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ABSTRACT 1	

We present a spiking network model that transforms odor-dependent variable-latency olfactory 2	

bulb responses into a cortical ensemble code. In the model, which captures basic circuit properties 3	

of piriform cortex, the impact of the earliest-activated bulb inputs on the cortical response is am-4	

plified by diffuse recurrent collateral excitation, which then recruits strong feedback inhibition that 5	

stabilizes cortical activity and decreases the impact of later-responding glomeruli. Because the 6	

sequence of olfactory bulb activity for a particular odor is preserved across concentration, the en-7	

semble of activated cortical neurons is robust to concentration changes. Nevertheless, odor con-8	

centration is represented by the latency and synchrony of the ensemble response.  Using decoding 9	

techniques, we show that the ensemble-based coding scheme that arises in the cortical model sup-10	

ports concentration-invariant odor recognition.  11	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118364doi: bioRxiv preprint 

https://doi.org/10.1101/118364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stern et al, 2017 
 

	 3	

INTRODUCTION 12	

The coding schemes used to represent odors in the olfactory bulb and piriform cortex (PCx) are 13	

different. In the bulb, odorants sequentially activate distinct subsets of glomeruli causing mitral 14	

and tufted cells (MTCs) to begin firing at various odor- and cell-specific latencies following the 15	

onset of inhalation (Spors and Grinvald 2002, Bozza et al. 2004, Bathellier et al. 2008, Carey et 16	

al. 2009, Cury and Uchida 2010, Shusterman et al. 2011).  In the PCx, this latency code is trans-17	

formed so that odors are represented by ensembles of neurons distributed across the piriform (Illig 18	

and Haberly 2003, Rennaker et al. 2007, Poo and Isaacson 2009, Stettler and Axel 2009) with 19	

spike timing providing little information about odor identity in the PCx (Miura et al. 2012, Uchida 20	

et al. 2014) (see also Bolding & Franks, submitted). Here we construct a model, based on the circuit 21	

architecture of PCx to explore the mechanisms that support the transformation from a bulbar la-22	

tency to a cortical ensemble odor code. 23	

 24	

In mammals, odor perception begins when volatile molecules are inhaled and bind to odorant re-25	

ceptors expressed by olfactory sensory neurons (OSNs) in the nasal epithelium. Each OSN ex-26	

presses just one of ~1000 different odorant receptor genes, and all OSNs expressing a given re-27	

ceptor converge on a unique pair of glomeruli in the olfactory bulb (Wilson and Mainen 2006).  28	

MTCs receive excitatory inputs from a single glomerulus, and their projections to PCx are diffuse 29	

and overlapping (Ghosh et al. 2011, Miyamichi et al. 2011, Sosulski et al. 2011), allowing indi-30	

vidual pyramidal piriform neurons to receive inputs from different combinations of co-activated 31	

glomeruli (Franks and Isaacson 2006, Suzuki and Bekkers 2006, Apicella et al. 2010, Davison and 32	

Ehlers 2011). In addition to their connections onto pyramidal cells, MTCs make excitatory con-33	

nections onto layer 1 inhibitory interneurons that provide feedforward inhibition to pyramidal cells 34	
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(Luna and Schoppa 2008, Stokes and Isaacson 2010, Suzuki and Bekkers 2012). Pyramidal cells 35	

form a widespread recurrent collateral excitatory plexus that may amplify the effect of the earliest 36	

MTCs by recruiting additional pyramidal cells that initially receive slightly subthreshold bulb in-37	

put (Franks et al. 2011).  Recurrent excitation also recruits strong feedback inhibition from layer 38	

3 interneurons that should, along with the feedforward inhibition, lessen the impact of later MTCs 39	

inputs (Franks et al. 2011, Suzuki and Bekkers 2012, Large et al. 2016). Piriform circuits are there-40	

fore poised to dramatically reshape odor representations (Davison and Ehlers 2011, Poo and 41	

Isaacson 2011, Haddad et al. 2013). 42	

 43	

Although MTCs are activated at different times across the full respiration cycle (Bathellier et al. 44	

2008, Cury and Uchida 2010, Shusterman et al. 2011), rodents can rapidly discriminate different 45	

odors within ~100 ms (Uchida and Mainen 2003, Abraham et al. 2004, Rinberg et al. 2006), well 46	

before most responsive glomeruli are activated (Wesson et al. 2008). Thus, the earliest activated 47	

glomeruli may provide most information about odor identity (Hopfield 1995, Schaefer and Margrie 48	

2007, Schaefer and Margrie 2012, Wilson et al. 2015). Interestingly, most odors retain their per-49	

ceptual identity across a range of concentrations (Krone et al. 2001, Laing et al. 2003, Homma et 50	

al. 2009). Note, however, that while increasing odor concentration systematically decreases MTCs 51	

onset latencies (Cang and Isaacson 2003, Margrie and Schaefer 2003, Spors et al. 2006, Junek et 52	

al. 2010, Gschwend et al. 2012) and can increase the total number of activated glomeruli, the 53	

sequences in which glomeruli are activated it preserved (Spors and Grinvald 2002, Junek et al. 54	

2010). Thus, decoding the sequence in which glomeruli, and their associated MTCs, are activated 55	

has been hypothesized to provide a basis for concentration-invariant odor identification (Hopfield 56	
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1995, Junek et al. 2010, Schaefer and Margrie 2012, Wilson et al. 2015). Our model supports this 57	

hypothesis by providing a mechanism for its implementation in piriform cortex.  58	
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RESULTS 59	

We use a modeling approach to provide mechanistic insight into how the transformation from the 60	

latency code in the bulb to the ensemble code in PCx is implemented. We developed a spiking 61	

network model that simulates patterns of odor-evoked mitral cell activity, and this provides input 62	

to a spiking network mode that captures the specific circuit properties of PCx. We simulated bulb 63	

and PCx spiking activity over the course of a single respiration cycle consisting of a 100 ms exha-64	

lation followed by a 200 ms inhalation. 65	

Odors activate distinct ensembles of piriform neurons 66	

Our model bulb consisted of 900 glomeruli that are each innervated by a unique family of 25 mitral 67	

cells. Odor identities are defined by sets of glomerular onset latencies so that different odors acti-68	

vate specific subsets of glomeruli and their associated mitral cells with odor-specific latencies after 69	

the onset of inhalation (Figure 1A, Supplemental Figure S1, and Methods). At our reference con-70	

centration, 10% of the glomeruli are activated during the 200 ms sniff.  71	

 72	

The PCx model contains 10,000 excitatory pyramidal cells, each of which receives 50 excitatory 73	

inputs from a random subset of the mitral cells and 1,000 recurrent excitatory inputs from a random 74	

subset of other pyramidal cells (Figure 1B). Our model also includes 1,225 feedforward inhibitory 75	

neurons that receive input from mitral cells and provide synaptic inhibition onto the pyramidal 76	

cells and other feedforward interneurons, and a separate population of 1,225 feedback inhibitory 77	

neurons that each receive inputs from a random subset of pyramidal cells and provide inhibitory 78	

input locally onto pyramidal cells. We model all three classes of PCx neurons as leaky integrate-79	

and-fire neurons with current-based synaptic inputs (details and model parameter values are given   80	
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  81	

	
Figure 1.  Odors activate distributed ensembles of PCx neurons.  
(A) Raster plots showing spiking of 1,000 mitral cells (out of 22,500 total; 25 mitral cells/glomerulus, 40 
glomeruli shown) in response to 3 different odors. Each row represents a single mitral cell and all mitral 
cells belonging to each glomerulus are clustered. Tick marks indicate spike times. Inhalation begins at 0 ms 
and is indicated by the grey shaded region.  The red curve shows the cumulative number of glomeruli acti-
vated across the sniff, and the blue curve is the firing rate averaged across all mitral cells.  (B) Schematic of 
the piriform cortex model.  (C) Voltage traces for three sequential sniffs in 4 model pyramidal cells. Time 
of inhalation is indicated by the dashed line.  (D) Single-trial population activity map for all 10,000 pyram-
idal cells. Each pixel represents a single cell, and pixel color indicates the number of spikes fired during the 
200 ms inhalation. Approximately 13% of cells fired at least 1 action potential, with activated cells randomly 
distributed across the cortex.  (E) Response vectors shown for 20 cells in response to different odors pre-
sented on 4 sequential trials. Spiking levels are low for no-odor controls. Note the trial-to-trial variability 
and that individual cells can be activated by different odors.  
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in the Methods). Most of our analyses focus on pyramidal cell activity because these cells receive 82	

bulb input and provide cortical output and thus carry the cortical odor code. 83	

 84	

Low levels of spontaneous PCx spiking in the model are driven by baseline activity  in mitral cells 85	

(1-2 Hz), with 2.8 ± 0.4 % (mean ± st. dev) of pyramidal cells spiking during the 200 ms inhalation 86	

in the absence of odor, consistent with experimental findings in awake (Zhan and Luo 2010, Miura 87	

et al. 2012) and anesthetized (Poo and Isaacson 2009) animals. Given this low level of spontaneous 88	

activity, cells that fire at least one action potential during the 200 ms inhalation are defined as 89	

“activated”. Because each piriform cell receives input from a random subset of mitral cells, differ-90	

ent odors selectively and specifically activate distinct, sparse subsets of cortical pyramidal cells 91	

(Figure 1C) so that each cell is responsive to multiple odors and each odor activates distinct en-92	

sembles of neurons distributed across PCx (Figure 1D,E). At our reference concentration, for 93	

which 10% of glo-94	

meruli are activated, 95	

14.1 ± 0.59 % (mean 96	

± st. dev., n = 6 97	

odors) of piriform 98	

pyramidal cells fire 99	

at least one action 100	

potential during a 101	

sniff, which is also 102	

consistent with ex-103	

perimental data (Poo 104	

 
 
Supplementary Figure 1.  Modeling odor responses in olfactory bulb 
(A) Raster for all 22,500 mitral cells for one odor trial. Grey shading indicates 
inhalation phase. Inset shows expanded view of 1,000 mitral cells belonging to 
40 different glomeruli.  (B) Raster showing trial-to-trial variability for a single 
activated glomerulus. Each box represents a different sister mitral cell, with 
trials 1-4 represented by the lines within each box. 
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and Isaacson 2009, Stettler and Axel 2009, Miura et al. 2012). In summary, we have simulated 105	

odor-evoked activity in olfactory bulb that we use as input to a model piriform cortex. Population 106	

odor responses in the model broadly recapitulate experimental observations. We can therefore use 107	

the model to probe how these population responses emerge mechanistically. 108	

Evolution of cortical odor ensembles 109	

We next illustrate how the model PCx ensembles evolve over time by comparing the spiking ac-110	

tivity of its four different classes of neurons (mitral cell, pyramidal cell, feedforward and feedback 111	

inhibitory) over the course of a single sniff (Figure 2A). Preceding inhalation, baseline activity in 112	

mitral cells drives low levels of spiking in both pyramidal cells and feedforward inhibitory neu-113	

rons. Feedback inhibitory neurons, which do not receive mitral cell input, show no baseline activ-114	

ity. Shortly after inhalation, inputs from the earliest activated glomeruli initiate a dynamic cascade 115	

of cortical activity, characterized by a transient and rapid burst of spiking in a small subset of 116	

pyramidal cells that is sharply truncated by the strong and synchronous recruitment of feedback 117	

inhibitory neurons. The feedback inhibitory response suppresses pyramidal cell firing for a brief 118	

period before the network settles into a sustained state with somewhat elevated pyramidal cell 119	

activity that both drives and is held in check by feedback inhibition (Figure 2A). This activity 120	

remains steady for the remainder of the inhalation, even though additional mitral cells respond, 121	

because the activity of feedforward inhibitory neurons ramps up to cancel the increase in total 122	

mitral cell input. 123	

 124	

What triggers the rapid transient pyramidal cell response? Each odor initially activates a subset of 125	

glomeruli that project randomly onto different cortical pyramidal cells. A small subset of pyrami-126	

dal cells receives enough input from short-latency mitral cells to reach threshold and start spiking 127	
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early in the sniff (Figure 2B, cell 1). This activity produces a small amount of recurrent excitation 128	

that is dispersed across the cortex via the long-range recurrent collateral connections. The resulting 129	

recurrent input is not strong enough to drive spiking by itself (Figure 2B, cell 3), but it can recruit 130	

other pyramidal cells that receive moderate but subthreshold bulb input (Figure 2B, cell 2). Be-131	

cause more cells received subthreshold than suprathreshold bulb input, more pyramidal cells are 132	

activated by the recurrent input, resulting in even stronger recurrent excitation that, in turn, can 133	

 
 
Figure 2.  Evolution of a cortical odor response. 
(A) Raster for a single sniff showing spiking activity of a subset of mitral cells (2,250 out of 22,500), all 1,225 
feedforward interneurons (FFIs), all 10,000 pyramidal cells, and all 1,225 feedforward interneurons (FBIs).  
Spiking rate for the population of pyramidal cells is shown at the bottom (average of 6 trials). Note that the 
earliest activated glomeruli initiate a cascade of pyramidal cell spiking that peaks after ~50 ms and is abruptly 
truncated by synchronous spiking of FBIs.  (B) Single-trial voltage traces (black) for 3 pyramidal cells in re-
sponse to the same odor. Inhalation onset is indicated by the dashed line. The red traces show the bulb input 
and the green traces the recurrent input received by each cell.  Cell 1 receives strong bulb input and spikes soon 
after odor presentation.  Cell 2 receives subthreshold input from the bulb and only spikes after receiving addi-
tion recurrent input from other pyramidal cells. Cell 3 receives no early odor-evoked input from the bulb, and 
its recurrent input is subthreshold, so it does not spike over the time period shown. 
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help activate even more pyramidal cells receiving even less bulb input. The result is an explosive 134	

increase in total pyramidal cell activity, and therefore a steady increase in the strength of recurrent 135	

excitation. However, recurrent excitation onto feedback inhibitory neurons is stronger than onto 136	

other pyramidal cells so that feedback inhibitory neurons are recruited before pyramidal cells that 137	

have not received any direct bulb input. Thus, feedback inhibition quickly halts the explosive 138	

growth of pyramidal cell firing because pure recurrent input always remains subthreshold for py-139	

ramidal cells, thereby maintaining the odor-specificity of the cortical ensemble. 140	

 141	

Specific roles for different circuit elements in shaping cortical responses 142	

To reveal the specific roles that different circuit elements play in shaping piriform output we com-143	

pared responses in the full circuit with those obtained after removing different circuit elements 144	

(Figure 3). The same odor stimulus was used in all cases, so input from the olfactory bulb is iden-145	

tical except for the trial-to-trial stochasticity of mitral cell spiking. We first compared responses in 146	

the full circuit (Figure 3A) with those in a purely feedforward network in which pyramidal cells 147	

only receive mitral cell inputs (Figure 3B). In this highly reduced, feedforward circuit, pyramidal 148	

cell spiking activity grows more slowly, without any strong initial transient, and it tracks the num-149	

ber of spiking mitral cells. In the absence of either feedforward or feedback inhibition, the cortical 150	

response continues to grow over the course of the sniff as more glomeruli are activated (Figure 151	

1A), so that a large fraction of cells respond at some point during the course of the entire sniff. 152	

 153	

We next examined networks without feedforward or feedback inhibition, or without recurrent ex-154	

citation and excitatory input to feedback interneurons. Eliminating only feedforward inhibition 155	

increases the amplitude of the peak pyramidal response by about 50%, although the general shape 156	
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of the population response is largely unchanged (Figure 3C,E) and the fraction of cells activated 157	

over the entire sniff only increases modestly (from 13% to 16%). When we selectively eliminated 158	

feedback inhibition, odor induces unchecked runaway recurrent excitation, and all the cells end up 159	

	
Figure 3.  Distinct roles for different inputs in shaping ensemble response. 
(A-D) Raster plots for presentations of the same odor using different circuit configurations. The percentages 
of active pyramidal cells are shown in the insets.  (A) As in Figure 2A.  (B) Network activity when pyramidal 
cells get excitatory input from mitral cells but without FFI, recurrent excitation or FBI. Pyramidal cell spiking 
tracks mitral cell input. Population rate for the full network is shown in grey for comparison.  (C) Network 
activity after eliminating excitatory input to FFIs. Note that sustained FBI spiking increases without FFI, re-
sulting in roughly constant levels of sustained spiking in pyramidal cells.  (D) Network activity with no recur-
rent excitation onto either other pyramidal cells or FBIs. The transient activity peak seen in A-D is absent, and 
sustained activity is slightly higher.  (E) Population rate plots for 3 different odors with the full network (black 
trace), no FFI (red trace) or no recurrent excitation/FBI (green trace). Insets expand the period around inhala-
tion. Note the population spiking is higher and peaks slightly earlier without FFI, and that responses are slow 
without recurrent excitation. All population spike rate plots are averaged over 6 trials. 
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118364doi: bioRxiv preprint 

https://doi.org/10.1101/118364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stern et al, 2017 
 

	 13	

spiking vigorously (not shown). Finally, we simulated the circuit with pyramidal cell output 160	

blocked, which eliminates both recurrent excitation and the recruitment of feedback inhibition. 161	

Under these conditions pyramidal cell spiking initially ramps slowly, similar to the feedforward-162	

only condition, but then plateaus within ~50 ms, as feedforward inhibition is recruited (Figure 163	

3D,E). Although the rapid peak in instantaneous spiking activity is substantially decreased under 164	

these conditions, activity over the whole sniff increases, with 20% of the pyramidal cells respond-165	

ing. These results illustrate the istinct roles that different elements of the model PCx play in shap-166	

ing odor responses. 167	

 168	

Piriform responses are shaped by early-responding glomeruli 169	

The previous analysis showed that population spiking peaks early when recurrent excitation is 170	

present (Figures 3A,C) but ramps up more slowly when it is eliminated (Figures 3B,D), indicating 171	

a key role for intracortical circuitry in amplifying the initial response. We examined this directly 172	

by comparing population spiking to the sequential activation of individual glomeruli (Figure 4A). 173	

In the full network, population spiking peaks 34 ± 8.3 ms after inhalation onset (mean ± st. dev. 174	

for 6 odors with ensemble averages of 6 trials per odor, at the reference concentration; Figure 175	

4B,C). At this time, only 15 ± 1.4 glomeruli have been activated out of the 95 ± 6.0 glomeruli that 176	

will eventually be activated across the full sniff. In other words, at its peak, PCx activity is driven 177	

by the earliest ~15% of activated glomeruli. Mean responses peak slightly earlier when feedfor-178	

ward inhibition is eliminated (28 ± 4.5 ms; Figure 4B), but the peak activity is still driven by a 179	

similar number of glomeruli (12 ± 0.80 glomeruli; Figure 4C); on individual trials, the peak re-180	

sponse is larger without feedforward inhibition (Figure 3C,D), but this difference is not captured 181	
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in the average responses). In contrast, population spiking peaks much later without recurrent exci-182	

tation (139 ± 29 ms) at a time when most of the responsive glomeruli have been activated (66 ± 183	

0.44; Figure 4C). Recurrent excitation therefore plays an important role in shaping the dynamics 184	

	
 
Figure 4.  Earliest-active glomeruli define the cortical response. 
(A) Normalized population spike rates (black) in response to an odor during the sniff cycle shown in grey.  
The red curve shows the cumulative number of glomeruli activated across the sniff.  Note that population 
spiking peaks after only a small subset of glomeruli have been activated.  (B) Normalized population spike 
rates for one odor for the full network (black trace), without FFI (red trace) and without recurrent excitation 
(green trace).  Grey trace shows the cumulative number of activated glomeruli.  (C) Fraction of peak popu-
lation spike rate as a function of the cumulative number of activated glomeruli for 6 different odors. These 
curves indicate the central role recurrent excitation plays in amplifying the impact of early-responsive glo-
meruli.  (D) Average correlation coefficients for repeated same-odor trials and pairs of different-odor trials 
measured over the full 200 ms inhalation.  (E) As in D but measured over the first 50 ms after inhalation 
onset.  (F) Ratios of correlations for same- vs. different-odor trials measured over the full sniff (grey bar on 
left) and over the first 50 ms (black bar on right). 
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of the cortical odor response by amplifying the impact of early-responsive glomeruli and discount-185	

ing the impact of later-responding glomeruli through the recruitment of strong feedback inhibition 186	

(Franks et al. 2011).  187	

 188	

We wondered whether the earliest part of the cortical response provides a more distinctive repre-189	

sentation of odor identity than the later response, so we quantified responses as vectors of spike 190	

counts, one component for each pyramidal cell, either over either the full 200 ms inhalation or 191	

only the first 50 ms after inhalation onset. We then compared pair-wise correlations between re-192	

sponse vectors on either same-odor trials or trials involving different odors. Even though glomer-193	

ulus onset latencies are identical in all same-odor trials, stochastic mitral cell firing results in con-194	

siderable trial-to-trial variability (Figure 1E). Consequently, correlations coefficients are low for 195	

same-odor trial pairs over the full sniff (0.35 ± 0.010, mean ± st. dev. for multiple same-odor trial 196	

pairs using 6 different odors; Figure 4D). Nevertheless, same-odor responses are considerably 197	

more correlated than pairs of responses to different odors (0.11 ± 0.016; mean ± st. dev. for pairs 198	

of the same 6 odors). Response correlations to both same-odor and different-odor responses are 199	

lower when using only first 50 ms (same-odor, 0.24 ± 0.019; different-odor pairs, 0.044 ± 0.014; 200	

Figure 4E). However, the ratio of correlations for same- vs. different-odor responses, which can 201	

be thought of as a signal-to-noise ratio, is almost double in the first 50 ms versus the full 200 ms 202	

inhalation (Figure 4F). Taken together, our model predicts that a cascade of cortical activity is 203	

initiated by the earliest-responsive inputs and amplified by recurrent excitation, providing a dis-204	

tinctive odor representation, and then truncated by feedback inhibition. The cortical odor response 205	

is therefore largely shaped by the glomeruli that respond earliest in the sniff. 206	

 207	
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Distinct roles for feedforward and feedback inhibition in normalizing PCx output 208	

We next asked how cortical odor representations depend on odor concentration. Onset latencies 209	

decrease with increasing concentrations of odorant (Cang and Isaacson 2003, Junek et al. 2010, 210	

Sirotin et al. 2015), which we simulate in our olfactory bulb model (Figure 5A) by shrinking the 211	

onset latencies from those at the reference concentration. In other words, to decrease odor concen-212	

tration, we uniformly stretch latencies causing fewer glomeruli to be activated within 200 ms, and 213	

making those that do activate respond later. Conversely, we shrink the set of latencies to simulated 214	

higher concentrations so that glomeruli are activated earlier. Importantly, stretching or shrinking 215	

latencies does not change the sequence in which glomeruli become activated (Figure 5A). We 216	

quantify odor concentration using the fraction of activated glomeruli. Note that given the non-217	

linear concentration-dependence of receptor activation and extensive normalization at each multi-218	

ple stages of the system upstream of the cortex (Cleland et al. 2011), a 10-fold increase in mitral 219	

cell output is expected to correspond to a much, much greater range of concentration. 220	

 221	

The number of responsive pyramidal cells could scale with the total amount of glomerular input, 222	

which increases at higher concentrations. However, PCx odor ensembles are buffered against 223	

changes in odor concentration (Figure 5B). Across the population, we found that the number of 224	

responsive pyramidal cells only increases by 50% upon a 10-fold increase in input (Figure 5C). 225	

This indicates that the size of cortical odor ensembles is only weakly concentration-dependent, 226	

consistent with in vivo imaging studies (Stettler and Axel 2009). In addition, both the total number 227	

of spikes across the population (Figure 5D) and the number of spikes evoked per responsive cell 228	

(not shown) are only modestly concentration-dependent. Our model therefore shows that piriform 229	

circuitry can normalize intensity-scaled input from the olfactory bulb.  230	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118364doi: bioRxiv preprint 

https://doi.org/10.1101/118364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stern et al, 2017 
 

	 17	

 231	

To gain insight into how this form of response normalization is implemented, we again simulated 232	

responses either without feedforward inhibition or without recurrent excitation and feedback inhi-233	

bition. Eliminating feedforward inhibition increases both the number of responsive cells (Figure 234	

	
 
Figure 5.  Cortical output is normalized across concentrations. 
(A) Mitral cell rasters for 2 odors at 3 different concentrations defined by the fraction of co-active glomeruli. 
Glomerular onset latencies decrease with concentration allowing more glomeruli to become active over the sniff 
period.  Odors are different from the odors in Figure 1.  (B) Single-trial piriform response vectors for single 
trials over a concentration range corresponding to 3-30% active glomeruli. Note that activity does not dramati-
cally increase despite the 10-fold increase in input.  (C) Fraction of activated pyramidal cells at different odor 
concentrations for the full network (black trace), without FFI (red trace) and without recurrent excitation (green 
trace) for 4 different odors (open circles, thin lines) and averaged across odors (filled circles, thicker lines). Note 
that eliminating FFI primarily shifts the number of responsive cells, indicating that FFI is largely subtractive, 
whereas eliminating recurrent excitation alters the gain of the response. Note also that recurrent excitation am-
plifies the number of activated cells at low odor concentrations.  (D) As in C but for the total number of spikes 
across the population.  (E) Perceptron classifications of an odor at different concentrations on the basis of py-
ramidal cell activity.  Either the transient cortical activity (first 50 ms of the inhalation; black curve) or the 
activity across the full inhalation (gray curve) was used for both training and testing. Training was solely on the 
basis of the concentration indicated by the black arrow. The dashed line shows the chance level of classification 
(50%).  
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5C) and total population spiking (Figure 5D). However, this increase is fairly uniform across con-235	

centrations and removing feedforward inhibition does not substantially change the gain of the re-236	

sponse (i.e. how rapidly these responses vary with input strength; Figure 5C&D), indicating that 237	

the effect of feedforward inhibition is largely subtractive. In contrast, eliminating recurrent exci-238	

tation and feedback inhibition destroys concentration invariance by dramatically increasing re-239	

sponse gain, indicating that they implement divisive normalization (Carandini and Heeger 2012). 240	

Interestingly, cortical output is decreased at low odor concentrations when recurrent excitatory and 241	

feedback inhibition are removed, indicating that recurrent collateral excitation amplifies cortical 242	

output in response to weak input (Figure 5C&D). 243	

 244	

Early-activated PCx cells support concentration-invariant odor recognition 245	

Because the sequence of glomerular activation latencies is preserved across concentrations, odor 246	

representations defined largely by the earliest activated glomeruli could support concentration-247	

invariant odor recognition. We therefore asked whether the cortical odor representation in our 248	

model was well-suited to this purpose. Specifically, we next asked if a downstream observer could 249	

reliably identify an odor using population spiking, and whether the odor can be recognized when 250	

presented at different concentrations. To do this we trained a perceptron to identify a specific odor 251	

at one concentration (10% active glomeruli) and then asked how well it could identify that odor 252	

presented at different concentrations. We used spike counts over either the full 200 ms inhalation 253	

or the first 50 ms as input.  Perceptron performance was excellent when trained and tested at a 254	

single concentration, indicating that despite considerable trial-to-trial variability, responses to dif-255	

ferent odors can be distinguished reliably (Figure 5E). We then examined classifier performance 256	
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when tested on different concentrations without retraining. Performance using the full 200 ms re-257	

sponse was generally excellent but fell off at both the lowest and highest concentrations. However, 258	

classification using only the early transient response as input was essentially perfect across all 259	

tested concentrations. This decoding analysis supports the idea that the earliest cortical response 260	

provides an especially good substrate for concentration-invariant odor identification. 261	

 262	

Strategies for encoding odor intensity  263	

How is odor intensity represented in PCx? Because both the number of responsive neurons and 264	

total spiking are relatively constant across concentrations (Figure 5C-E), spike rate seems unlikely 265	

to be used to represent intensity. We therefore examined the dynamics of population spiking in 266	

response to odors at different concentrations (Figure 6A). As with the mitral cell activity, cortical 267	

response latencies decrease at higher concentrations by a factor of about 2 over a 10-fold increase 268	

in input from bulb (Figure 6B), suggesting that a latency code could be used. We also found that 269	

the peak of the population response increases by more than a factor of 5 over this range of odor 270	

concentration (Figure 6C). Given that total spike output is largely constant, this result indicates 271	

that the synchrony of the population piriform response is particularly concentration-dependent.  272	

Furthermore, unlike latency, synchrony thus provides an representation of odor intensity that does 273	

not require an external reference. The increase in synchrony occurs primarily because activation 274	

latencies of the earliest responding glomeruli, which cannot be activated before inhalation onset, 275	

compress as odor concentrations increase. causing responses to become more coincident. Thus, 276	
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the early peak in the PCx response can be used to rapidly decode both odor identity and concentra-277	

tion.  278	

	
 
Figure 6.  Effect of odor concentration on response timing 
(A). Normalized population spike rates for 3 odors at 3 concentrations denoted by percentage of glomeruli 
responding. Peak responses are higher and occur earlier at higher concentrations. Dashed lines indicate inhala-
tion onset. Average latencies to peak (B) and peak rate (C) vs. number of activated glomeruli. 
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DISCUSSION 279	

The model we have developed and analyzed provides mechanistic insight into the transformation 280	

from an odor code using latency in olfactory bulb to a spatial, ensemble code in the PCx (for an 281	

alternative model, see (Sanders et al. 2014)).  Individual glomeruli are activated at different laten-282	

cies after inhalation onset, with glomeruli corresponding to the highest affinity receptors for a 283	

given odorant activated earliest. Only a small subset of responsive piriform neurons receives input 284	

from many of these early-activated inputs. However, because pyramidal cells are connected via 285	

long-range recurrent collateral inputs, these few activated cells provide diffuse excitatory synaptic 286	

input across PCx that can bring a larger subset of pyramidal cells that received subthreshold bulb 287	

input to threshold. This cascade of cortical activity continues until feedback inhibitory neurons are 288	

activated, which then strongly suppresses subsequent cortical spiking. Thus, the earliest activated 289	

glomeruli play a dominant role generating PCx odor ensembles. Increasing odor concentration 290	

systematically decreases glomerular onset latencies but does not change the sequence in which 291	

they are activated. Consequently, a given odor will activate similar ensembles of PCx neurons over 292	

a large range of concentrations. In this way, odor identity can be decoded across a wide range of 293	

concentrations.  Odor concentration, on the other hand, is primarily encoded by the degree of syn-294	

chrony of the cortical response. 295	

 296	

Different odors activate distinct subsets of glomeruli and the number of activated glomeruli in-297	

creases with odorant concentration (Rubin and Katz 1999, Meister and Bonhoeffer 2001, Spors 298	

and Grinvald 2002). However, considerable processing of this input occurs within olfactory bulb 299	

so that mitral cells can either be activated or suppressed by odor (Shusterman et al. 2011, Fukunaga 300	

et al. 2012, Economo et al. 2016), and normalization within the bulb	(Cleland et al. 2011) entails 301	
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that MTC output scales much less steeply with concentration than the number of activated glomer-302	

uli (Banerjee et al. 2015, Sirotin et al. 2015, Roland et al. 2016). Nevertheless, here we have used 303	

a highly simplified olfactory bulb model in which mitral cells are only activated by odor and the 304	

number of activated mitral cells increases steeply with concentration. This has allowed us to ex-305	

amine the sufficiency of the cortical circuitry in transforming the temporal bulb representation and 306	

normalizing output. Adding suppressed responses would slightly decrease the peak and deepen the 307	

subsequent trough of the cortical response (Figure 2), and some normalization across concentra-308	

tions within the bulb would result in even less concentration-dependence in PCx (Figure 5). We 309	

have also not attempted to separately model mitral and tufted cell responses. In fact, odor-evoked 310	

responses in tufted cells occur reliably with short latencies whereas mitral cells, whose activity we 311	

simulate, fire slightly later and with latencies that decrease with concentration (Fukunaga et al. 312	

2012). This would be expected to produce a somewhat biphasic bulb and cortical response, with a 313	

more rapid and concentration-invariant component and a later, concentration-dependent compo-314	

nent. Recent simultaneous bulb-PCx recordings are consistent with these predictions (Bolding and 315	

Franks, submitted). We have also not attempted to distinguish here between different subclasses 316	

of principal neurons (e.g. semilunar cells versus superficial pyramidal cells) or inhibitory inter-317	

neurons (e.g. somatostatin versus parvalbumiun-expressing GABAergic interneurons) in this 318	

model. No doubt incorporating these distinctions will alter network behavior somewhat but the 319	

overall dynamics of this network and general conclusions that we draw here are expected to be 320	

robust, and therefore these refinements are appropriate for future, updated versions of the model 321	

but beyond the scope of this project. 322	

 323	
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Our model predicts considerable trial-to-trial variability for same-odor responses and very low 324	

correlations between responses to different odors. Both these values are lower than recent experi-325	

mental measures obtained by in vivo imaging (Roland et al submitted) or extracellular spiking 326	

(Bolding & Franks, submitted). Responses correlations to different odors in the model PCx are 327	

close to zero, which is expected because bulb inputs are random and cells receive no other sources 328	

of excitation. However, what underlies the high trial-to-trial variability? In our model, mitral cell 329	

spiking is governed by a Poisson process. Because inputs from OB to PCx are randomly assigned, 330	

this stochasticity is reflected in the input to individual pyramidal cells from mitral cells that are 331	

innervated by the same glomerulus (i.e. sister mitral cells). However, sister mitral cells are electri-332	

cally coupled by gap junctions in their apical dendrites (Christie et al. 2005) and spiking in pairs 333	

of sister mitral cells can be highly correlated (Schoppa 2006). Correlated spiking in sister mitral 334	

cells would more synchronously innervate the set of piriform neurons receiving input from an 335	

activated glomerulus. The effect of this electrical coupling could be determined directly by exam-336	

ining the reliability of cortical odor responses in mice lacking connexin-36. In addition, recurrent 337	

connections between pyramidal cells in the model are also random. However, these synapses are 338	

plastic and are thought to provide a substrate for forming assemblies of similarly responsive neu-339	

rons (Haberly 2001, Wilson and Sullivan 2011). Such assemblies could help complete ensembles 340	

of cells that are regularly co-activated, thereby decreasing trial-to-trial variability. Thus, correlated 341	

spiking in sister mitral cells and specific recurrent connectivity between cortical pyramidal cells 342	

may increase the fidelity of cortical odor responses.   343	

 344	

Piriform cortex neurons are interconnected via a diffuse, long-range recurrent collateral excitatory 345	

plexus that also recruits strong and scaled feedback inhibition (Johnson et al. 2000, Franks et al. 346	
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2011, Suzuki and Bekkers 2012).  Our model shows how this circuitry amplifies the impact of the 347	

earliest responsive glomeruli and discounts the impact of glomeruli that respond later. Why would 348	

a sensory system discard so much information about the stimulus?  To represent a large extent of 349	

potential odorant space, the olfactory system employs a huge number of distinct odorant receptors 350	

that are each highly selective for a small fraction of potential odorants. Thus, any given odorant 351	

will strongly activate only a few, optimally-tuned receptors, while many other receptors will be 352	

moderately or weakly activated if they receive input from sensory neurons expressing receptors 353	

with lower affinity for the odor, especially at high concentrations. However, the few odorant re-354	

ceptors with the highest affinities to a given odorant will always be more strongly activated, and 355	

therefore their associated glomeruli and MTCs will be activated earlier than those receiving input 356	

from lower affinity receptors, regardless of odorant concentration. By defining odors according to 357	

the earliest responding glomeruli, the olfactory system retains the specificity of the odor represen-358	

tation and discards spurious information provided by non-specific receptor activations.  359	
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MATERIALS AND METHODS  360	

Modeling 361	

Model olfactory bulb 362	

The model bulb includes 900 glomeruli with 25 model mitral cells assigned to each glumerulus.   363	

Odor concentrations are defined by specifying a fraction f of glomeruli that respond to an odor at 364	

that concentration.  Then, for every odor, each glomerulus is assigned a reference onset latency 365	

between 0 to 200 ms.  At our reference concentration 10% of the glomeruli have onset latencies 366	

<200 ms. The actual glomerular onset latencies for a given concentration are then obtained by 367	

dividing the set of reference latencies by f. Glomeruli with latencies longer than the duration of 368	

the inhalation are not activated. Mitral cell spiking is modeled as a Poisson process that generates 369	

action potentials at specified rates; baseline spike rate is 1-2 Hz, which steps to 100 Hz when a 370	

glomerulus is activated and then decays back to baseline with a time constant of 50 ms. This Pois-371	

son-generated mitral cell spiking introduces stochasticity into our olfactory bulb model. 372	

 373	

Model piriform architecture and connectivity 374	

The piriform model includes three types of model cells: 10,000 excitatory pyramidal cells, 1,225 375	

feedforward inhibitory cells (FFI), and 1,225 feedback inhibitory cells (FBI). The model pyramidal 376	

cells and FBIs are assigned to locations on a two-layer grid.  Pyramidal cells and FBIs are uni-377	

formly spread over the grid on their respective layers. Each pyramidal cell receives an input from 378	

1000 random other pyramidal cells and from 50 FFIs, both independent of location.  Each pyram-379	

idal cell receives local input from the closest (on average) 12 FBIs. Each FBI receives input from 380	

1,000 randomly chosen pyramidal cells and 8 (on average) closest FBIs. Each FFI receives input 381	
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from 50 other randomly chosen FFIs. Each mitral cell sends input to 25 random cells (either py-382	

ramidal cells or FFIs) in the pirifom.  As a result, each pyramidal and FFI cell receives input from 383	

approximately 50 random mitral cells. 384	

 385	

Piriform Dynamics 386	

The piriform model cells are modeled as leaky integrate-and-fire neurons with the membrane po-387	

tential  of model piriform cell  following the dynamical equation 388	

 389	

Here  is the membrane time constant,  is the resting potential and ,  390	

and  are the excitatory, inhibitory and external synaptic currents (of cell ) respectively. We 391	

have absorbed a factor of the membrane resistance into the definition of the input currents so they 392	

are measured in the same units as the membrane potential (mV).  When the membrane potential 393	

reaches the firing threshold  the neuron fires an action potential and the membrane 394	

potential is reset to the resting value , where it remains for a refractory period .  395	

 396	

The minimum allowed value for the membrane potential is . From this value the 397	

membrane potential can only rise, following the dynamics, it cannot be decreased.  Each action 398	

potential fired by a neuron induces an instantaneous jump in the current of all its postsynaptic 399	

targets by an amount proportional to the appropriate synaptic weight.  Action potentials in FFIs 400	

and FBIs affect the inhibitory current of their postsynaptic target neurons while action potentials 401	
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in the pyrmidal cells affect the excitatory current of their postsynaptic targets.  Mitral cell spikes 402	

also contribute to the excitatory current of the appropriate postsynaptic cells.    403	

 404	

The inhibitory and excitatory currents dynamics are described by 405	

 406	

 407	

 408	

 409	

The synaptic time constants are given by  and .  The excitatory current com-410	

bines two components, AMPA and NMDA, into a single current.  Because the NMDA synapses 411	

are relatively slow and AMPA relatively fast, we choose the time constant of this composite cur-412	

rent in an intermediate range between these two extremes.   In each term that includes summation 413	

over contributions to the current, the first sum runs over all neurons that are presynaptic to neuron  414	

and that contributes to the specified current. The second sum runs over all the times of spikes 415	

produced by presynaptic neuron  prior to time , indexed by .  The synaptic weight between presyn-416	

aptic Ex cell and postsynaptic Ex or Fb cell is given by  and  re-417	

spectively.  The synaptic weight between presynaptic Mitral cell and postsynaptic pyramidal or 418	

FFI is given by . The synaptic weight between presynaptic FFI and postsynaptic 419	

pyramidal or FFI cell is given by  . The synaptic weight between presynaptic FBI 420	

and postsynaptic pyramidal or FBI has the same strength, .  421	
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 422	

It is useful to describe the strengths of the different synapses we have discussed in terms of unitary 423	

PSP sizes rather than using the parameters given above. Using the constants we have given and 424	

the synaptic and membrane dynamics, we calculated peak EPSPs and IPSPs. All inhibitory inputs 425	

create IPSPs at the postsynaptic cell with a peak deflection of . EPSPs from mitral cell produce . 426	

The EPSP for input from pyramidal to pyramidal or to FBI cell has  or  respectively.  427	

 428	

The external input is constant in time but depend on cell identity. For all pyramidal cells it is given 429	

by 430	

  431	

where is a random number generated from a Gaussian distribution with zero mean and 432	

standard deviation . The external input for all other cells is zero.  433	

 434	

Pyramidal cell population activity vectors 435	

To analyze cortical responses, we define an activity vector .  Each component of this vector, , is 436	

the number of spikes generated by pyramidal neuron .  Because we are interested in odor responses, 437	

we start to count spikes at the beginning of the inhalation. The spikes count continues across the 438	

full inhale, or stops after 50 ms in cases when we are interested in the initial response only.  The 439	

activity maps in the figures are a visual representation of the activity vectors created by reshaping 440	

the vectors and assigning a color on the basis of their component values. 441	

 442	

Activity correlation coefficients 443	

S

)(5.0, iII randexti +=

)(iIrand
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To compute the correlation between two cortical responses on two different trials, we calculate the 444	

correlation coefficient between the corresponding activity vectors,	𝑟# , 𝑟$, 445	

𝑐 = 	
𝑟#,(−< 𝑟# > 𝑟$,(−< 𝑟$ >,

(-#

𝑟#,(−< 𝑟# >
$,

(-# 𝑟$,(−< 𝑟$ >
$,

(-#

 446	

with 𝑁 = 10,000 the number of pyramidal cells and < 𝑟 > the average value of the entries of 𝑟. 447	

 448	

The perceptron 449	

We use a perceptron, defined by a weights vector 𝑤, to classify odor responses to odors on the 450	

basis of the activity vectors explained above.  Our goal is to train the perceptron such that trials 451	

involving a chosen target odor are distinguished from trials using other odors.  Because we gener-452	

ate odors randomly and all model mitral cells behave similarly, the results are independent of the 453	

choice of target odor.   Distinguishing the activity for a target odor from all other activity patterns 454	

means that we wish to find 𝑤 such that trials with a target odor have 𝑤 ∙ 𝑟 > 0 and trials with other 455	

odors have 𝑤 ∙ 𝑟 < 0 .  Such a 𝑤 only exists if trials using the target odor are linearly separable 456	

from trials using other odors.  If such a perceptron weight vector exists, we know that pyramidal 457	

cell activity in response to a specific odor are inherently distinguishable from activity for other 458	

odors.  Furthermore, because the activity vectors we use do not contain temporal information, we 459	

know that the discrimination relies solely on the identity of the active pyramidal cells, these are 460	

the pyramidal cell ensembles, and their firing rates.  461	

 462	

During training, 100 odors were presented at a specific concentration (10% activated glomeruli) 463	

over a total of 600 trials.  Odor 1 was chosen as the target, and the trials alternated between this 464	

target odor and all odors.  Thus, odor 1 was presented 303 times and every other odor 3 time. On 465	
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every trial, the quantity 𝑤 ∙ 𝑟 was calculated, with 𝑟 the activity vector for that trial and 𝑤 the 466	

current perceptron weight vector.  Initially, 𝑤 was zero. If classification was correct, meaning 𝑤 ∙467	

𝑟 > 0 for the target odor trial or 𝑤 ∙ 𝑟 < 0 for other odors,	𝑤 was left unchanged. Otherwise 𝑤 468	

was updated to 𝑤 + 𝑟 or 𝑤 − 𝑟 for trials of odor 1 or for other odors, respectively. The entire 469	

training procedure was repeated twice, once with activity vectors that included spikes counts 470	

around the peak of the piriform activity (the first 50𝑚𝑠 of inhale) and once using spikes counts 471	

from the entire inhalation. 472	

 473	

To test the perceptron, each odor was presented at many concentrations (even though training was 474	

done only for a single fixed concentration).  For the target odor 100 trials were tested at each 475	

concentration (30 different concentrations ranging between 3% activated glomeruli and 30% acti-476	

vated glomeruli).  Each trial that gave 𝑤 ∙ 𝑟 > 0 was considered a correct classification.  For each 477	

concentration, the percentage of trials that were correctly classified was calculated.  Trials with 478	

non-target odors were tested as well, one trial for each odor at each concentration.  All the non-479	

target odors were correctly classified as not target (𝑤 ∙ 𝑟 < 0) across all concentrations. The testing 480	

procedure was done using both the peak and full activity vectors, with the corresponding percep-481	

tron weight vectors.    482	
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FIGURE LEGENDS 624	

Figure 1.  Odors activate distributed ensembles of PCx neurons.  625	

(A) Raster plots showing spiking of 1,000 mitral cells (out of 22,500 total; 25 mitral cells/glomer-626	

ulus, 40 glomeruli shown) in response to 3 different odors. Each row represents a single mitral cell 627	

and all mitral cells belonging to each glomerulus are clustered. Tick marks indicate spike times. 628	

Inhalation begins at 0 ms and is indicated by the grey shaded region.  The red curve shows the 629	

cumulative number of glomeruli activated across the sniff, and the blue curve is the firing rate 630	

averaged across all mitral cells. 631	

(B) Schematic of the piriform cortex model. 632	

(C) Voltage traces for three sequential sniffs in 4 model pyramidal cells. Time of inhalation is 633	

indicated by the dashed line. 634	

(D) Single-trial population activity map for all 10,000 pyramidal cells. Each pixel represents a 635	

single cell, and pixel color indicates the number of spikes fired during the 200 ms inhalation. Ap-636	

proximately 13% of cells fired at least 1 action potential, with activated cells randomly distributed 637	

across the cortex. 638	

(E) Response vectors shown for 20 cells in response to different odors presented on 4 sequential 639	

trials. Spiking levels are low for no-odor controls. Note the trial-to-trial variability and that indi-640	

vidual cells can be activated by different odors.  641	

 642	

Supplementary Figure 1.  Modeling odor responses in olfactory bulb 643	

(A) Raster for all 22,500 mitral cells for one odor trial. Grey shading indicates inhalation phase. 644	

Inset shows expanded view of 1,000 mitral cells belonging to 40 different glomeruli. 645	
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(B) Raster showing trial-to-trial variability for a single activated glomerulus. Each box represents 646	

a different sister mitral cell, with trials 1-4 represented by the lines within each box. 647	

 648	

Figure 2.  Evolution of a cortical odor response. 649	

(A) Raster for a single sniff showing spiking activity of a subset of mitral cells (2,250 out of 650	

22,500), all 1,225 feedforward interneurons (FFIs), all 10,000 pyramidal cells, and all 1,225 feed-651	

forward interneurons (FBIs).  Spiking rate for the population of pyramidal cells is shown at the 652	

bottom (average of 6 trials). Note that the earliest activated glomeruli initiate a cascade of pyram-653	

idal cell spiking that peaks after ~50 ms and is abruptly truncated by synchronous spiking of FBIs. 654	

(B) Single-trial voltage traces (black) for 3 pyramidal cells in response to the same odor. Inhalation 655	

onset is indicated by the dashed line. The red traces show the bulb input and the green traces the 656	

recurrent input received by each cell.  Cell 1 receives strong bulb input and spikes soon after odor 657	

presentation.  Cell 2 receives subthreshold input from the bulb and only spikes after receiving 658	

addition recurrent input from other pyramidal cells. Cell 3 receives no early odor-evoked input 659	

from the bulb, and its recurrent input is subthreshold, so it does not spike over the time period 660	

shown. 661	

 662	

Figure 3.  Distinct roles for different inputs in shaping ensemble response. 663	

(A-D) Raster plots for presentations of the same odor using different circuit configurations. The 664	

percentages of active pyramidal cells are shown in the insets. 665	

(A) As in Figure 2A. 666	
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 (B) Network activity when pyramidal cells get excitatory input from mitral cells but without FFI, 667	

recurrent excitation or FBI. Pyramidal cell spiking tracks mitral cell input. Population rate for the 668	

full network is shown in grey for comparison. 669	

(C) Network activity after eliminating excitatory input to FFIs. Note that sustained FBI spiking 670	

increases without FFI, resulting in roughly constant levels of sustained spiking in pyramidal cells.  671	

(D) Network activity with no recurrent excitation onto either other pyramidal cells or FBIs. The 672	

transient activity peak seen in A-D is absent, and sustained activity is slightly higher. 673	

(E) Population rate plots for 3 different odors with the full network (black trace), no FFI (red trace) 674	

or no recurrent excitation/FBI (green trace). Insets expand the period around inhalation. Note the 675	

population spiking is higher and peaks slightly earlier without FFI, and that responses are slow 676	

without recurrent excitation. All population spike rate plots are averaged over 6 trials. 677	

 678	

Figure 4.  Earliest-active glomeruli define the cortical response. 679	

(A) Normalized population spike rates (black) in response to an odor during the sniff cycle shown 680	

in grey.  The red curve shows the cumulative number of glomeruli activated across the sniff.  Note 681	

that population spiking peaks after only a small subset of glomeruli have been activated. 682	

(B) Normalized population spike rates for one odor for the full network (black trace), without FFI 683	

(red trace) and without recurrent excitation (green trace).  Grey trace shows the cumulative number 684	

of activated glomeruli. 685	

(C) Fraction of peak population spike rate as a function of the cumulative number of activated 686	

glomeruli for 6 different odors. These curves  indicate the central role recurrent excitation plays in 687	

amplifying the impact of early-responsive glomeruli. 688	
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(D) Average correlation coefficients for repeated same-odor trials and pairs of different-odor trials 689	

measured over the full 200 ms inhalation. 690	

(E) As in D but measured over the first 50 ms after inhalation onset. 691	

(F) Ratios of correlations for same- vs. different-odor trials measured over the full sniff (grey bar 692	

on left) and over the first 50 ms (black bar on right). 693	

 694	

Figure 5.  Cortical output is normalized across concentrations. 695	

(A) Mitral cell rasters for 2 odors at 3 different concentrations defined by the fraction of co-active 696	

glomeruli. Glomerular onset latencies decrease with concentration allowing more glomeruli to be-697	

come active over the sniff period.  Odors are different from the odors in Figure 1. 698	

(B) Single-trial piriform response vectors for single trials over a concentration range corresponding 699	

to 3-30% active glomeruli. Note that activity does not dramatically increase despite the 10-fold 700	

increase in input. 701	

(C) Fraction of activated pyramidal cells at different odor concentrations for the full network (black 702	

trace), without FFI (red trace) and without recurrent excitation (green trace) for 4 different odors 703	

(open circles, thin lines) and averaged across odors (filled circles, thicker lines). Note that elimi-704	

nating FFI primarily shifts the number of responsive cells, indicating that FFI is largely subtractive, 705	

whereas eliminating recurrent excitation alters the gain of the response. Note also that recurrent 706	

excitation amplifies the number of activated cells at low odor concentrations. 707	

(D) As in C but for the total number of spikes across the population. 708	

(E) Perceptron classifications of an odor at different concentrations on the basis of pyramidal cell 709	

activity.  Either the transient cortical activity (first 50 ms of the inhalation; black curve) or the 710	

activity across the full inhalation (gray curve) was used for both training and testing. Training was 711	
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solely on the basis of the concentration indicated by the black arrow. The dashed line shows the 712	

chance level of classification (50%).  713	

 714	

Figure 6.  Effect of odor concentration on response timing 715	

(A). Normalized population spike rates for 3 odors at 3 concentrations denoted by percentage of 716	

glomeruli responding. Peak responses are higher and occur earlier at higher concentrations. 717	

Dashed lines indicate inhalation onset. 718	

Average latencies to peak (B) and peak rate (C) vs. number of activated glomeruli. 719	

 720	
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