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ABSTRACT 
Technical variance is a major confounding factor in single-cell RNA sequencing, 
not least because measurements on the same cell are not replicable. We 
developed BEARscc, a tool that simulates experiment-specific technical 
replicates based on a probabilistic model of technical variance trained on RNA 
spike-in measurements. We demonstrate that the tool improves the unsupervised 
classification of cells and aids the interpretation of single-cell RNA-seq 
experiments. 

Introduction	
Single cell messenger RNA sequencing (scRNA-seq) can be used to establish 

an atlas of functional subtypes of cells in normal tissue1 or to identify subpopulations 
of cells relevant to diseases such as cancer2. However, technical variability poses a 
major hurdle in the analysis of scRNA-seq data3,4. Read count measurements often 
vary considerably as a result of stochastic sampling effects, arising from the limited 
amount of starting material3,4. Frequently, expressed transcripts are not amplified 
during library preparation (the “drop-out” effect), resulting in a false-negative 
observation3,4. In addition to random technical variability, systematic variation due to 
differences in sample processing is a common problem. Batch-dependent differences 
in cDNA conversion, library preparation and sequencing depth can easily mask 
biological differences among cells. It was recently reported that the interpretation of 
many published scRNA-seq results might have been compromised by batch effects5. 

One approach to adjust for technical variation between samples that has 
become widely adopted is the addition of known quantities of synthetic RNA “spike-
ins” to each cell sample before cDNA conversion and library preparation6. Several 
methods have been developed that make use of spike-ins to normalize read counts per 
cell before further analysis7,8. However, the use of spike-ins for normalizing read 
counts has been criticized for exacerbating the confounding influence of cell size and 
RNA content7,9.  

Here we present BEARscc, an algorithm that instead uses spike-in 
measurements to model the distribution of experimental technical variation across 
samples in order to simulate realistic technical replicates. This	 approach	 facilitates	
the	interpretation	of	single-cell	experiments,	and	also	represents	a	novel	use	for	
spike-in	 controls	 that	 is	 not	 subject	 to	 the	 same	 problems	 as	 per-sample	
normalization. In summary, running BEARscc consists of three distinct steps (Figure 
1). First, an experiment-specific model of technical variability (“noise”) is estimated 
using observed spike-in read counts (Figure 1, step 1). This model consists of two 
parts. First, expression-dependent variance is approximated by fitting read counts of 
each spike-in across cells to a mixture model (see Methods). Drop-out effects are then 
treated separately. The ‘drop-out injection distribution’ models the likelihood that a 
given transcript concentration will result in a drop-out, and is taken from the observed 
drop-out rate for spike-ins of a given concentration. The ‘drop-out recovery 
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distribution’ models the likelihood that a transcript that had no observed counts in a 
cell was a false negative, and its density is estimated from the drop-out injection 
distribution using Bayes’ theorem. 

In the second step, BEARscc applies this model to produce simulated 
technical replicates (Figure 1, step 2). For every observed gene count below which 
drop-outs occurred amongst the spike-ins, BEARscc draws from the drop-out 
injection distribution to assess whether to convert the count to zero.  For observations 
where the count is zero, the drop-out recovery distribution is used to estimate a new 
value, given the overall drop-out frequency for the gene. All non-zero counts after 
drop-out processing are substituted with a value generated by the model of expression 
variability, parameterized to the observed counts for each gene. This procedure can be 
repeated any number of times to generate a collection of simulated technical 
replicates. Re-analyzing these replicates in the same way as the original observation 
can then reveal the robustness of the results to the modelled technical variation. 

In the third step, we focus on clustering analysis. Each simulated technical 
replicate is clustered using the same algorithm parameters as for the original 
observation. An association matrix is created, where each element indicates whether 
two cells share a cluster identity (1) or cluster apart from each other (0) in a particular 
replicate (Figure 1, step 3). The association matrices are combined to form the noise 
consensus matrix. Each element of this matrix represents the fraction of simulated 
technical replicates that, upon applying the clustering method of choice, resulted in 
two cells clustering together (the association frequency). Finally, three metrics are 
calculated from the consensus matrix: stability is the average frequency with which 
cells within a cluster associate with each other across simulated replicates, 
promiscuity measures the association frequency between cells within a cluster and 
those outside of it, and score is the difference between stability and promiscuity, 
reflecting the overall “robustness” of the cluster. 

A	common	challenge	in	cell	type	classification	is	determining	the	optimal	
number	 of	 clusters,	 k,	 into	 which	 cells	 are	 placed.	 Heuristics,	 such	 as	 the	
silhouette	 index	or	 the	gap	statistic13,14,	 are	commonly	used	but	 fail	 to	account	
for	 expected	 variance	 in	 the	 similarity	 between	 cells.	 BEARscc’s	 score	 statistic	
provides	an	alternative	approach	to	address	 this	 issue.	Performing	hierarchical	
clustering	on	 the	noise	consensus	matrix	allows	BEARscc	 to	split	cells	 into	any	
number	of	clusters	between	1	and	N	 (the	total	number	of	cells).	The	clustering	
with	a	maximum	score	(within	a	biologically	reasonable	range)	then	represents	
the	 optimal	 trade-off	 between	 within-cluster	 stability	 and	 between	 clusters	
variability	(see	Methods).		

To assess the accuracy of BEARscc, we diluted one RNA-seq library derived 
from bulk human brain tissue to single cell RNA concentrations and sequenced 48 of 
these samples with appropriate spike-ins. The mean and variance of the simulated 
counts produced by BEARscc closely matched the experimentally determined values 
(Figure 1, step 1 - top; Supplementary Figure 1a,b). We also observed that for 95% of 
the genes expressed in the library, the simulated drop-out rate changed by less than 
9% (Figure 1, step 1 – bottom, Supplementary Figure 1c). Together, these results	
suggest	 that	 technical	 variation	 simulated	 by	 BEARscc	 closely	 resembles	 that	
observed	 experimentally. The simulated expression of genes with fewer than 1 
observed count deviated slightly from the experimentally determined values, however 
such small expression differences are unlikely to be reproducible as they fall outside 
the dynamic range of any single cell experiment. 
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In addition to the diluted brain RNA samples, we sequenced 45 “blank” 
samples, which only contained spike-ins and trace amounts of environmental 
contamination, producing sporadic read counts. We clustered the technical replicate 
data and the blank cells with three widely used clustering algorithms (RaceID210, 
BackSPIN11, and SC312), expecting perfect separation of brain and blank samples. To 
avoid artifacts due to differences in amplification-dependent library size, we applied 
an adjusted cpm normalization5, otherwise standard parameters were used for all three 
programs. As an alternative to BEARscc, we also tested a simple sampling approach 
where we repeatedly sampled half of all expressed genes and re-clustered the cells 
based on this subset (see Methods). Without BEARscc or sub-sampling, all three 
clustering algorithms were prone to create false-positive clusters (Figure 2a, 
Supplementary Figure 2a-c, top).  In contrast, BEARscc provided a clear 
improvement over the original clustering and the sampling approach (Figure 2a). 
Overall, BEARscc separated brain tissue and blank samples correctly and eliminated 
spurious clusters that corresponded to batch effects (color bars atop Supplementary 
Figure 2a,c). Only in the case of RaceID2 three outlier cells were incorrectly 
identified to be “robust” (color bars atop Supplementary Figure 2b); the libraries for 
these three samples contained fewer than 1,000 observed transcripts, indicating that 
BEARscc is limited by RaceID2’s oversensitivity to library size differences. 

To	 test	 BEARscc	 on	 real	 biological	 data, we applied it on murine brain data 
from Zeisel et al.11. Based on the score statistic, BEARscc reduced the 24 clusters 
produced by BackSPIN into 11 clusters which corresponded well with the manually 
curated cell types described in the original publication (Adjusted Rand Index 
0.72/0.55 for BEARscc/BackSPIN; Figure 2a (right), Figure 2b). 

In a second evaluation, we re-analyzed murine intestinal data obtained by 
Grün et al.10, clustered using RaceID2, as described in the original publication. 
BEARscc indicated that 219 out of 291 cells were robustly classified. However, 
clusters R1 and R2 exhibited markedly lower scores than the other main clusters 
(Supplementary Figure 3a). BEARscc’s consensus matrix reveals high variability in 
clustering patterns of R1/R2 cells. Grün et al. suggest that R1 and R2 reflect closely 
related, undifferentiated cell types (“transit-amplifying” and “stem-like”, 
respectively). Expression patterns of genes characteristic of the two clusters were 
highly similar (Supplementary Figure 4a), compared to those observed between R1 
and the next-largest cluster R5 (Supplementary Figure 4b). In the case of R1 and R2, 
expression fold-change was reduced in technical replicates, frequently falling below 
the significance threshold. BEARscc directly visualized the fact that many cells in R1 
and R2 cannot be reliably classified, but rather appear to represent a point on a 
gradient of differentiation between two cellular states. More	 work	 will	 be	 needed	 to	
fully	 determine	 how	 the	 differentiation	 state	 of	 stem-like	 cells	 is	 reflected	 by	
their	transcriptome. 

In summary, our results demonstrate that BEARscc reduces over-clustering, is 
able to identify biological cell groups in an unsupervised way and provides additional 
insights for the interpretation of single-cell sequencing experiments.  
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FIGURES		
 

 
 
Figure 1 BEARscc algorithm overview. Step 1, Expected variance of gene 
expression between replicate experiments is estimated from the variation of spike-in 
measurements. Top: variation in spike-in read counts corresponds well with 
experimentally observed variability in biological transcripts (for details of control 
experiment see Methods) and read counts simulated by BEARscc. Bottom: Drop-out 
likelihood is modelled separately. Step 2, simulating replicates: an observed counts 
matrix (top) is transformed into multiple simulated technical replicates (bottom) by 
repeatedly applying the noise model derived in Step 1 to every cell in the matrix. Step 
3, calculating a consensus: association matrices that result from clustering each 
simulated replicate (bottom) are averaged into a single noise consensus matrix that 
reflects the frequency with which cells are observed in the same cluster across all 
simulated replicates. Based on this matrix, a noise consensus cluster can then be 
derived (color bar above matrix). 
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Figure 2 BEARscc improves clustering results and aids the interpretation of 
biological results. a, Comparison of clustering accuracy of control data (left) and 
murine brain data (right). Adjusted Rand index denotes agreement with the manually 
annotated grouping of samples (1: perfect, 0: no overlap). b, Example of a noise 
consensus matrix produced by BEARscc on data from murine brain cells clustered 
with BackSPIN. Above heatmap: manually curated clustering of cells (top), BEARscc 
consensus cluster (middle) and unsupervised BackSPIN clusters (bottom). 
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METHODS 
 
Public data. Primary murine cortex and hippocampus single cell measurements for 
3005 cells from Zeisel et al.11 were retrieved from the publicly available Linnarsson 
laboratory data repository (http://linnarssonlab.org/cortex/). Primary murine intestinal 
single cell measurements of 260 cells from Grün et al.1 were downloaded from the 
van Oudenaarden github repository  (https://github.com/dgrun/RaceID). 
 
Implementation. All scripts necessary for implementing BEARscc are available from 
our bitbucket repository as an installable R package 
(https://bitbucket.org/bsblabludwig/bearscc). 
 
Algorithmic generation of simulated technical replicates. Simulated technical 
replicates were generated from the noise mixture-model and two drop-out models. For 
each gene, the count value of each sample is systematically transformed using the 
mixture-model, 𝑍 𝑐 , and the drop-out injection, Pr 𝑋 = 0	 𝑌 = 𝑘), and recovery, 
Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 , distributions in order to generate simulated technical replicates 
as indicated by the following pseudocode: 
 
 
FOR EACH gene, 𝒿 
 FOR EACH count, 𝑐 

IF 𝑐 = 0 
𝑛 ← SAMPLE one count,	𝑦, from Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0  
IF 𝑛 = 0 

  𝑐 ← 0 
ELSE 
 𝑐 ←	SAMPLE one count from 𝑍(𝑛) 
ENDIF 

ELSE 
IF 𝑐 ≤ 𝑘 
 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ← TRUE with probability, Pr 𝑋 = 0	 𝑌 = 𝑘)  

  IF 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 𝑇𝑅𝑈𝐸 
    𝑐 ← 0  
   ELSE 

 𝑐 ← SAMPLE one count from 𝑍(𝑐)  
    ENDIF 

  ELSE 
 𝑐 ← SAMPLE one count from 𝑍(𝑐) 

   ENDIF 
  ENDIF 
  RETURN 𝑐 

DONE 
DONE 
   
 
 
Modelling noise from spike-ins. Technical variance was modelled by fitting a single 
parameter mixture model, 𝑍(𝑐)  to th spike-ins’ observed count distributions. The 
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noise model was fit independently for each spike-in transcript and subsequently 
regressed onto spike-in mean expression to define a generalized noise model.  This 
was accomplished in three steps: 
 

1. Define	 a	 mixture	 model	 composed	 of	 poisson	and	 negative	 binomial	
random	variables:	𝑍	~	 1 − 𝛼 ∗ 𝑃𝑜𝑖𝑠 𝜇 + 𝛼 ∗ 𝑁𝐵𝑖𝑛 𝜇, 𝜎 	
	

2. Empirically	fit	the	parameter,	𝛼𝒾 ,	in	a	spike-in	specific	mixture-model,	
𝑍𝒾 ,	 to	 the	 observed	 distribution	 of	 counts	 for	 each	 ERCC	 spike-in	
transcript,	𝒾,	where	𝜇𝒾	and	𝜎𝒾	are	 the	 observed	mean	 and	 variance	 of	
the	given	spike-in.	The	parameter,	𝛼𝒾 ,	was	chosen	such	that	the	error	
between	the	observed	and	mixture-model	was	minimized.	

 
3. Generalize	 the	 mixture-model	 by	 regressing	𝛼𝒾	parameters	 and	 the	

observed	variance	𝜎𝒾	onto	the	observed	spike-in	mean	expression,	𝜇𝒾 .	
Thus	 the	 mixture	 model	 describing	 the	 noise	 observed	 in	 ERCC	
transcripts	was	 defined	 solely	 by	𝜇,	 which	was	 treated	 as	 the	 count	
transformation	parameter,	𝑐,	 in	the	generation	of	simulated	technical	
replicates	.		

 
In step 2, a mixture model distribution is defined for each spike-in, 𝒾 : 

𝑍𝒾 𝛼𝒾, 𝜇𝒾, 𝜎𝒾 ∼ 	 1 − 𝛼𝒾 ∗ 𝑃𝑜𝑖𝑠 𝜇𝒾 + 𝛼𝒾 ∗ 𝑁𝐵𝑖𝑛 𝜇𝒾, 𝜎𝒾 . The distribution,	𝑍𝒾, is fit 
to the observed counts of the respective spike-in, where  𝛼𝒾 is an empirically fitted 
parameter, such that the 𝛼𝒾  minimizes the difference between the  observed count 
distribution of the spike-in and the respective fitted model, 𝑍𝒾. Specifically, for each 
spike-in transcript ,  𝜇𝒾  and 𝜎𝒾  were taken to be the mean and standard deviation, 
respectively, of the observed counts for spike-in transcript, 𝒾. Then, 𝛼𝒾 was computed 
by empirical parameter optimization; 𝛼𝒾  was taken to be the 𝛼L,M  in the mixture-
model, 𝑍𝒾,M 𝛼𝒾,M, 𝜇𝒾, 𝜎𝒾 ∼ 	 1 − 𝛼𝒾,M ∗ 𝑃𝑜𝑖𝑠 𝜇𝒾 + 𝛼𝒾,M ∗ 𝑁𝐵𝑖𝑛 𝜇𝒾, 𝜎𝒾 , found to 
have the least absolute total difference between the observed count density and the 
density of the fitted model, 𝑍𝒾. In the case of ties, the minimum 𝛼L,M was chosen. 

In step 3, 𝛼 𝑐  was then defined with a linear fit, 𝛼𝒾 = 𝑎 ∗ 𝑙𝑜𝑔2 𝜇𝒾 + 𝑏. 𝜎 𝑐  
was similarly defined, 𝑙𝑜𝑔2 𝜎𝒾 = 𝑎 ∗ 𝑙𝑜𝑔2 𝜇𝒾 + 𝑏 . In this way, the observed 
distribution of counts in spike-in transcripts defined the single parameter mixture-
model, 𝑍 𝑐 , used to transform counts during generation of simulated technical 
replicates: 
 

𝑍(𝑐)	~	 1 − 𝛼 𝑐 ∗ 𝑃𝑜𝑖𝑠 𝑐 + 𝛼(𝑐) ∗ 𝑁𝐵𝑖𝑛 𝑐, 𝜎(𝑐 ). 
 
During technical replicate simulation, the parameter 𝑐 was set to the observed count 
value, 𝑎, and the transformed count in the simulated replicate was determined by 
sampling a single value from 𝑍(𝑐 = 𝑎).  
 
  
Inference of transcript drop-out distributions using spike-ins. A model of the 
drop-outs was developed in order to inform the permutation of zeros during noise 
injection. The observed zeros in spike-in transcripts as a function of actual transcript 
concentration and Bayes’ theorem were used to define two models: the ‘drop-out 
injection distribution’ and the ‘drop-out recovery distribution’.  
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The drop-out injection distribution was described by Pr	(𝑋 = 0	 	𝑌 = 𝑦 , 
where 𝑋  is the distribution of observed counts and 𝑌  is the distribution of actual 
transcript counts; the density was computed by regressing the fraction of zeros 
observed in each sample, 𝐷𝒾, for a given spike-in, 𝒾, onto the expected number spike-
in molecules in the sample, 𝑦𝒾, e.g.  𝐷 = 𝑎 ∗ 𝑦 + 𝑏. Then, 𝐷 describes the density of 
zero-observations conditioned on actual transcript number, 𝑦, or Pr	(𝑋 = 0	 	𝑌 = 𝑦 . 
Notably, each gene was treated with an identical density distribution for drop-out 
injection. 

 In contrast, the density of the drop-out recovery distribution, Pr	(𝑌𝒿 =
𝑦	 	𝑋𝒿 = 0 , is specific to each gene, 𝒿, where 𝑋𝒿 is the distribution of the observed 
counts and 𝑌𝒿 is the distribution of actual transcript counts for a given gene. The gene-
specific drop-out recovery distribution was inferred from drop-out injection 
distribution using Bayes’ theorem and a prior.  This was accomplished in 3 steps: 
 

1. For	 the	 purpose	 of	 applying	 Bayes’	 theorem,	 the	 gene-specific	
distribution,	Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 ,	 was	 taken	 to	 be	 the	 the	 drop-out	
injection	density	for	all	genes,	𝒿.		
	

2. The	 probability	 that	 a	 specific	 transcript	 count	 was	 present	 in	 the	
sample,	Pr	(𝑌𝒿 = 𝑦),	 was	 a	 necessary,	 but	 empirically	 unknowable	
prior.	 Therefore,	 the	 prior	 was	 defined	 using	 the	 law	 of	 total	
probability,	 an	 assumption	 of	 uniformity,	 and	 the	 probability	 that	 a	
zero	 was	 observed	 in	 a	 given	 gene,	Pr 𝑋𝒿 = 0 .	 The	 probability,	
Pr 𝑋𝒿 = 0 ,	 was	 taken	 to	 be	 the	 fraction	 of	 observations	 that	 were	
zero	 for	 a	 given	 gene.	 This	 was	 done	 in	 order	 to	 better	 inform	 the	
density	estimation	of	the	gene-specific	drop-out	recovery	distribution.	
	

3. The	 drop-out	 recovery	 distribution	 density	 was	 then	 computed	 by	
applying	Bayes’	theorem:	

 
(1) Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 = UV	(W𝒿XY	 	Z𝒿X[ ∗UV	(Z𝒿X[)

UV	(W𝒿XY)
.	

	
In the second step, the law of total probability, an assumption of uniformity, 

and the fraction of zero observations in a given gene were leveraged to define the 
prior, Pr 𝑌𝒿 = 𝑦 . First, a threshold of expected number of transcripts, 𝑘 in 𝑌, was 
chosen such that 𝑘 was the maximum value for which the drop-out injection density 
was non-zero. Next, uniformity was assumed for all expected number of transcript 
values,	𝑦 greater than zero and less than or equal to 𝑘; that is Pr 𝑌𝒿 = 𝑦  was defined 
to be some constant probability, 𝓃. Furthermore, Pr 𝑌𝒿 = 𝑦  was defined to be 0 for 
all 𝑦 > 𝑘. In order to inform Pr 𝑌𝒿 = 𝑦  empirically, Pr 𝑌𝒿 = 0  and 𝓃 were derived 
by imposing the law of total probability (2) and unity (3) yielding a system of 
equations:  

 
(2) Pr 𝑋𝒿 = 0 = Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 ∗ Pr	(𝑌𝒿 = 𝑦)^

[XY  
(3) Pr	(𝑌𝒿 = 𝑦)^

[XY = Pr 𝑌𝒿 = 0 + 𝑘 ∗ 𝑛 = 1   
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The probability that a zero is observed given there are no transcripts in the sample, 
Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 0 , was assumed to be 1. With the preceding assumption, solving 
for Pr 𝑌𝒿 = 0  and 𝑛 gives: 

 
(4) 𝑛 = _`UV Z𝒿XY

^
 

(5) Pr 𝑌𝒿 = 0 =
UV W𝒿XY `ab∗ UV	(W𝒿XY	 	Z𝒿X[b

cda

_`ab∗ UV	(W𝒿XY	 	Z𝒿X[b
cda

 

 
In this way,  Pr 𝑌𝒿 = 𝑦  was defined by (4) for 𝑦 in 𝑌𝒿  less than or equal to 𝑘 and 
greater than zero, and defined by (5) for 𝑦 in 𝑌𝒿 equal to zero. For 𝑦 in 𝑌𝒿 greater than 
𝑘, the prior Pr 𝑌𝒿 = 𝑦  was defined to be equal to zero. 
 In the third step, the previously computed prior, Pr 𝑌𝒿 = 𝑦 , the fraction of 
zero observations in a given gene, Pr	(𝑋𝒿 = 0) , and the drop-out injection 
distribution, Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 , were utilized to estimate with Bayes’ theorem the 
density of the drop-out recovery distribution,  Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 . During the 
generation of simulated technical replicates for zero observations and count 
observations less than or equal to 𝑘, values were sampled from the drop-out recovery 
and injection distributions as described in the pseudocode of the algorithm. 
 
Observing real technical noise.  Brain whole tissue total RNA (Agilent 
Technologies, cat 540005) was diluted to 10pg aliquots and added to 1μL. cDNA 
conversion, library preparation, and sequencing were performed by the Wellcome 
Trust Center for Human Genomics Sequencing Core. Blank samples were identically 
prepared with nuclease free water. Samples were pipetted into 96-well plates and 
treated as single cells using Smartseq2 cDNA conversion as described by Picelli et 
al15 with minor modifications. The library was prepared using Fludigm’s 
recommendations for Illumina NexteraXT at ¼ volume with minor modifcations, and 
sequenced on the Illumina HiSeq4000 platform.  Raw reads were mapped to hg19 
using STAR16. Exact position duplicates were removed, and features were counted 
using HTseq 17. 
 
Clustering of counts data. BackSPIN, SC3 and RaceID2 were run according to 
algorithm-specific recommendations 10-12. RaceID2 was allowed to identify cluster 
number under default parameters. For the brain and blanks control experiment data, 
RaceID2 was modified to skip normalization since scaled counts per million 
normalization had already been applied to the data set. The number of clusters, k, 
selected for SC3 clustering was determined empirically by selecting k with the 
optimal silhouette distribution across noise injected counts matrices.  
 
Computation of consensus matrix.  100 simulated replicate matrices for n cells and 
m genes were clustered using the respective clustering algorithm (SC3, BackSPIN, 
RaceID2) as described above. Cluster labels were used to compute an n x n binary 
association matrix for each clustering. Each element of the association matrix 
represents a cell-cell interaction, where a value of 1 indicates that two cells share a 
cluster and a value of 0 indicates two cells do not share a cluster. An arithmetic mean 
was taken for each respective element across the resulting 100 association matrices to 
produce an n x n noise consensus matrix, where each element represents the fraction 
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of noise injected counts matrices that, upon clustering, resulted in two cells sharing a 
cluster. 
 
 
Computation of BEARscc cluster metrics. To calculate cluster stability, the noise 
consensus matrix was subset to cells assigned to the cluster. The cluster stability was 
then calculated as the arithmetic mean of the upper triangle of the subset noise 
consensus matrix. To calculate cluster promiscuity, the rows of the noise consensus 
matrix were subset to cells assigned to the cluster and the columns are subset to the 
cells not assigned to the cluster. For clusters with as many or more cells assigned to 
them than not assigned, the promiscuity was defined as the arithmetic mean of the 
elements in the subset matrix. Otherwise, the columns were further subset to the same 
number of cells as were assigned to the cluster, where the cells outside of the cluster 
with the strongest mean association with cells inside the cluster are chosen. The 
promiscuity was defined as the arithmetic mean of the elements in this further subset 
matrix.  Each cluster’s promiscuity was subtracted from its stability to calculate 
cluster score. 
  
 
Computation of BEARscc cell metrics. To calculate a cell’s stability, the arithmetic 
mean was taken of that cell’s association frequencies with other cell’s within the 
cluster. To calculate a cell’s promiscuity, there were two cases. For cells in clusters 
with as many or more cells assigned to them than not assigned, the promiscuity was 
the arithmetic mean of that cell’s association frequencies with all cells not assigned to 
the relevant cluster. For cells in clusters of size n, with fewer cells assigned to them 
than not assigned, the cell’s promiscuity was the arithmetic mean with the n cells not 
assigned to the cluster with the highest association frequencies. Each cell’s 
promiscuity was subtracted from its stability to calculate cell score. 
 
Estimation of cluster number k. In order to determine the cluster number, k, from 
the hierarchical clustering of the noise consensus, the resulting dendrogram was cut 
multiple times to form N clusterings with cluster numbers k=1 to k=N clusters. The 
average score metric was computed for each clustering, and k was chosen by taking 
the k with the maximum average score metric. Evaluating all possible k from 1 to the 
number of cells in the experiment is computationally expensive and unlikely to be 
biologically meaningful. In this work, N was capped at 0.1 times the number of cells 
in the experiment: N=10 for the brain and blanks control, N=30 for the murine 
intestine experiment, and N=300 for the murine brain data. 
 
Gene sampling. For comparison with BEARscc, 100 subsampling iteration matrices 
for n cells and m genes were generated by sampling one half of expressed genes and 
clustered using the respective clustering algorithm (SC3, BackSPIN, RaceID2). For 
each dataset, genes were excluded with less than 25 total raw counts across all 
samples in the cohort. The remaining genes formed the sample space. In each 
subsampling iteration, one half of the genes were sampled without replacement, and 
their expression across cells was used as the counts matrix. Identically to the 
computation of the BEARscc noise consensus matrix, cluster labels were used to 
compute an n x n binary association matrix for each clustering, and an arithmetic 
mean was taken for each respective element across the resulting 100 association 
matrices to produce an n x n subsampling consensus matrix. Identically to BEARscc 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2017. ; https://doi.org/10.1101/118919doi: bioRxiv preprint 

https://doi.org/10.1101/118919
http://creativecommons.org/licenses/by-nd/4.0/


analysis, the BEARscc score metric was used to determine cluster number k, and the 
resulting cluster labels for each dataset and algorithm were compared with BEARscc 
by computing the adjusted rand index for each with respect to the relevant ground 
truth. 
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Supplementary	 Figure	 1	 BEARscc	 accurately	 models	 technical	 variability.		
Scatterplots	of	observed	vs	simulated	expression	(a)	and	variance	(b),	based	on	
data	 from	 brain	 RNA	 control	 experiment.	 ERCC	 spike-in	 values	 are	 circled	 in	
black.	c,	Difference	between	simulated	and	observed	drop-out	frequency	across	
genes.	
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Supplementary	Figure	2	BEARscc	applied	to	the	brain-and-blanks	control	
experiment	in	combination	with	BackSPIN	(a),	RaceID2	(b)	and	SC3	(c).	Top:	
Separation	of	clusters	by	tissue	and	batch	by	each	algorithm.	RaceID2	and	SC3	
clusters	are	visibly	confounded	by	batch.	Bottom:	BEARscc	noise	consensus	
matrices	for	each	algorithm.	Color	annotations	above	the	noise	consensus	
matrices	denote	the	cluster	assignment	by	the	respective	algorithm,	batch,	
BEARscc	noise	consensus	clusters	and	sample	group,	respecitvely.	
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 Supplementary Figure 3 BEARscc identifies robust cells and clusters in murine 
intestinal data clustered by RaceID2. a, Jitterplot displays the per-cell scores relative 
to the published RaceID2 clustering. b, noise consensus matrix for murine intestinal 
cells clustered with RaceID2. Above heatmap: published (top) and BEARscc-derived 
consensus clustering (bottom). 
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Supplementary	Figure	4	BEARscc	correctly	detects	that	separation	of	“stem-
like”	cell	clusters	R1	and	R2	is	based	on	weak	expression	differences.	(a)	
Heatmap	of	expression	of	genes	characteristic	of	clusters	R1	and	R2,	and	(b)	
clusters	R1	and	R5,	as	described	by	Grün	et	al.	Columns	are	ordered	by	library	
size	per	cell,	rows	sorted	by	significance	of	expression	fold-change	between	
clusters.	Boxplots	on	the	left	denote	the	significance	of	difference	in	expression	
between	the	two	clusters	(Wilcoxon	rank-sum	test).	Red	denotes	the	observed	
values,	whereas	simulated	technical	replicates	are	shown	in	gray.	Solid	line	
denotes	Bonferroni-corrected	significance	threshold.	
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	Supplementary	Figure	5	The	effect	of	the	number	of	perturbations	on	cell-cell	
consensus	clustering	becomes	negligible	after	50	perturbations.	BEARscc	was	
applied	to	RaceID2	clustering	of	brain	whole	tissue	data	and	blank	samples	with	
increasing	numbers	of	simulated	technical	replicates.	a,	A	violin	plot	illustrating	
the	distribution	of	element	by	element	changes	in	the	noise	consensus	matrix	as	
the	number	of	simulated	technical	replicates	increases	from	2	to	5	up	to	200.	b,		
Heatmaps	display	the	noise	consensus	matrix	calculated	by	BEARscc	for	each	
number	of	simulated	technical	replicates.	
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