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Abstract

There is much interest in using genome-wide expression time series to identify circadian

genes. Several methods have been developed to test for rhythmicity in sparsely sampled time

series typical of such measurements. Because these methods are statistical in nature, they rely

on estimating the probabilities that patterns arise by chance (i.e., p-values). Here we show that

leading methods implicitly make inappropriate assumptions of independence when estimating

p-values. We show how to correct for the dependence to obtain accurate estimates for statistical

significance during rhythm detection.

1 Introduction

Molecular rhythms are now commonly identified by statistically analyzing whole-genome expres-

sion time series measurements. To this end, a number of rhythm detection algorithms have been

introduced [14, 6, 15, 13, 3, 16, 5, 8]. Although different algorithms are sensitive to different data

features, they all seek to estimate the probabilities that perceived patterns arise by chance from

experimental uncertainties (i.e., p-values). Because the p-values are often compared with desired

significance thresholds to determine which genes are considered rhythmic, accurate p-value esti-

mates are important.
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A p-value is the probability that a test statistic is observed when the null hypothesis is true. For

rhythm detection methods, the null hypothesis is generally that a time series consists of independent

draws from a normal distribution. The null distribution corresponds to the distribution of test

statistics that the algorithm yields when applied to time series generated under the null hypothesis.

A p-value is the fraction of samples from this distribution that are greater than or equal to the

test statistic value for the time series of interest. By construction, the N p-values for time series

generated under the null distribution should be uniformly distributed between 0 and 1 because the

i-th highest test statistic is larger than N − i values. Non-uniformly distributed p-values for time

series generated in a fashion consistent with the null hypothesis indicate that the p-value estimates

are not accurate.

Many popular rhythm detection algorithms do not yield accurate p-values. For example, in

Hutchison et al. [6], we examined JTK CYCLE [5]. There, we showed that testing different phases

introduces a multiple-hypothesis testing problem and that the Bonferroni correction employed in

the original implementation of the method [5] results in p-values that are too large. To correct

for this issue, as well as the effect of selecting the best phase, we empirically sampled the null

distribution. The resulting algorithm, which we termed empirical JTK (eJTK), outperforms the

original algorithm on simulated data [6], demonstrating the practical utility of accurate p-values.

In this paper, we pursue this issue much further. We show that the RAIN method [13] requires

empirical evaluation of the null distribution, similar to JTK CYCLE. The fundamental issue is

the same as discussed for JTK CYCLE: tests of a time series with different reference waveforms

are not independent. We then show that a related but distinct issue arises in MetaCycle [14],

which combines results from multiple rhythm detection methods. There too the p-values are not

independent. In that case, the Brown adjustment to Fisher Integration [2] is sufficient for obtaining

accurate p-values. Interestingly, we find that, with accurate p-values, MetaCycle underperforms

the individual methods on which it is based (Lomb-Scargle [9, 11], ARSER [16], and JTK CYCLE

[5]). This result suggests that combining p-values can decrease sensitivity by effectively averaging

the output of individual tests.
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2 Results

2.1 Comparisons of multiple reference waveforms to a single time series

are not independent

JTK CYCLE [5], RAIN [13], and eJTK [6] all use reference waveforms with different phases (and in

the case of RAIN and eJTK, different peak to trough and trough to peak times) to find the reference

waveform that best matches the experimental waveform according to a test statistic (Kendall’s τ for

JTK CYCLE and eJTK, Mann-Whitney U for RAIN). The three methods, however, take different

approaches to obtaining a single p-value for the time series from the many p-values obtained for

each reference waveform comparison. JTK CYCLE applies the Bonferroni correction, which was

developed to control the Family-Wide Error Rate: the probability of obtaining one or more false

positive results. The Bonferroni correction multiplies the best-matching p-value by the number of

comparisons to produce an adjusted p-value that is too large, as described in Hutchison et al. 2015

[6].

RAIN instead uses the Benjamini-Hochberg method [1] (also known as the q-value approach

[12]), which was developed to control the False Discovery Rate: the proportion of positive results

that are false. As shown in the context of JTK CYCLE in Hutchison et al. 2015, [6], the Benjamini-

Hochberg method also results in inaccurate p-values. The reason is that the Benjamini-Hochberg

method assumes that the input p-values are independent. However, the p-values from different

reference waveforms are correlated since they all concern the same experimental time series. Run-

ning RAIN on simulated data generated from independent draws from the normal distribution (i.e.,

under the null hypothesis) results in p-values that are not uniformly distributed (Fig. 1A).

For the reasons discussed in the Introduction, for N time series generated under the null distri-

bution, the test statistic with i test statistics higher than it should have p-value

p =
i+ 1

N + 1
. (1)

Consequently, we can compare the output p-values to empirical p-value estimates (i.e., Eq. 1) by

calculating the ratio

r =
output p

empirical p
. (2)
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Figure 1: RAIN does not produce p-values that have a uniform distribution under the null hy-
pothesis. (A) The p-values produced by RAIN run on 106 Gaussian noise time series (the null
distribution) are not uniform (the dashed line). (B) The ratio, r, of the output p-values to empir-
ical estimates (see Eqs. 1 and 2). Each time series consisted of 24 points drawn from a Gaussian
distribution, simulating data generated every 2 hours over 48 hours. RAIN was run with a time
point spacing of 2 hours and a period of 24 hours.

The results are shown in Fig. 1B. Ideally, a method should yield a horizontal line at r = 1 (the

dashed line in Figure 1B). Instead, consistent with the left peak in Fig. 1A, low p-values are smaller

than they should be (r < 1), and, consistent with the right peak in Fig. 1A, high p-values are

larger than they should be (r > 1). The former case (r < 1 for low p-values) tends to produce

false positives—rhythmic patterns are accorded more significance than they should be. A solution

to this problem is to use the empirical p-values to judge the significance of RAIN results.

2.2 P-values produced by MetaCycle are not uniform under the null

distribution

Given that there are a variety of rhythm detection methods available that focus on different aspects

of experimental time series, it seems like it should be advantageous to combine methods. Recently,

Wu et al. [14], implemented this idea by using Fisher integration [4] to combine the p-values from

JTK CYCLE [5], Lomb-Scargle [9, 11], and ARSER [16] in a method called MetaCycle. In this
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section, we analyze this method and its component algorithms from the perspective of the previous

section. In the following section, we consider the Fisher integration explicitly.

We generated 1000 time series of 12 time points spaced at 2-hour intervals by drawing values

from the normal distribution. We did not include replicates for time points because ARSER is only

employed in MetaCycle when replicates are not available, and we wanted to test the three-algorithm

combination. Consistent with Hutchison et al. 2015 [6], the p-values produced by JTK CYCLE

were too large. The p-values from LS were also too large (Fig. 2A), but those from ARSER were

reasonably accurate (r ≈ 1). However, the p-values for the combination (Meta2D) are non-uniformly

distributed, with underestimates of the p-values for low values and overestimates for high values

(Fig. 2A).

To make these data more accurate, we took an analogous approach to above and to Hutchison et

al 2015 [6]. We ran MetaCycle on 1,000,000 randomly generated time series and used those results

to adjust the p-values from the 1000 time series for the four different methods (LS, JTK, ARSER,

and Meta2D). Although the resulting p-values are markedly improved (as evidenced by the fact

that r ≈ 1 in Fig. 2B), significant deviations from the emprical values remain. In particular, for

JTK CYCLE there is a ceiling of 1 applied to the Bonferroni-corrected p-values that are output,

and this results in a loss of information that cannot be fixed, giving rise to the peak at high p-values

in Fig. 2B.

2.3 P-values from different rhythm detection methods for the same time

series are not independent

Fisher integration assumes that the input p-values are independent, but the application of multiple

methods to the same experimental time series yields correlated values. To illustrate this issue, we

examine Fisher Integration with simulated data for two limiting cases. In the first case, we generate

3 sets (A, B, and C) of 1000 p-values by randomly drawing from a uniform distribution from 0

to 1 (i.e., 3 datasets generated under the null hypothesis). Drawing the points in this manner

guarantees that they are uncorrelated from one another. In Fig. 3A, we combine these data with

Fisher Integration to create a new set D, where Di (i = 1, ..., 1000) is the combination of Ai, Bi,

and Ci. We combine the p-values and, as desired, obtain r ≈ 1.

In the second case, we generate 3 sets of 1000 p-values that are each identical, making the
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Figure 2: MetaCycle was run on 1000 time series generated randomly from a normal distribution,
producing p-values for JTK CYCLE (JTK), Lomb-Scargle (LS), ARSER, and their Fisher integra-
tion (Meta2D). (A) The p-values generated by the methods from MetaCycle, with the exception
of those from ARSER, deviate from the uniform distribution. (B) Using the empirical method
detailed in the text and in Hutchison et al 2015 [6], we corrected the p-values of the methods from
MetaCycle such that they more closely match the uniform distribution. JTK CYCLE sets many
p-values equal to 1, leading to the deviation from 1 for high p-values as the empirical method cannot
uniformly redistribute those p-values.
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Figure 3: Illustration of the effects of dependent p-values during integration. (A) P-values from
integration of three sets of randomly generated p-values, combined using the Fisher method (dashed
line) or the Brown method (solid line). (B) P-values from the integration of three sets of identical
evenly distributed p-values, combined using the Fisher method (dashed line) or the Brown method
(solid line).

correlation between the sets 1. Using the Fisher method in this case (dashed line, Fig. 3B) results

in p-values with r � 1. To correct for the correlation, we adopt the Brown method, a modification

of the Fisher method for one-sided tests of significance [2]. The Brown method uses the covariance

between the different p-value sets to adjust the combined test statistic (χ2) distribution and produce

adjusted p-values. In the case where the p-values are independent, it provides the same results as

the Fisher method (Fig. 3A). When the p-values are not independent, however, the Brown method

produces accurate integrated p-values with r ≈ 1 (Fig. 3B), indicating that they are uniformly

distributed from 0 to 1.

2.4 Properly combining p-values does not appear to result in improved

rhythm detection

Having discussed how to adjust the methods from MetaCycle to produce accurate p-values and

how to use Brown’s method for accurate integration, we now explore the effects of the Fisher

method and the Brown method on combining different methods. As noted above, the former
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leads to problems when the p-values produced by different methods are correlated. For a dataset

of 12 time points drawn from a Gaussian distribution, the R2 between empirically-corrected p-

values produced by JTK CYCLE and Lomb-Scargle is R2 = 0.388, that between JTK CYCLE

and ARSER is R2 = 0.392, and that between Lomb-Scargle and ARSER is R2 = 0.999. As a

result, pairwise Fisher Integration yields p-values roughly 1/100-th to 1/1000-th of the values that

they should be (from ordering the combined test statistics), and three-way Fisher Integration yields

values that are 1/10,000-th the values that they should be (Fig. 4A). By contrast, when using the

Brown method, r ≈ 1 in all cases (Fig. 4B).

Having corrected the p-value integration, we compared the combinations of the methods to

the individual methods for rhythm detection. We generated 396 rhythmic time series by adding

Gaussian noise plus 10 (to avoid negative values) to a cosine with 24 points sampled evenly across

2 periods (analogous to sampling every 2 hours for 48 hours across 2 24-hour periods); the standard

deviation of the Gaussian noise was equal to the amplitude of the cosine. For these time series, the

R2 between empirically-corrected p-values produced by JTK CYCLE and Lomb-Scargle is R2 =

0.468, that between JTK CYCLE and ARSER is R2 = 0.297, and that between Lomb-Scargle

and ARSER is R2 = 0.431. To analyze the classification strength of the different methods, we

combined the randomly generated data with the cosine-generated data, yielding a dataset with

≈ 28% rhythmic time series, which is in line with tissue-specific percent rhythmicity estimates

[7]. While the combinations of the methods integrated improperly with the Fisher method appear

to outperform the individual methods at p-values below typical significance cutoffs (Figs. 4C and

D, dark gray), once the p-values are accurately calculated using the Brown method, the combined

methods (Figs. 4C and D, light gray) underperform the individual methods for low p-values. In Fig.

4C this is shown using the Matthews Correlation Coefficient (MCC), which is a scalar metric that

summarizes a confusion table [10] where 1 indicates a perfect classifier and 0 indicates a classifier

that does no better than random. While the scores for the Fisher-integrated combinations are above

those of the individual methods, the scores for the Brown-integrated combinations are below those

of the individual methods for p < 0.1. These trends can also be seen by plotting the True Positive

Rate (TPR) as a function of the False Positive Rate (FPR) as the significance threshold is varied

(the dark gray curves in Fig. 4D are above the light gray curves for p < 0.1).
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Figure 4: Combining methods does not improve rhythm detection. (A and B) Indicated rhythm
detection methods were tested on 1000 Gaussian noise time series; the horizontal black line is r = 1.
(A) P-values from Fisher Integration of Lomb-Scargle (LS), ARSER (ARS), and JTK CYCLE
(JTK) after adjusting their p-values to be uniform (Fig. 2). (B) P-values from the Brown integration
of the same methods with adjusted p-values in (A). (C and D) To test the performance of the
indicated rhythm detection methods, we generated rhythmic time series as described in the text and
combined them with the Gaussian noise time series. (C) Matthews Correlation Coefficient (MCC)
for classification of the randomly generated time series as arrhythmic and the cosine-generated
time series as rhythmic for different p-value thresholds. The p-values for the Fisher-combined
methods are not true p-values, as seen in (A); they are shown here to reflect that the Fisher-
combined methods appear to do well if their p-values are not realized to be incorrect. (D) Receiver
operating characteristic: comparison of True Positive Rate (TPR) to False Positive Rate (FPR) as
significance threshold is varied. The horizontal line in (C) and the diagonal line in (D) indicate
random classification.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118547doi: bioRxiv preprint 

https://doi.org/10.1101/118547
http://creativecommons.org/licenses/by/4.0/


3 Conclusions

During rhythm detection, it is important to account for correlations in p-values that arise from the

application of multiple tests to the same experimental time series. Here, we show that this issue

impacts the correction for testing across reference waveforms in JTK CYCLE [5] and RAIN [13],

and it impacts the integration of p-values from multiple methods in MetaCycle [14]. While it can

be computationally costly to correct the p-values empirically [6, 7], Brown’s correction of Fisher

integration involves little additional effort [2]. Surprisingly, we find no advantage to combining

methods with accurate p-values. This may be due to the fact that most rhythm detection methods

overlap in the aspects of the time series that they examine. This high level of correlation results

in a type of multiple hypothesis comparison problem that increases the p-values without likewise

increasing the sensitivity of the combined methods to detect rhythmicity. For method combination

to be effective, new methods of rhythm detection would need to be developed that approach rhythm

detection from new directions.
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