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Ecologists have recognised the effects of biotic interactions on the spatial distribu-

tion of living organisms. Yet, the spatial structure of plant interaction networks

in real-world ecosystems has remained elusive so far. Using spatial pattern and

network analyses, we found that alpine plant communities are organised in spa-

tially variable and complex networks. Specifically, the cohesiveness of complex

networks is promoted by short-distance positive plant interactions. At fine spatial

scale, where positive mutual interactions prevailed, networks were characterised by

a large connected component. With increasing scale, when negative interactions

took over, network architecture became more hierarchical with many detached

components that show a network collapse. This study highlights the crucial role

of positive interactions for maintaining species diversity and the resistance of com-

munities in the face of environmental perturbations.
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The nature of biodiversity continues to intrigue biologists because of the complexity of

interactions among species in ecosystems. Standard ecological theory assumes that negative

interactions between species such as competition are essential to promote stable species coexis-

tence1,2,3,4. However, recent studies emphasised the importance of positive interactions such as

mutualism and facilitation for biodiversity maintenance and ecosystem functioning5,6,7,8. Par-

ticularly, an impressive amount of studies about networks of mutualistic interactions between

plants and animals has increased our understanding of ecological and evolutionary processes

shaping communities and ecosystems9,10. Conversely, networks of interactions among plants

have been less explored. Nevertheless, the existence of interaction networks among multi-

ple plant species has been recently revealed using models of intransitive competition in fully-

connected graphs11,3,12, facilitation by keystone species in bipartite networks13,14 and fine scale

co-occurrence models for unipartite networks15,16.

Biotic interactions can have consequences on the distribution of organisms and shape the

spatial structure of populations and communities. Specifically, competitive interactions can

promote fine-scale segregation17,1,18,19, while facilitative interactions can promote fine-scale ag-

gregation5,20,21,22. Consequently, if microhabitat conditions and stochasticity are taken into

account it is possible to consider fine-scale spatial aggregation (i.e. significantly positive as-

sociations) and spatial segregation (i.e. significantly negative associations) as indicators of

facilitation and competition, respectively. Analogously, non significant spatial dependency can

indicate neutral net interactions. By considering spatially explicit models, recent studies sug-

gest that the outcome of positive plant interactions may be diffuse, involving many species22and

varying with spatial scale19. Furthermore, increasing evidence highlights the importance of in-

direct interactions for structuring plant communities23,24,25,26,27. However, little is known about

how plant–plant networks are structured across spatial scales and which network-level factors

could maintain species diversity. Directly quantifying the spatial dynamics of plant interaction

networks is particularly crucial for understanding how ecosystem processes vary across scales.

To overcome these limitations, we fully mapped a community at the individual-plant level

and combined spatial point-pattern with network analyses. We first fitted null models of species

distribution and spatial structure for each species. The aim of these null models was to control

for niche differences, environmental heterogeneity and stochasticity determining the spatial
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distribution of each species. Then, we assessed the spatial association among all species to infer

species interactions. Although observational approaches are only suggestive regarding the effect

of species interactions and other processes, mainly habitat sharing, on spatial association12,

the observed spatial associations was tested against the expectations of null models of species

distribution within the study plot. In this way we accounted for habitat preferences of each

individual species. Hence, we assessed wether the observed spatial associations are more or

less frequent than expected by hypothetical habitat similarities or differences among species.

Finally, we analysed how plant–plant networks changed across spatial scales (Fig. 1) and how

they were related to plant richness. Because facilitation is known to be a relevant driver in

the examined alpine ecosystem28,20,29, we tested the hypothesis that facilitation would support

the cohesiveness of plant–plant networks at fine spatial scale, while competition would lead to

network disintegration at larger spatial scales.

Results

Shifts of plant–plant interactions across space

A total of 983 interactions were detected across spatial scales among the 19 species. Positive

interactions were 592 (60.2%), of which 282 (47.6%) were mutual and 310 (52.4%) were non-

mutual. Negative interactions were 391 (39.8%), of which 128 were mutual (32.7%) and 263 were

non-mutual (67.3%). No negative–positive interactions were observed. The ratio of positive

to negative interactions decreased with increasing spatial scale from 1–75 cm (β = −10.294,

β2 = 2.671, β3 = −2.417, p = 0.0001, R2 = 0.607; Fig. 2a), along with a decrease of the

ratio of mutual to non-mutual interactions (β = −10.328, β2 = 6.656, β3 = 3.606, p = 0.0005;

R2 = 0.590; Fig. 2b). This shift from positive to negative interactions went along with a

decrease of species richness across spatial scales (Fig. S12). In particular, the richness of

interacting plant species increased as the relative amount of positive over negative interactions

increased (β = 11.798, β2 = −1.800, β3 = 4.469, p = 0.0019, R2 = 0.270; Fig. S13).

Effects of interaction type

Positive and mutual interactions had a positive effect on the total number of interactions L

(p = 0.0006, R2 = 0.665; Tab. S3.), while only positive, but not negative, interactions had a
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positive effect on interacting species richness S (p = 0.0004, R2 = 0.630). Thus, there was a

decrease in the number of interactions associated with a shift in the predominant interaction

type from mutual and positive to non-mutual and negative with increasing spatial scale (p =

0.0001, R2 = 0.607, Fig. 2c-d, Tab. S3).

Global network architecture

Network clustering gradually decreased within the first 30 cm and then abruptly dropped to

0 with further distance (β = −0.970, β2 = 0.348, β3 = −0.062, p < 0.0001, R2 = 0.558;

Fig. 3a). All interaction-type combinations had significant effects on network clustering (Tab.

S4). However, considering their effect size, positive mutual interactions best explained network

clustering (β = 0.044, r2 = 0.361, p < 0.0001), followed by positive non-mutual interactions

(β = 0.065, r2 = 0.225, p = 0.0018), whereas negative mutual (β = 0.026, r2 = 0.096,

p = 0.0247) and non-mutual (β = −0.089, r2 = 0.117, p = 0.0139) interactions had weaker

effects. This indicates that positive mutual interactions among plants were associated with

higher clustering among neighbouring plants.

There were connected components across all scales, but their size decreased with increasing

scale (β = −22.530, β2 = 6.343, β3 = 4.270, p < 0.0001, R2 = 0.599) up to about 55 cm (Fig.

3b). Positive mutual and non-mutual interactions and negative non-mutual interactions had

significant positive effects on the size of the largest connected component R (Tab. S4). Again,

positive mutual interactions (β = 1.189, r2 = 0.504, p < 0.001) and positive non-mutual inter-

actions (β = 2.090, r2 = 0.383, p < 0.0001) best explained variation in R, followed by negative

non-mutual interactions (β = 3.810, r2 = 0.249, p < 0.0001). Species proximity decreased with

increasing spatial scale (Fig. 3c). This indicates a network collapse with increasing spatial

scale.

DISCUSSION

Our study highlights the role of positive interactions among plant species for the architecture

of complex plant–plant networks. After controlling for niche differences and environmental

heterogeneity, we found that facilitation prevailed at spatial scales up to 25 cm, while compe-

tition became dominant at spatial scales larger than 50 cm in our alpine ecosystem. This shift
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from facilitation to competition with increasing distance was coupled with a de-structuring

of plant–plant networks, which was ultimately associated with less interacting species. These

results support our hypothesis that plant–plant networks change across spatial scales (Fig. 4).

Furthermore, they suggest that positive plant interactions could be pivotal in the network or-

ganisation of species-rich patches in this stressful, fragmented ecosytem. In summary, at fine

spatial scales, positive interactions promoted the cohesiveness of plant–plant networks with

high clustering and large connected components. Conversely, at larger spatial scales, networks

became more hierarchical and less cohesive in parallel with a relative increase in competitive

interactions. Because network complexity may increase ecosystem stability30, positive plant

interactions may promote plant species richness and ecosystem stability, similarly to obligate

plant–animal mutualistic interactions6.

The spatial scale of plant interactions

Theoretical and empirical studies indicate that the emergence of spatial patterns is due to two

main classes of mechanisms of ecological self-organisation31,30,32,21,33. The first process consid-

ers the role of positive scale-dependent feedbacks between biomass and resources. The second

process recognises the role of species as ecosystem engineers and their intraspecific competi-

tion. At short distance, plants may increase resource availability, hence ameliorating growth

conditions in environments with high abiotic stress as our alpine ecosystem29,34. This means

that the more plants the stronger the stress amelioration by facilitation can be21. Such pos-

itive feedback mechanism may explain why facilitation prevailed at the very close proximity

to plants, i.e. within vegetation patches. Furthermore, water transport within a patch in-

creases its growth while it inhibits the growth of neighbouring patches. Hence within-patch

facilitation may depend on the possibility to exploit resources within and around the patch,

thereby leading to between-patch competition21. In our case, the importance of competition

varied relatively less across scales. Therefore, we suggest that the prevalence of competitive

interspecific interactions at larger distances may be associated to resource dynamics between

local patches compared to within local patches1,31,21. In summary, facilitation may be scale-

dependent, whereas competition may be rather constant across space in our fragmented alpine

ecosystem.
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In addition to these two processes, we postulate here that positive interspecific interactions

may be associated with cohesive networks and with the richness of species participating in

these networks (Fig. S15). This means that positive interspecific interactions may promote

the establishment of more links among different neighbour species. Such effect may result

in a facilitation cascade35 according to an autocatalytic process31,30,21 and similarly to the

emergence of cooperation in public goods games36. In other words, the presence of positive

interactions among neighbouring, diverse plants could be associated with the prevalence of the

same positive interactions in the network in plants vicinity. Conversely, at larger distance,

the prevalence of negative interactions may reduce the likelihood of species occurring in the

network. Ultimately, this may potentially lead to local patches of unexpectedly high species

richness characterised by diffuse facilitation22.

The spatial dynamics of plant–plant networks

Networks show a high clustering when the number of interactions among neighbours is large

relative to the number of species37. The decreasing clustering with increasing scale implies

that a transition from a cohesive to a hierarchical organisation of networks occurred in our

alpine ecosystem. This shift was nonlinear, but gradual until reaching a threshold at 30 cm,

beyond which a sudden, critical transition occurred and clustering rapidly approached zero.

This pattern concurs with expectations of the behaviour of an (eco)system approaching a

tipping point30, highlighting the probable presence of a collapse of the architecture of plant–

plant networks. The network collapse could be coupled with the facilitation–competition shift

observed across spatial scale in this fragmented system. Potential mechanisms leading to such a

shift can be related to previously described positive scale-dependent feedbacks, where positive

interactions prevail within patches and negative interactions at larger scale21. Coupled to this

process there are the positive effects that ecosystem engineers, like Dryas octopetala in our

system, have on other species33, mainly through the decrease of stress and the amelioration of

growth conditions38.

The size of the largest connected components in our networks decreased with increasing

spatial scale to half the size at 30 cm and to one-fifth at 55 cm. Again, this reduction in

component size was associated with a reduction in positive interactions. In line with this
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result, we also found a higher species proximity in the network at fine spatial scale where

positive interactions were predominant. This indicates that species closely interact at fine

scale. On the other hand, species were less closed within the network with increasing scale and

negative interactions. Accordingly, the number of cliques (Fig. S14) decreased with increasing

spatial scales, indicating network breakdown at its sub-structure level. Taken together, these

results suggest a breakdown of the largest connected components with increasing spatial scale,

as species tend to segregate into many detached components once positive interactions wane.

Our study is one of the first attempts to analyse the spatial structure of plant–plant net-

works across scales. We are aware that new questions are now arising. Observational studies

such as the present one may suggest potential mechanisms underpinning spatial patterns of

species interactions. Nevertheless, with our approach we first controlled for variation in niche

differences and environmental heterogeneity before calculating spatial association and then in-

ferring plant–plant interactions39,19,22. Moreover, it should be noted that what we observed as

facilitation between two species might also be apparent facilitation, in which the two species

are both facilitated by a third one. Future experimental studies controlling for differences in

demographic stochasticity (e.g. dispersal limitation) and niche processes (e.g. species-specific

resource limitation) would be necessary to test the causality of the observed correlations be-

tween positive and negative plant–plant interactions with network architecture. At the same

time, further theoretical research should accompany such experimental work to better predict

network stability under different environmental conditions. We conclude that positive interac-

tions exceed negative ones at fine spatial scales. The resulting increase in network cohesiveness

is best supported by the spread of positive interactions among neighbouring plants within the

local network in a way that facilitation begets facilitation.

Methods

Study area and sampling design

An observational study was performed in a sparsely-vegetated alpine ecosystem (Swiss Alps,

2300 m a.s.l., Lat 46.39995◦N, Long 7.58224◦E, Fig. S1) characterised by patches of the prostate

dwarf-shrub Dryas octopetala L. (Rosaceae). The plant community was fully mapped with a

1 cm accuracy during August 2015 within a 9 x 3 m rectangular grid (Fig. S2). For each
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individual plant (i.e. ramet) we recorded: species identity, coordinates of rooting point (x and

y) and a set of functional traits (width, height, number of leaves, leaf dry mass) relevant for

resource use and competitive ability40. In total, 2154 individuals belonging to 29 species were

recorded (Tab. S1). Species richness reached an asymptote in the accumulation curve (Fig.

S3), suggesting that a representative area with the entire species pool of this plant community

type was sampled. We focused on the 19 species that had more than 10 individuals in order

to minimise analytical bias. Fine-scale spatial heterogeneity of soil properties was quantified

by determining soil gravel content, soil water content and soil C/N ratio with one composite

sample in each 1 m2 and beneath each Dryas patch (see Appendix S1 for details).

Spatial pattern analysis and plant interactions

To detect the statistical association between species and infer plant interactions we employed

spatial point pattern analysis based on second-order statistics41,42,39,43 assuming that spa-

tial patterns could inform about interactions31,32,30,13,20,21,15 after accounting for other pro-

cesses42,39,43. The scale of analysis was varied from 1 cm to 75 cm.

First, we describe the spatial distribution of each species. To identify the effects of environ-

mental heterogeneity, niche differences and stochasticity on the species occurrence probability,

we fitted different models of spatial distribution within the plot based on species traits, soil

properties and stochastic processes for each species. The model with the best goodness of fit

was selected as the null model to later test spatial association between species (see Appendix

S1 for details).

Second, we determined interspecific spatial associations. We carried out bivariate point

pattern analyses for all species pairs to assess the existence of spatial associations between

species after accounting for their niche differences and the microenvironmental conditions. We

assume that fine-scale spatial segregation and fine-scale spatial aggregation are indicators of

competition17,1,18,19 and facilitation5,20,21,22, respectively. Species association was calculated

using the inhomogeneous cross-type pair correlation function gij(r)
39. Given the expected

number of points (i.e. individual plants) of species j at a distance r from an arbitrary point of

species i (Fig. S4), the probability p(r) of finding two points i and j separated by a distance

r is equal to p(r) = λi(x)λj(j)gij(r) dx dy, where λi(x) and λj(j) are the estimated intensity
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functions of each species (see Tab. S2). Values of gij(r) > 1 indicate that there are, on average,

more individuals of species j at a distance r from species i than expected by chance. Conversely,

values of gij(r) < 1 indicate that species j is more segregated from species i than expected by

chance. When gij ≈ 1 the spatial dependency of species j on species i cannot explain more

than what we would expect by chance, i.e. given each species’ distribution.

In order to statistically determine whether an observed pattern was significantly different

from what could be expected by chance, Monte Carlo simulation of a realisation of the gij(r)

function at each scale (for r from 1–75 cm with 1 cm steps) was used to generate simulated

distributions from the null hypothesis of independence of species j with respect to species i.

A total of 199 MC simulations were performed at each scale. The fifth-lowest and the fifth-

highest simulated values at each r were used to build 95% confidence envelopes around the mean

predictions42,43. Thus, at a given scale r, an empirical ĝij(r) function higher than the confidence

envelope indicates significant positive dependence of species j on species i, while the converse

indicates significant negative dependence (Fig. S8, Fig. S9). When ĝij(r) lies within the MC

confidence envelope, neutral association cannot be rejected. Because first order constraints on

the distributions of each species are controlled (i.e. microsite heterogeneity, niche and stochastic

determinants, see Appendix S1), the obtained positive and negative dependences might result

from non-random plant–plant interactions1,31,32,39. Finally, with this approach we could detect

the spatial scales at which such interactions are operating according to the corresponding spatial

signals.

Network analysis

Network analysis was employed to identify the web of plant–plant interactions and to assess

how network architecture may promote species coexistence and maintain species richness. At

each scale we built a unipartite directed network G = (V,E) composed of V = 19 plant species

and E ⊆ Vi × Vj significant directional interactions (i.e. distinguishably Eij and Eji), for a

total of 75 networks and 983 species interactions (Fig. S10 and online video). Each network

G was represented by an adjacency matrix M composed of 19 rows and 19 columns describing

interactions among plant species.
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Species interactions Eij(r) are described by directed ternary links such that

Eij(r) =


1 for facilitation if ĝij(r) > gtheo(r) + 95% CI

-1 for competition if ĝij(r) < gtheo(r)− 95% CI

0 for neutral else (i, j) /∈ E

To reveal changes in local plant–plant interactions across scales, for each network we calcu-

lated the total number of interactions E, the number of species S with at least one interaction

(S < V ), and the number of pairwise interactions for each bidirectional interaction type, i.e.

positive mutual (facilitation–facilitation), positive non-mutual (facilitation–neutral), negative

mutual (competition–competition), negative non-mutual (competition–neutral) and negative–

positive (facilitation–competition) (Fig. S11).

Network architecture was analysed using the clustering coefficient C 37. C tests if two or

more species linked to another species are also interacting with each other, measures the local

cohesiveness of a group of species and indicates the neighbourhood interaction density as well

as the hierarchy and interconnection of a community (Fig. S11). C is defined as the probability

that neighbouring nodes (i.e. all plant species connected to a plant species i) of a plant species i

are linked to each other. In other words, C for any node i is the fraction of linked neighbours of i,

such that C = N−1
∑N

i=1(si(ki−1))−1, where si is the sum of links present among neighbouring

nodes for each node i, and ki is the degree (i.e. the number of neighbours) of node i. Thus, the

higher the clustering, the more the neighbours are connected to each other and the higher the

cohesiveness.

To reveal network growth and collapse across spatial scales, we calculated the size of the

largest connected component R. A connected component of a network is a subset of nodes

reachable from every node within it44. In other words, the size of R is equal to the maximum

number of species consecutively linked within a network (Fig. S11). The change in the size of

R provides basic information about network development and collapse. Hence, the presence of

connected components and the change in their size R can be used to characterise the robustness

of ecological communities.

To reveal network collapse, we calculated species proximity on the basis of relative geodesic

distance, i.e. considering nodes positioned on a plane alike45. The larger the proximity, the
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larger the network-based distance among species, the higher the fragmentation of the network.

Statistical analyses

We first analysed the changes in plant–plant interactions across spatial scales and then we

tested the relationships between such changes and network architecture.

We used regression models to relate the response of i) the total number of interactions E

and ii) the interacting species richness S to the ratio between positive and negative interactions,

the ratio between mutual and non-mutual interactions and their interactions (fixed effects with

third degree polynomials for each ratio, i.e. r + r2 + r3). Besides, we previously tested with the

same approach if the ratio between positive and negative interactions and the ratio between

mutual and non-mutual interactions changed across scale (i.e. s + s2 + s3).

Then, to determine bottom-up effects of local plant–plant interactions on network archi-

tecture, we used regression models to test the effects of pairwise interaction combinations (i.e.

number of positive–positive, positive–neutral, negative–negative, negative–neutral, negative–

positive interactions as fixed effects) on i) the network transitivity C and on ii) the size of

the largest connected component R. By using the absolute number of each interaction-type

combination as independent variable we accounted for changes in the total number of inter-

actions across scales. To quantify the importance (i.e. effect size) of the different interaction

types and spatial scale, we used the partial r2, i.e. the proportion of variation that can be

explained by each explanatory variable, calculated as r2y,xi|xk =
SSE(reduced)−SSE(full)

SSE(reduced)
, where the

error sum of squares SSE (i.e. residuals) were compared between reduced models excluding

only one interaction type xi and the full model containing all interaction types xk.

We accounted for spatial autocorrelation across scales by including an autoregressive co-

variance structure (AR(1)σij = σ2ρ|i−j|) in all models46.

All analyses were done in R 3.3.047, using spatstat 43 and ecespa 48 for spatial pattern analysis,

igraph 49 for network analysis and nmle 46 for statistical analysis.

Data availability

The data that support the findings of this study will be deposited in Dryad repository.
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Figure 1 Analytical framework for studying plant interaction networks on the basis of spatial

point patterns. A plant community is fully-mapped: for each individual plant, species identity

and coordinates are recorded within a spatial grid with a 1 cm accuracy. Spatial point pattern

analysis is then employed. First, the distribution of each species is analysed (see Appendix

S1 for details). Second, pairwise species associations are estimated after removing the effects

of environmental heterogeneity and niche and stochastic processes. Then, species interactions

are inferred from spatial association patterns: a positive dependence of species j on species i

is assumed to indicate facilitation of species i on species j, a negative dependence is assumed

to indicate competition, and no association is assumed to indicate neutral interaction. Hence,

interaction types are calculated considering the combination between positive, negative and

neutral interactions. Finally, network analysis is used to reveal the structural properties, the

growth or the collapse of the interaction networks across spatial scales.
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Figure 2 Log ratio between positive and negative interactions a), mutual and non-mutual

interactions b), total positive and negative interactions c) and total mutual and non-mutual

interactions d) across spatial scales. Red and blue lines indicate positive and negative interac-

tions, respectively; in d), solid and dashed lines indicate mutual and non-mutual interactions,

respectively. Predicted lines (i.e. non-linear regression model with the third degree polynomial

function of scale as predictor and an autoregressive covariance structure) and 95% CI shown.

In d) data points and CI omitted for clarity.
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Figure 3 Network transitivity C a), size of the largest connected component R b) and species

proximity c) across spatial scales. Transitivity, measured by the clustering coefficient C 37,
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indicates local cohesiveness of a group of nodes (i.e. species). The size of the largest connected

component R is the maximum number of interconnected species within a network44. A change

in the size of the largest connected component provides basic information about the growth of

a network. Predicted lines and 95% CI shown. Species proximity calculated on the basis of

relative geodesic distance45. Each horizontal spline corresponds to a plant species and vertical

proximities are proportional to the number of interactions connecting them. The larger the

proximity, the higher the fragmentation of the network.
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Increasing
scale

Figure 4 At fine spatial scale (left, 2 cm) positive facilitative interactions (red arrows) build up

a network with high transitivity, i.e. high cohesiveness. With increasing scale (right, 50 cm),

negative competitive interactions (blue arrows) predominate and the network becomes more

disconnected. The size of the nodes (green dots) is proportional to relative species abundance

(See Fig. S10 and the online video for the network at every centimetre).
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