to predict resistance, and this in turn will rely on
fast, accurate and automatable software tools. Here we have developed and implemented a
new tool, ARIBA, that not only outperforms existing tools at identifying AMR genes, but also
identifies and classifies variants involved in AMR. In addition to supporting common AMR
databases, ARIBA was developed to be easily applied with any input reference data. This
means that it could be used to identify any sequences of interest, not just those involved in
AMR. The use of local assemblies means that ARIBA can determine effectively whether or
not an isolate possesses a copy of a gene that is functional or non-functional, unlike other
tools,  which  do  not  perform  this  depth  of  analysis.  Further,  as  showcased  on  the  N.
gonorrhoeae  data, ARIBA reports the presence of variants, interprets their consequences,
and identifies the presence of a variant that is known to cause AMR. However, our method is
only as good as the quality of the input reference database, and these databases will need
to be independently validated, especially if they are intended for clinical use.
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Conclusions
We have developed a new tool, ARIBA, that identifies AMR determinants directly from paired
sequencing reads, and have demonstrated a number of ways in which it  improves upon
existing tools:  1) verifies completeness of acquired resistance genes; 2) identifies known
causative resistance SNPs; 3) allows exploration of the association of AMR determinants
with user-provided MIC data; 4) identifies SNP frequency in multicopy genes,  which has
been traditionally difficult to resolve due to the complexities of  de novo  assembly; and 5)
generally  requires  less  time  and  computational  resources.  Thus,  the  novel  approach  of
mapping followed by targeted assembly of each reference sequence is fast, efficient and
accurate when compared to current methods. Moreover, ARIBA reports significantly more
details than existing tools, particularly variant calls, enabling a deeper understanding of the
resistance associated with each isolate.

Methods

ARIBA
Obtaining  input  data.  ARIBA requires  reference  sequences and,  optionally,  information
about known SNPs. ARIBA supports several public resources, allowing the user to download
the data easily and convert it  into a form for use with the pipeline. ARG-ANNOT, CARD,
PlasmidFinder,  ResFinder,  VFDB,  and the SRST2 version of  ARG-ANNOT are  currently
available. These can be obtained by running the command

    ariba getref name_of_resource output_directory

Alternatively, input data can be provided by the user. Reference sequences can be coding or
non-coding. Coding sequences are subjected to extra checks for consistency, as described
in the next paragraph, and extra analysis is performed on them, such as determining if SNPs
are  synonymous  or  nonsynonymous.  Further,  each  reference  sequence  is  classified  as
“presence/absence”  where  the  existence  of  a  sequence  within  a  sample  confers
antimicrobial resistance, or “variant only” where a known SNP is required for antimicrobial
resistance.

Preparing input data.  All  reference data are checked for  consistency.  First,  any coding
sequences are required to begin with a start codon, be a complete open reading frame, and
end with a stop codon. All reading frames are checked on both strands and any sequence
that fails any of the requirements is removed. Any SNP that does not match the reference
sequence is also removed. The remaining sequences are clustered using the cd-hit-est
program  from  CD-HIT.  Since  any  sequence  can  be  coding  or  non-coding,  and
presence/absence or variant only, the sequences generate four disjoint sets of sequences.
These sets of sequences are kept separate, with each one clustered individually. The input
data is prepared by running the command
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    ariba prepareref -f sequences.fasta -m metadata.tsv preparef.out

where  the  reference  sequences  are  in  the  FASTA file  sequences.fasta and  extra
information, such as variants, is in the tab-delimited file  metadata.tsv. These input files
are generated automatically when running ariba getref.

Cluster analysis. Once the reference data are prepared, the main ARIBA pipeline can be
run using paired Illumina reads and the reference data as input. The command is

    ariba run prepareref.out reads_1.fq reads_2.fq run.out

where the directory prepareref.out was made when  ariba prepareref was run.
First, the reads are mapped to all of the input sequences (that passed quality filters), using
minimap with a k-mer length, k, of 15 and minimizer window size of 10. A read is considered
to be mapped by minimap if: 1) the match length is at least 50 or half of the read length,
whichever is smaller; 2) the start position of the match is within 1.1k of the start of the read
or the reference sequence; 3) the same as for 2), but for the end position of the match. The
result is that reads that match completely to the centre of the reference sequence, and reads
that overhang the ends of the reference sequence are counted as mapped. The situation is
illustrated in Supplementary Figure S1 and explained in detail in the Supplementary Material.

Any read that  maps,  or  whose mate maps,  to a reference sequence is allocated to the
cluster to which the reference sequence belongs. Note that the same read can be allocated
to more than one cluster, for example if two reference sequences lie next to each other in the
genome. Each resulting cluster has a set of reference sequences, as determined by CD-HIT,
and a set of paired reads.

Each  cluster  is  processed independently  as  follows  (see  Supplementary  Figure  S2).  To
reduce assembly running time, the reads input to the assembler are randomly downsampled
to a maximum of 50X coverage. Since the true reference sequence for this cluster is not yet
known, the coverage is (over)estimated using the length of the longest reference sequence
for the cluster. The reads are assembled using fermi-lite, which is run using the options -l x
-c y,10000 where x takes the values 6, 15 and y takes the values 4, 17, 30, resulting in
six distinct assemblies. 

The  assemblies  are  compared  against  all  reference  sequences  from  the  cluster  using
nucmer. The best within-cluster nucmer match is identified by maximising for the percent of
the reference sequence that is assembled. Ties are broken by taking the highest percent
identity,  the  largest  value  of  -l from minimap,  and finally  the  largest  value  of  -c from
minimap. Next, the assembly contig subsequence from the best nucmer match is compared
against all reference sequences (across all clusters). The best match is chosen using the
same  criteria  as  for  the  within-cluster  best  match,  and  the  corresponding  reference
sequence is  chosen to be the closest  reference sequence for  this  cluster.  If  the closest
reference sequence does not belong to the cluster, then no further analysis is performed and
the cluster is not counted as present.
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Next, the assembly is compared to the closest reference sequence using the MUMmer suite
of programs. The contigs are aligned to the reference sequence using nucmer, then SNPS
and indels are identified between the sequences using show-snps. This information is used
to determine the overall success of the assembly, encoded into a bitwise flag (i.e., a single
integer). For example, the reference sequence could have a complete match to a single
contig. In the case where the reference sequence is a gene, the matching position in the
contig is checked for any nonsense mutations. A complete explanation of the flag and the
various scenarios it encodes is given in the Supplementary Material. The meaning of a flag N
can be determined using the command

    ariba flag N

which will report a breakdown of the flag N.

All reads from the cluster are mapped to the contigs using Bowtie2 and the read depth at
each contig position and SNPs are identified using samtools mpileup. Finally, the alignment
and variant information is used to generate a summary for this sample, which includes the
success of the assembly, whether or not the sample has SNPs of interest and the read depth
at those SNPs.

The output of ariba run includes a report file containing the summary information of each
cluster, plus FASTA files of the assemblies and detailed logging information.

Summarizing results. The results of multiple runs of ARIBA across different samples can
be summarized by running

    ariba summary out report.*.tsv

where  report.*.tsv is  a list  of  reports  (each made with a call  to  ariba run).  This
command generates input files to Phandango, and a CSV file that can be easily viewed in
spreadsheet applications. A key output for each sample and cluster is an interpretation of the
flag, where how well the matches the reference sequence is summarised as one of:  no,
partial, fragmented, interrupted, yes_nonunique, or yes (Supplementary Figure S4).

Since Phandango requires a tree, ARIBA determines a rough tree using the contents of its
CSV file, which means that it is generated from the calls involving the reference genes and
SNPs of interest. The distance between two samples is defined as the number of columns in
the CSV file that agree, and an UPGMA tree is generated from the distance matrix using
DendroPy [37]. Users may wish to provide their own tree, calculated using sequence-based
methods.
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Benchmarking
ARIBA version 2.8.1 was used,  together with dependencies Bowtie2 2.2.29, CD-HIT 4.6,
MUMmer 3.1 and Python packages dendropy 4.2.0, pyfastaq 3.15.0 [38], pymummer 0.10.2
[39] and  pysam  0.10.0  [40].  We  used  KmerResistance  checkout
041bc89b832cf6a3b7629d76b4dffb4c7428caab,  and SRST2 0.2.0 with the recommended
versions Bowtie2 2.1.0 and samtools 0.1.18. All software was run with the default settings on
the Cloud Infrastructure for Microbial Bioinformatics [41]. The complete terminal commands
used are in the Supplementary Material.

The details of the 41 E. faecium samples with provided accession numbers used and results
of  gene identification are shown in Supplementary Table  S1.  In  order  to  sample the  E.
faecium reads at a range of depths, the reads were first mapped to the reference genome
CP006620 using bowtie2 version 2.2.29 with the option --fast-local. The depth for each
sample was estimated across the vanB gene CP006620.1476 by running samtools depth
with the options  -a -r CP006620:774918-775946 and calculating the resulting mean
depth. This was used as an estimate for read depth and the reads were randomly sampled
accordingly  (this  is  implemented  in  the  supplementary  script  make_read_subsets.pl)
using fastaq to_random_subset with a different random seed for each run, producing
independent read subsets.

The ARG-ANNOT sequences included with SRST2 were used as reference sequences for
the E. faecium benchmarking. However, the VanS-B gene, called “47__VanS-B_Gly__VanS-
B__1672  no;yes;VanS-B;Gly;AY655721;731-2073;1343”  by  SRST2,  originally  from  ARG-
ANNOT,  was  missing  its  final  nucleotide  A.  This  was  confirmed by  comparing  with  the
GenBank record AY655721. It would cause ARIBA to exclude this sequence because the
translation into amino acids results in a sequence that does not end with a stop codon.
Therefore an “A” was manually added to the end of the sequence before running ARIBA.

The details of the 130 S. sonnei samples and AMR calls made by each method are shown in
Supplementary Tables S2 and S6. In order to interpret the output of each tool as an AMR
call,  the following rules were used, where all  relevant genes are listed in Supplementary
Table  S8.  A gene was counted as present  by  ARIBA if  ariba  summary  reported yes  or
yes_nonunique, present by KmerResistance if it appeared in its output file, and present by
SRST2 if it was reported without a “?”.

The focus for the genes of interest for each AMR call were those originally identified and
reported in Holt et al [23]. Given that the discovery and classification of AMR gene variants is
an ongoing process,  an AMR gene was called  as present  if  it  was either  the originally
identified gene in Holt et al, or in the same CD-HIT cluster. Genes conferring resistance to
antimicrobials not examined in the original paper were excluded, as were genes conferring
resistance to the antimicrobials examined in the paper but falling in different CD-HIT clusters
from the originally identified genes.  For each antimicrobial  examined,  an AMR call  for  a
resistant genotype was identified using the following rules. Ampicillin (Amp): the presence of
any gene from a set of blaTEM, blaCTX-M and blaOXA genes. Chloramphenicol (Cmp): the
presence of any gene from a set of cat genes. Nalidixic acid (Nal): the gyrA gene present,
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together with one of the SNPs S83L, D87G, or D87Y. Streptomycin (Str): both of the strA and
strB genes, or one of the aadA genes. Sulfonamides (Sul): any gene from the set of sul1 and
sul2 genes. Tetracycline (Tet): both of tetA + tetR, or all of tetA,C,D,R, where each of the two
sets of tetA and tetR genes are disjoint. Trimethoprim (Tmp): any one of a set of dfrA or dhfr
genes.

The input files and commands run to create the N. gonorrhoeae ARIBA resistance database
can be found in the supplementary material. Briefly, for each gene all unique alleles from the
reference set were saved in multifasta files. For variant-based resistances, alignments were
created in Seaview [42,43] by translating to amino acid sequences, aligning with Clustal [42]
using  default  parameters  and  back  translating  to  nucleotides.  For  each  alignment  the
aln2meta function  of  ARIBA  was  used  to  produce  the  files  required  as  input  to
prepareref. These were combined, along with the sequence files for presence/absence
resistance gene files and prepareref run to create the ARIBA database.

To  create  a  phylogenetic  tree  of  all  isolates,  sequencing  reads  were  aligned  to  the
chromosome of N. gonorrhoeae FA1090 (accession number NC_002946) using BWA MEM
(version 0.7.12-r1039) [44] with the options to output alignments for unpaired reads and to
mark shorter split hits as secondary. Optical duplicates were removed and indels realigned
using  GATK  [45] MarkDuplicates  (version  1.127)  and  indelRealigner  (version  3.4-46)
respectively, under their default settings. Variant sites were identified from each isolate using
samtools  (version 1.2)  [21] mpileup with  options  to  report  DP and DP4 statistics,  count
orphans,  adjust  the  mapping  quality  to  50  and  increase  the  maximum  depth  to  1000,
including for indel calling, followed by bcftools (version 1.2) call using a prior of 0.001, a
ploidy of 1 and with the option to keep all alternate alleles at variant sites. All sites were
further  filtered  as  described  previously  [46] to  produce  a  multiple  sequence  alignment.
Repeats and prophages in the FA1090 genome were masked from the alignment before
variable sites were identified with snp_sites [47] and a neighbour joining phylogenetic tree
created  with  RapidNJ  [48].  Interactive  visualisation  of  the  phylogenetic  tree  and  ARIBA
summary data was carried out in Phandango v0.8.5 [12].

ARIBA software
ARIBA is open source and available for Linux at https://github.com/sanger-pathogens/ariba
under the GNU GPLv3 licence. The implementation is in Python and C++, with low memory
usage  and  short  run  times  compared  to  other  tools  (Supplementary  Table  S2,
Supplementary Figure S15).
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Supplementary Files
supplementary.pdf - text and Supplementary Figures S1-15 supporting the main text.

supplementary_tables.xlsx - an Excel file that contains the following supplementary tables.
Table S1. E. faecium data (including all accession numbers) and results. 
Table S2. Run times and memory usage on the E. faecium and S. sonnei data.
Table S3. S. sonnei data (including all accession numbers) and results.
Table S4. Reference genes manually included in S. sonnei analysis. 
Table S5. Summary of calls made on S. sonnei dataset.
Table S6. N. gonorrhoeae data (including all accession numbers).
Table S7. List of antimicrobial genetic determinants included in the N. gonorrhoeae ARIBA
database. The coding or non-coding nature of the different determinants is indicated along
with the cause of resistance.
Table S8. Genes used when determining AMR calls on the S. sonnei dataset.
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