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Abstract

Motivation: We here present SIMLR (Single-cell Interpretation via
Multi-kernel LeaRning), an open-source tool that implements a novel
framework to learn a cell-to-cell similarity measure from single-cell RNA-
seq data. SIMLR can be effectively used to perform tasks such as dimen-
sion reduction, clustering, and visualization of heterogeneous populations
of cells. SIMLR was benchmarked against state-of-the-art methods for
these three tasks on several public datasets, showing it to be scalable and
capable of greatly improving clustering performance, as well as providing
valuable insights by making the data more interpretable via better a vi-
sualization.
Availability and Implementation: SIMLR is available on GitHub in
both R and MATLAB implementations. Furthermore, it is also available
as an R package on bioconductor.org.
Contact: bowang87@stanford.edu or daniele.ramazzotti@stanford.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 Introduction

The recent development of high resolution single-cell RNA-seq (scRNA-
seq) technologies increases the availability of high throughput gene expres-
sion measurements of individual cells. This allows us to dissect previously
unknown heterogeneity and functional diversity among cell populations
[1]. In this line of work recent efforts (see [2, 3, 4]) have demonstrated that
de novo cell type discovery of functionally distinct cell sub-populations is
possible via unbiased analysis of all transcriptomic information provided
by scRNA-seq data. However, such analysis heavily relies on the accurate
assessment of pairwise cell-to-cell similarities, which poses unique chal-
lenges such as outlier cell populations, transcript amplification noise, and
dropout events (i.e., zero expression measurements due to sampling or
stochastic transcriptional activities) [5].

Recently, new single-cell platforms such as DropSeq [6] and GemCode
single-cell technology [7] have enabled a dramatic increase in throughput
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Figure 16: Unbiased analysis to identify cell types in human PBMCs. (a) A scatter plot using
SIMLR’s 2-D embedding with SIMLR’s k-means cluster assignment (with k = 5). Each point
represents a cell in the 2-D embedded space and colors represent the k-means cluster labels. The
cell types are assigned by specific gene markers after clustering. (b) A heatmap of log10-scale
expression values indicating top 5 most highly regulated genes corresponding to each cluster. Each
column represents a cell and each row is a specific gene. The colored axis indicate the cluster
assignments.
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Figure 1: SIMLR pipeline [9]. We start with an input matrix with gene expres-
sion observations for a set of genes. SIMLR is then capable of learning a set of
cell-to-cell similarities by estimating multiple kernels, with the assumptions of
the presence of C separable populations within the data. To this extent, SIMLR
constraints the similarity matrix to have an approximate block-diagonal struc-
ture with C blocks where the cells of the same populations to be more similar.
The learned similarities can be used for multiple tasks; they can be used to
visualize the cells, reduce the dimension of the data, cluster the cells into sub-
groups and prioritize the most variable genes that explain the differences across
the populations.

to hundreds of thousands of cells. While such technological advances
may add additional power for de novo discovery of cell populations, they
also increase computational burdens for traditional unsupervised learning
methods.

To address all of the aforementioned challenges, SIMLR was proposed
in [8] as a novel framework that learns an appropriate cell-to-cell sim-
ilarity metric from the input single-cell data. The learned similarities
enable effective dimension reduction, clustering, and visualization of cells.
SIMLR provides a more scalable analytical framework, which works on
hundreds of thousands of cells without any loss of accuracy in dissecting
cell heterogeneity.

2 The SIMLR framework

SIMLR is is available in both R and MATLAB implementations. The
framework is capable of learning cell-to-cell similarities among gene ex-
pression data of individual cells, which have been shown to capture differ-
ent representations of the data. The approach combines multiple Gaussian
kernels in an optimization framework, which can be efficiently solved by
a simple iterative procedure. Moreover, SIMLR addresses the challenge
of high levels of noise and dropout events by employing a rank constraint
and graph diffusion in the learned cell-to-cell similarity [9]. See Figure 1
for an overview of the framework.
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The framework provides both a standard implementation and a large-
scale extension of SIMLR together with two examples to test the methods
on the datasets by [10] for the standard SIMLR and [11] for the large-scale
extension (see Supplementary Material for details). SIMLR can accurately
analyze both datasets within minutes on a single core laptop.

One of the advantages of SIMLR is that the learned similarities can
be efficiently adapted into multiple downstream applications. Some appli-
cations include prioritizing genes by ranking their concordance with the
similarity and creating low-dimensional representations of cells by trans-
forming the input into a stochastic neighbor embedding framework. We
refer to the Supplementary Material for detailed use cases of the tool and
to [8] for a detailed description of the method and for several applications
on genomic data from public datasets.

3 Discussion

SIMLR infers the cell-to-cell similarities that are used to perform dimen-
sion reduction, clustering, and visualization. While the multiple-kernel
learning framework has obvious advantages on heterogeneous single-cell
datasets, where several clusters coexist, we also believe that this approach,
together with its visualization framework, may also be valuable for data
that does not contain clear clusters, such as cell populations that contain
cells spanning a continuum or a developmental pathway.
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