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ABSTRACT	
Technical	 variance	 is	 a	 major	 confounding	 factor	 in	 single-cell	 RNA	
sequencing,	not	least	because	it	is	not	possible	to	replicate	measurements	
on	 the	 same	 cell.	 We	 present	 BEARscc,	 a	 tool	 that	 uses	 RNA	 spike-in	
controls	 to	 simulate	 experiment-specific	 technical	 replicates.	 We	
demonstrate	that	the	tool	improves	the	unsupervised	classification	of	cells	
and	 facilitates	 the	 biological	 interpretation	 of	 single-cell	 RNA-seq	
experiments.	
	

Single	cell	messenger	RNA	sequencing	(scRNA-seq)	 is	a	powerful	 tool	 to	
study	 cell	 subpopulations	 relevant	 to	 disease	 and	 development,	 including	 rare	
cell	types1,2.	However,	scRNA-seq	has	inherently	high	technical	variability	and	it	
is	 not	possible	 to	have	 true	 technical	 replicates	 for	 the	 same	 cell,	 presenting	 a	
major	limitation	for	scRNA-seq	analysis3,4.	Specifically,	read	count	measurements	
often	vary	considerably	as	a	result	of	stochastic	sampling	effects,	arising	from	the	
limited	 amount	 of	 starting	 material3,4.	 Also,	 false-negative	 observations	
frequently	occur	because	expressed	transcripts	are	not	amplified	during	library	
preparation	 (the	 “drop-out”	 effect)3,4.	 Another	 common	 problem	 is	 systematic	
variation	due	 to	minute	 changes	 in	 sample	processing.	 These	 batch-dependent	
differences	 in	 cDNA	 conversion,	 library	 preparation	 and	 sequencing	 depth	 can	
easily	 mask	 biological	 differences	 among	 cells	 and	 might	 compromise	 many	
published	scRNA-seq	results5.	

One	widely	 adopted	 approach	 to	 adjust	 for	 technical	 variation	 between	
samples	 is	 the	 addition	 of	 known	 quantities	 of	 RNA	 “spike-ins”	 to	 each	 cell	
sample	before	 cDNA	conversion	and	 library	preparation6.	 Several	methods	use	
spike-ins	to	normalize	read	counts	per	cell	before	further	analysis7,8,	but	this	use	
has	 been	 criticized	 because	 it	 exacerbates	 the	 effect	 of	 differences	 in	 RNA	
content	per	cell,	e.g.	due	to	variations	in	cell	size7,9.		

To	 address	 the	 lack	 of	 true	 technical	 replicates	 and	 high	 technical	
variability	 of	 scRNA-seq,	 we	 present	 BEARscc.	 This	 algorithm	 uses	 spike-in	
measurements	 to	 model	 the	 distribution	 of	 experimental	 technical	 variation	
across	samples	to	simulate	realistic	technical	replicates.	The	simulated	replicates	
can	 be	 used	 to	 quantitatively	 and	 qualitatively	 evaluate	 the	 effect	 of	
measurement	 variability	 and	 batch	 effects	 on	 analysis	 of	 any	 scRNA-seq	
experiment,	facilitating	biological	interpretation.	BEARscc	represents	a	novel	use	
for	 spike-in	 controls	 that	 is	 not	 subject	 to	 the	 same	 problems	 as	 per-sample	
normalization.		

BEARscc	consists	of	 three	steps	(Figure	1):	modelling	 technical	variance	
based	 on	 spike-ins	 (Step	 1);	 simulating	 technical	 replicates	 (Step	 2);	 and	
clustering	simulated	replicates	(Step	3).	In	Step	1,	an	experiment-specific	model	
of	 technical	 variability	 (“noise”)	 is	 estimated	 using	 observed	 spike-in	 read	
counts.	This	model	consists	of	two	parts.	In	the	first	part,	expression-dependent	
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variance	is	approximated	by	fitting	read	counts	of	each	spike-in	across	cells	to	a	
mixture	 model	 (see	 Methods).	 The	 second	 part,	 addresses	 drop-out	 effects.	
Based	on	the	observed	drop-out	rate	for	spike-ins	of	a	given	concentration,	the	
‘drop-out	 injection	 distribution’	 models	 the	 likelihood	 that	 a	 given	 transcript	
concentration	 will	 result	 in	 a	 drop-out.	 The	 ‘drop-out	 recovery	 distribution’	 is	
estimated	 from	 the	 drop-out	 injection	 distribution	 using	 Bayes’	 theorem	 and	
models	the	likelihood	that	a	transcript	that	had	no	observed	counts	in	a	cell	was	
a	false	negative.		

In	Step	2,	BEARscc	applies	 the	model	 from	Step	1	 to	produce	 simulated	
technical	 replicates.	 For	 every	 observed	 gene	 count	 below	 which	 drop-outs	
occurred	amongst	the	spike-ins,	BEARscc	assesses	whether	to	convert	the	count	
to	zero	(using	the	drop-out	 injection	distribution).	 	For	observations	where	the	
count	is	zero,	the	drop-out	recovery	distribution	is	used	to	estimate	a	new	value,	
based	 on	 the	 overall	 drop-out	 frequency	 for	 that	 gene.	 After	 this	 drop-out	
processing,	 all	 non-zero	 counts	 are	 substituted	 with	 a	 value	 generated	 by	 the	
model	 of	 expression	 variance	 (from	 Step	 1),	 parameterized	 to	 the	 observed	
counts	for	each	gene.	Step	2	can	be	repeated	any	number	of	times	to	generate	a	
collection	of	simulated	technical	replicates.		

Re-analyzing	 the	 simulated	 technical	 replicates	 in	 the	 same	way	 as	 the	
original	 observations	 can	 reveal	 the	 robustness	 of	 the	 results	 to	 the	modelled	
technical	 variation.	 Specifically,	 in	 Step	3	we	 focus	on	 clustering	analysis.	Each	
simulated	 technical	 replicate	 is	 clustered	using	 the	same	algorithm	parameters	
as	 for	 the	 original	 observation.	 An	 association	matrix	 is	 created	 in	which	 each	
element	indicates	whether	two	cells	share	a	cluster	identity	(1)	or	cluster	apart	
from	 each	 other	 (0)	 in	 a	 particular	 replicate	 (Figure	 1,	 step	 3).	We	 provide	 a	
visual	 representation	 of	 the	 clustering	 variation	 on	 a	 cell-by-cell	 level	 by	
combining	 association	 matrices	 to	 form	 the	 ‘noise	 consensus	 matrix’.	 Each	
element	of	this	matrix	represents	the	fraction	of	simulated	technical	replicates	in	
which	two	cells	cluster	together	(the	‘association	frequency’),	after	using	a	chosen	
clustering	 method.	 To	 quantitatively	 evaluate	 the	 results,	 three	 metrics	 are	
calculated	 from	 the	noise	 consensus	matrix:	 ‘stability’	 is	 the	average	 frequency	
with	 which	 cells	 within	 a	 cluster	 associate	 with	 each	 other	 across	 simulated	
replicates;	‘promiscuity’	measures	the	association	frequency	between	cells	within	
a	cluster	and	those	outside	of	 it;	and	 ‘score’	 is	 the	difference	between	 ‘stability’	
and	 ‘promiscuity’.	 Importantly,	 ‘score’	 reflects	 the	 overall	 “robustness”	 of	 a	
cluster	to	technical	variance.	

The	‘score’	statistic	can	also	be	used	to	address	the	challenge	in	cell	type	
classification	of	determining	the	optimal	number	of	clusters,	k,	 into	which	cells	
are	 placed.	Heuristics,	 such	 as	 the	 silhouette	 index	 or	 the	 gap	 statistic10,11,	 are	
commonly	 used	 but	 fail	 to	 account	 for	 expected	 variance	 in	 the	 similarity	
between	 cells.	 BEARscc’s	 ‘score’	 statistic	 provides	 an	 alternative	 approach	 to	
address	 this	 issue.	 Performing	 hierarchical	 clustering	 on	 the	 ‘noise	 consensus	
matrix’	allows	BEARscc	to	split	cells	into	any	number	of	clusters	between	1	and	
N	 (the	 total	 number	 of	 cells).	 The	 clustering	with	 a	maximum	 ‘score’	 (within	 a	
biologically	reasonable	range)	represents	the	optimal	trade-off	between	within-
cluster	stability	and	between-cluster	variability	(see	Methods).		

To	test	the	accuracy	of	BEARscc,	we	diluted	one	RNA-seq	library	derived	
from	bulk	human	brain	tissue	to	single	cell	RNA	concentrations	and	sequenced	
48	of	these	samples	with	ERCC	spike-ins12;	these	are	‘real’	technical	replicates	to	
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compare	to	the	simulated	technical	replicates	generated	by	BEARscc.	The	mean	
and	variance	of	the	simulated	counts	produced	by	BEARscc	closely	matched	the	
experimentally	determined	values	(Figure	1,	step	1	-	top;	Supplementary	Figure	
1a,b).	For	95%	of	the	genes	expressed	in	the	library,	the	simulated	drop-out	rate	
differed	 from	 the	 observed	 drop-out	 rate	 by	 less	 than	 9%	 (Figure	 1,	 step	 1	 –	
bottom;	Supplementary	Figure	1c).	Together,	these	results	suggest	that	technical	
variation	simulated	by	BEARscc	closely	 resembles	 technical	variation	observed	
experimentally.	 The	 simulated	 expression	 of	 genes	 with	 less	 than	 1	 observed	
count	 deviated	 slightly	 from	 the	 experimentally	 determined	 values	
(Supplementary	 Figure	 1a),	 however	 such	 small	 expression	 differences	 are	
unlikely	to	be	reproducible	as	they	fall	outside	the	dynamic	range	of	any	single	
cell	experiment.	

To	benchmark	BEARscc,	we	performed	a	control	experiment	in	which	we	
sequenced	45	“blank”	samples	alongside	the	diluted	brain	RNA	samples,	 in	two	
batches.	 The	 blanks	 only	 contained	 spike-ins	 and	 trace	 amounts	 of	
environmental	contamination,	producing	sporadic	read	counts.	We	clustered	the	
data	 from	 the	 brain	 samples	 and	 blanks	 using	 three	 widely	 used	 clustering	
algorithms	 (RaceID213,	BackSPIN14,	 and	SC315),	 either	alone	or	after	 simulating	
technical	 replicates	 using	 BEARscc.	 Correct	 clustering	 should	 give	 perfect	
separation	of	 brain	 and	blank	 samples.	To	 avoid	 artifacts	due	 to	differences	 in	
amplification-dependent	 library	 size,	 we	 applied	 an	 adjusted	 cpm	
normalization5.	 Otherwise,	 standard	 parameters	 were	 used	 for	 all	 three	
clustering	 algorithms.	 As	 an	 alternative	 to	 BEARscc,	 we	 also	 tested	 a	 simple	
sampling	approach	where	we	repeatedly	sampled	half	of	all	expressed	genes	and	
re-clustered	 the	 cells	based	on	 this	 subset	 (see	Methods).	Without	BEARscc	or	
this	 sampling	 approach,	 all	 three	 clustering	 algorithms	 created	 false-positive	
clusters	(Figure	2a,	Supplementary	Figure	2a-c,	top).	 	BEARscc	provided	a	clear	
improvement	 over	 the	 original	 clustering	 and	 the	 sampling	 approach	 (Figure	
2a).	 Overall,	 BEARscc	 separated	 brain	 tissue	 and	 blank	 samples	 correctly	 and	
eliminated	spurious	clusters	that	corresponded	to	batch	effects	(Supplementary	
Figure	 2a,c,	 colored	 bars	 above	 matrices).	 In	 the	 case	 of	 using	 BEARscc	 with	
RaceID2,	 three	 outlier	 cells	 were	 incorrectly	 identified	 to	 be	 “robust”	 clusters	
(Supplementary	 Figure	 2b,	 colored	 bars	 above	matrix);	 the	 libraries	 for	 these	
three	samples	contained	 fewer	 than	1,000	observed	transcripts,	 indicating	 that	
BEARscc	is	limited	by	RaceID2’s	oversensitivity	to	library	size	differences.	

To	 test	 BEARscc	 on	 real	 biological	 data,	 we	 applied	 it	 on	murine	 brain	
data	 (3005	 cells)	 from	 Zeisel	 et	 al.14.	 Based	 on	 the	 ‘score’	 statistic,	 BEARscc	
reduced	 the	 24	 clusters	 produced	 by	 BackSPIN	 (the	 algorithm	 used	 in	 the	
original	publication)	into	11	clusters	which	corresponded	well	with	the	manually	
curated	 cell	 types	 described	 in	 the	 original	 publication	 (Adjusted	 Rand	 Index	
0.72	with	BEARscc,	 and	0.55	 for	BackSPIN	alone;	Figure	2a	 (right),	 Figure	2b).	
Therefore,	BEARscc	provided	an	optimal	grouping	of	cells	without	 the	effort	of	
manual	curation.	

In	a	second	evaluation,	we	re-analyzed	murine	intestinal	data	(291	cells)	
obtained	 by	 Grün	 et	 al.13,	 using	 BEARscc	 to	 generate	 simulated	 technical	
replicates	and	RaceID2	(as	described	 in	 the	original	publication)	 for	clustering.	
The	 ‘score’	 metric	 from	 BEARscc	 indicated	 that	 219	 out	 of	 291	 cells	 were	
robustly	 classified	 in	 the	 original	 work.	 However,	 the	 two	 largest	 clusters	 -	
“cluster	1”	 and	 “cluster	2”	 -	 exhibited	 low	 scores	 (-0.07	 and	0.20,	 respectively)	
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compared	to	the	other	non-outlier	clusters	3,	4	and	5	(Supplementary	Figure	3a).	
The	 BEARscc	 noise	 consensus	matrix	 reveals	 high	 variability	 in	 the	 clustering	
patterns	 of	 cells	 in	 clusters	 1	 and	 2	 (Supplementary	 Figure	 3b).	 Grün	 et	 al.	
suggest	 that	 clusters	1	 and	2	 reflect	 closely	 related,	 undifferentiated	 cell	 types	
(“transit-amplifying”	and	“stem-like”,	respectively).	Expression	patterns	of	genes	
characteristic	of	the	two	clusters	were	highly	similar	(Supplementary	Figure	4a),	
compared	 to	 the	expression	differences	between	cluster	1	and	 the	next-largest	
cluster	(cluster	5)	(Supplementary	Figure	4b).	Expression	fold-changes	between	
clusters	 1	 and	 2,	 were	 reduced	 in	 technical	 replicates,	 falling	 below	 the	
significance	threshold	for	many	genes.	BEARscc	shows	that	many	cells	in	clusters	
1	and	2	cannot	be	reliably	classified	 into	one	cluster	or	 the	other;	 instead	 they	
seem	 to	 lie	 on	 a	 gradient	 of	 differentiation	 between	 two	 cellular	 states.	 More	
work	will	be	needed	to	fully	determine	how	the	differentiation	state	of	stem-like	
cells	is	reflected	by	their	transcriptome.	

In	 summary,	 our	 results	 demonstrate	 that	 BEARscc	 reduces	 over-
clustering,	is	able	to	identify	biologically	relevant	cell	groups	in	an	unsupervised	
way	 and	 provides	 additional	 insights	 for	 the	 interpretation	 of	 single-cell	
sequencing	experiments.	 	

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/118919doi: bioRxiv preprint 

https://doi.org/10.1101/118919
http://creativecommons.org/licenses/by-nd/4.0/


References	
1.	 Grün,	D.	et	al.	Single-cell	messenger	RNA	sequencing	reveals	rare	intestinal	cell	types.	

Nature	525,	251–255	(2015).	
2.	 Tirosh,	I.	et	al.	Dissecting	the	multicellular	ecosystem	of	metastatic	melanoma	by	single-

cell	RNA-seq.	Science	352,	189–196	(2016).	
3.	 Grün,	D.,	Kester,	L.	&	van	Oudenaarden,	A.	Validation	of	noise	models	for	single-cell	

transcriptomics.	Nat	Methods	11,	637–640	(2014).	
4.	 Kim,	J.	K.	et	al.	Characterizing	noise	structure	in	single-cell	RNA-seq	distinguishes	genuine	

from	technical	stochastic	allelic	expression.	Nat	Commun	6,	8687	(2015).	
5.	 Hicks,	S.	C.,	Teng,	M.	&	Irizarry,	R.	A.	On	the	widespread	and	critical	impact	of	systematic	

bias	and	batch	effects	in	single-cell	RNA-Seq	data.	BioRxiv	(2015).	doi:10.1101/025528	
6.	 Jiang,	L.	et	al.	Synthetic	spike-in	standards	for	RNA-seq	experiments.	Genome	Res	21,	

1543–1551	(2011).	
7.	 Vallejos,	C.	A.,	Marioni,	J.	C.	&	Richardson,	S.	BASiCS:	Bayesian	Analysis	of	Single-Cell	

Sequencing	Data.	PLoS	Comput	Biol	11,	e1004333–18	(2015).	
8.	 Brennecke,	P.	et	al.	Accounting	for	technical	noise	in	single-cell	RNA-seq	experiments.	Nat	

Methods	10,	1093–1095	(2013).	
9.	 Wagner,	A.,	Regev,	A.	&	Yosef,	N.	Revealing	the	vectors	of	cellular	identity	with	single-cell	

genomics.	Nat	Biotechnol	34,	1145–1160	(2016).	
10.	 Rousseeuw,	P.	J.	Silhouettes:	A	graphical	aid	to	the	interpretation	and	validation	of	cluster	

analysis.	J	Comput	Appl	Math	20,	53–65	(1987).	
11.	 Tibshirani,	R.,	Walther,	G.	&	Hastie,	T.	Estimating	the	number	of	clusters	in	a	data	set	via	

the	gap	statistic.	J	Royal	Statistical	Soc	B	63,	411–423	(2001).	
12.	 The	External	RNA	Controls	Consortium:	a	progress	report.	2,	731–734	(2005).	
13.	 Grün,	D.	et	al.	De	Novo	Prediction	of	Stem	Cell	Identity	using	Single-Cell	Transcriptome	

Data.	Stem	Cell	19,	266–277	(2016).	
14.	 Zeisel,	A.	et	al.	Cell	types	in	the	mouse	cortex	and	hippocampus	revealed	by	single-cell	

RNA-seq.	Science	347,	1138–1142	(2015).	
15.	 Kiselev,	V.	Y.	et	al.	SC3	-	consensus	clustering	of	single-cell	RNA-Seq	data.	BioRxiv	(2016).	

doi:10.1101/036558	
16.	 Picelli,	S.	et	al.	Full-length	RNA-seq	from	single	cells	using	Smart-seq2.	Nat	Protoc	9,	171–

181	(2014).	
17.	 Dobin,	A.	et	al.	STAR:	ultrafast	universal	RNA-seq	aligner.	Bioinformatics	29,	15–21	

(2012).	
	
	
	 	

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/118919doi: bioRxiv preprint 

https://doi.org/10.1101/118919
http://creativecommons.org/licenses/by-nd/4.0/


FIGURES		
	

	
	
Figure	 1	 Overview	 of	 the	 BEARscc	 algorithm.	 Step	 1,	 The	 variance	 of	 gene	
expression	expected	in	a	replicate	experiment	is	estimated	from	the	variation	of	
spike-in	measurements.	Top:	variation	in	spike-in	read	counts	corresponds	well	
with	experimentally	observed	variability	 in	biological	 transcripts	(for	details	of	
control	 experiment	 see	 Methods)	 and	 read	 counts	 simulated	 by	 BEARscc.	
Bottom:	Drop-out	likelihood	is	modelled	separately,	based	on	the	drop-out	rate	
for	spike-ins	of	a	given	concentration.	Shown	is	the	average	percentage	drop-out	
rate	 as	 a	 function	 of	 the	 number	 of	 transcripts	 per	 sample,	 for	 spike-ins,	
simulated	replicates	and	experimental	observations	in	a	control	experiment	(see	
Methods).	Step	2,	simulating	technical	replicates:	the	observed	gene	counts	(top	
matrix)	are	transformed	into	multiple	simulated	technical	replicates	(bottom)	by	
repeatedly	applying	the	noise	model	derived	in	Step	1	to	every	cell	in	the	matrix.	
Step	3,	 calculating	 a	 consensus:	 simulated	 replicate	 (from	 Step	 2)	 is	 clustered	
create	an	association	matrix.	All	the	association	matrices	(bottom)	are	averaged	
into	a	single	noise	consensus	matrix	(top)	that	reflects	the	frequency	with	which	
cells	are	observed	 in	 the	same	cluster	across	all	 simulated	replicates.	Based	on	
this	 matrix,	 noise	 consensus	 clusters	 can	 then	 be	 derived	 (colored	 bar	 above	
matrix).	
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Figure	 2	 BEARscc	 improves	 clustering	 results	 and	 aids	 the	 interpretation	 of	
biological	results.	a,	Comparison	of	clustering	accuracy	of	control	data	(left)	and	
murine	 brain	 data	 (right).	 Adjusted	 Rand	 index	 denotes	 agreement	 with	 the	
manually	 annotated	 grouping	 of	 samples	 (1:	 perfect,	 0:	 no	 overlap).	 ‘BEARscc’	
indicates	that	BEARscc	was	used	to	generate	simulated	technical	replicates	that	
were	 clustered	 using	 the	 algorithm	 indicated	 below	 the	 graph;	 ‘Sampling’	
indicates	 that	 a	 sub-sampling	 approach	 (see	 text)	 was	 used	 before	 clustering	
with	each	algorithm;	 ‘Original’	 indicates	 that	 the	clustering	algorithm	was	used	
alone.	 b,	 Example	 of	 a	 noise	 consensus	 matrix	 produced	 by	 BEARscc	 on	 data	
from	murine	brain	cells	(from	Zeisel	et	al.)	clustered	with	BackSPIN.	Bars	above	
heatmap	show	the	manually	curated	clustering	of	cells	(top),	BEARscc	consensus	
cluster	(middle)	and	unsupervised	BackSPIN	clusters	(bottom).	
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METHODS	
	
Public	data.	Primary	murine	cortex	and	hippocampus	single	cell	measurements	
for	 3005	 cells	 from	 Zeisel	 et	 al.14	 were	 retrieved	 from	 the	 publicly	 available	
Linnarsson	 laboratory	 data	 repository	 (http://linnarssonlab.org/cortex/).	
Primary	murine	intestinal	single	cell	measurements	of	260	cells	from	Grün	et	al.1	
were	 downloaded	 from	 the	 van	 Oudenaarden	 github	 repository		
(https://github.com/dgrun/RaceID).	
	
Implementation.	All	scripts	necessary	for	implementing	BEARscc	are	available	
from	 our	 bitbucket	 repository	 as	 an	 installable	 R	 package	
(https://bitbucket.org/bsblabludwig/bearscc).	
	
Algorithmic	 generation	 of	 simulated	 technical	 replicates.	 Simulated	
technical	replicates	were	generated	from	the	noise	mixture-model	and	two	drop-
out	 models.	 For	 each	 gene,	 the	 count	 value	 of	 each	 sample	 is	 systematically	
transformed	 using	 the	 mixture-model,	𝑍 𝑐 ,	 and	 the	 drop-out	 injection,	
Pr 𝑋 = 0	 𝑌 = 𝑘),	 and	 recovery,	Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 ,	 distributions	 in	 order	 to	
generate	 simulated	 technical	 replicates	 as	 indicated	 by	 the	 following	
pseudocode:	
	
	
FOR	EACH	gene,	𝒿	
	 FOR	EACH	count,	𝑐	

IF	𝑐 = 0	
𝑛 ←	SAMPLE	one	count,	𝑦,	from	Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 	
IF	𝑛 = 0	

	 	 𝑐 ← 0	
ELSE	
	 𝑐 ←	SAMPLE	one	count	from	𝑍(𝑛)	
ENDIF	

ELSE	
IF	𝑐 ≤ 𝑘	
	 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ←	TRUE	with	probability,	Pr 𝑋 = 0	 𝑌 = 𝑘)		

	 	 IF	𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 𝑇𝑅𝑈𝐸	
	 	 	 	 𝑐 ← 0	 	
	 	 	 ELSE	

	 𝑐 ←	SAMPLE	one	count	from	𝑍(𝑐)		
	 	 	 	 ENDIF	

	 	 ELSE	
	 𝑐 ←	SAMPLE	one	count	from	𝑍(𝑐)	

	 	 	 ENDIF	
	 	 ENDIF	
	 	 RETURN	𝑐	

DONE	
DONE	
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Modelling	noise	from	spike-ins.	Technical	variance	was	modelled	by	 fitting	a	
single	 parameter	 mixture	 model,	 𝑍(𝑐) 	to	 th	 spike-ins’	 observed	 count	
distributions.	The	noise	model	was	fit	independently	for	each	spike-in	transcript	
and	 subsequently	 regressed	 onto	 spike-in	 mean	 expression	 to	 define	 a	
generalized	noise	model.		This	was	accomplished	in	three	steps:	
	

1. Define	 a	 mixture	 model	 composed	 of	 poisson	and	 negative	 binomial	
random	variables:	𝑍	~	 1 − 𝛼 ∗ 𝑃𝑜𝑖𝑠 𝜇 + 𝛼 ∗ 𝑁𝐵𝑖𝑛 𝜇, 𝜎 	
	

2. Empirically	fit	the	parameter,	𝛼𝒾 ,	in	a	spike-in	specific	mixture-model,	
𝑍𝒾 ,	 to	 the	 observed	 distribution	 of	 counts	 for	 each	 ERCC	 spike-in	
transcript,	𝒾,	where	𝜇𝒾	and	𝜎𝒾	are	 the	 observed	mean	 and	 variance	 of	
the	given	spike-in.	The	parameter,	𝛼𝒾 ,	was	chosen	such	that	the	error	
between	the	observed	and	mixture-model	was	minimized.	

	
3. Generalize	 the	 mixture-model	 by	 regressing	𝛼𝒾	parameters	 and	 the	

observed	variance	𝜎𝒾	onto	the	observed	spike-in	mean	expression,	𝜇𝒾 .	
Thus	 the	 mixture	 model	 describing	 the	 noise	 observed	 in	 ERCC	
transcripts	was	 defined	 solely	 by	𝜇,	 which	was	 treated	 as	 the	 count	
transformation	parameter,	𝑐,	 in	the	generation	of	simulated	technical	
replicates	.		

	
In	 step	 2,	 a	 mixture	 model	 distribution	 is	 defined	 for	 each	 spike-in,	𝒾:	

𝑍𝒾 𝛼𝒾, 𝜇𝒾, 𝜎𝒾 ∼ 	 1 − 𝛼𝒾 ∗ 𝑃𝑜𝑖𝑠 𝜇𝒾 + 𝛼𝒾 ∗ 𝑁𝐵𝑖𝑛 𝜇𝒾, 𝜎𝒾 .	The	distribution,	𝑍𝒾 ,	is	fit	
to	 the	 observed	 counts	 of	 the	 respective	 spike-in,	 where	 	𝛼𝒾	is	 an	 empirically	
fitted	 parameter,	 such	 that	 the	𝛼𝒾 	minimizes	 the	 difference	 between	 the		
observed	 count	distribution	of	 the	 spike-in	 and	 the	 respective	 fitted	model,	𝑍𝒾 .	
Specifically,	for	each	spike-in	transcript,	𝜇𝒾	and	𝜎𝒾	were	taken	to	be	the	mean	and	
standard	deviation,	respectively,	of	the	observed	counts	for	spike-in	transcript,	𝒾.	
Then,	𝛼𝒾	was	computed	by	empirical	parameter	optimization;	𝛼𝒾	was	taken	to	be	
the	 𝛼L,M 	in	 the	 mixture-model,	 𝑍𝒾,M 𝛼𝒾,M, 𝜇𝒾, 𝜎𝒾 ∼ 	 1 − 𝛼𝒾,M ∗ 𝑃𝑜𝑖𝑠 𝜇𝒾 + 𝛼𝒾,M ∗
𝑁𝐵𝑖𝑛 𝜇𝒾, 𝜎𝒾 ,	 found	 to	 have	 the	 least	 absolute	 total	 difference	 between	 the	
observed	count	density	and	the	density	of	the	fitted	model,	𝑍𝒾 .	In	the	case	of	ties,	
the	minimum	𝛼L,M 	was	chosen.	

In	 step	 3,	𝛼 𝑐 	was	 then	 defined	with	 a	 linear	 fit,	𝛼𝒾 = 𝑎 ∗ 𝑙𝑜𝑔2 𝜇𝒾 + 𝑏.	
𝜎 𝑐 	was	 similarly	 defined,	 𝑙𝑜𝑔2 𝜎𝒾 = 𝑎 ∗ 𝑙𝑜𝑔2 𝜇𝒾 + 𝑏 .	 In	 this	 way,	 the	
observed	 distribution	 of	 counts	 in	 spike-in	 transcripts	 defined	 the	 single	
parameter	mixture-model,	𝑍 𝑐 ,	 used	 to	 transform	counts	during	generation	of	
simulated	technical	replicates:	
	

𝑍(𝑐)	~	 1 − 𝛼 𝑐 ∗ 𝑃𝑜𝑖𝑠 𝑐 + 𝛼(𝑐) ∗ 𝑁𝐵𝑖𝑛 𝑐, 𝜎(𝑐 ).	
	
During	 technical	 replicate	 simulation,	 the	 parameter	𝑐	was	 set	 to	 the	 observed	
count	 value,	𝑎,	 and	 the	 transformed	 count	 in	 the	 simulated	 replicate	 was	
determined	by	sampling	a	single	value	from	𝑍(𝑐 = 𝑎).		
	
	 	
Inference	 of	 transcript	 drop-out	 distributions	 using	 spike-ins.	A	model	 of	
the	drop-outs	was	developed	in	order	to	inform	the	permutation	of	zeros	during	
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noise	injection.	The	observed	zeros	in	spike-in	transcripts	as	a	function	of	actual	
transcript	 concentration	 and	Bayes’	 theorem	were	 used	 to	 define	 two	models:	
the	‘drop-out	injection	distribution’	and	the	‘drop-out	recovery	distribution’.		

The	drop-out	 injection	distribution	was	described	by	Pr	(𝑋 = 0	 	𝑌 = 𝑦 ,	
where	𝑋	is	the	distribution	of	observed	counts	and	𝑌	is	the	distribution	of	actual	
transcript	counts;	the	density	was	computed	by	regressing	the	fraction	of	zeros	
observed	 in	 each	 sample,	𝐷𝒾 ,	 for	 a	 given	 spike-in,	𝒾,	 onto	 the	 expected	number	
spike-in	 molecules	 in	 the	 sample,	𝑦𝒾 ,	 e.g.	 	𝐷 = 𝑎 ∗ 𝑦 + 𝑏.	 Then,	𝐷	describes	 the	
density	 of	 zero-observations	 conditioned	 on	 actual	 transcript	 number,	𝑦,	 or	
Pr	(𝑋 = 0	 	𝑌 = 𝑦 .	 Notably,	 each	 gene	 was	 treated	 with	 an	 identical	 density	
distribution	for	drop-out	injection.	

	In	 contrast,	 the	 density	 of	 the	 drop-out	 recovery	 distribution,	Pr	(𝑌𝒿 =
𝑦	 	𝑋𝒿 = 0 ,	 is	 specific	 to	 each	 gene,	𝒿,	 where	𝑋𝒿 	is	 the	 distribution	 of	 the	
observed	counts	and	𝑌𝒿	is	the	distribution	of	actual	transcript	counts	for	a	given	
gene.	The	gene-specific	drop-out	recovery	distribution	was	 inferred	from	drop-
out	 injection	 distribution	 using	 Bayes’	 theorem	 and	 a	 prior.	 	 This	 was	
accomplished	in	3	steps:	
	

1. For	 the	 purpose	 of	 applying	 Bayes’	 theorem,	 the	 gene-specific	
distribution,	Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 ,	 was	 taken	 to	 be	 the	 the	 drop-out	
injection	density	for	all	genes,	𝒿.		
	

2. The	 probability	 that	 a	 specific	 transcript	 count	 was	 present	 in	 the	
sample,	Pr	(𝑌𝒿 = 𝑦),	 was	 a	 necessary,	 but	 empirically	 unknowable	
prior.	 Therefore,	 the	 prior	 was	 defined	 using	 the	 law	 of	 total	
probability,	 an	 assumption	 of	 uniformity,	 and	 the	 probability	 that	 a	
zero	 was	 observed	 in	 a	 given	 gene,	Pr 𝑋𝒿 = 0 .	 The	 probability,	
Pr 𝑋𝒿 = 0 ,	 was	 taken	 to	 be	 the	 fraction	 of	 observations	 that	 were	
zero	 for	 a	 given	 gene.	 This	 was	 done	 in	 order	 to	 better	 inform	 the	
density	estimation	of	the	gene-specific	drop-out	recovery	distribution.	
	

3. The	 drop-out	 recovery	 distribution	 density	 was	 then	 computed	 by	
applying	Bayes’	theorem:	

	

(1) Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 = UV	(W𝒿XY	 	Z𝒿X[ ∗UV	(Z𝒿X[)
UV	(W𝒿XY)

.	

	
In	 the	 second	 step,	 the	 law	 of	 total	 probability,	 an	 assumption	 of	

uniformity,	and	the	fraction	of	zero	observations	in	a	given	gene	were	leveraged	
to	 define	 the	 prior,	Pr 𝑌𝒿 = 𝑦 .	 First,	 a	 threshold	 of	 expected	 number	 of	
transcripts,	𝑘	in	𝑌,	was	chosen	such	that	𝑘	was	the	maximum	value	for	which	the	
drop-out	 injection	 density	was	 non-zero.	Next,	 uniformity	was	 assumed	 for	 all	
expected	number	of	transcript	values,	𝑦	greater	than	zero	and	less	than	or	equal	
to	𝑘 ;	 that	 is	Pr 𝑌𝒿 = 𝑦 	was	 defined	 to	 be	 some	 constant	 probability,	𝓃 .	
Furthermore,	Pr 𝑌𝒿 = 𝑦 	was	 defined	 to	 be	 0	 for	 all	𝑦 > 𝑘.	 In	 order	 to	 inform	
Pr 𝑌𝒿 = 𝑦 	empirically,	Pr 𝑌𝒿 = 0 	and	𝓃	were	 derived	 by	 imposing	 the	 law	 of	
total	probability	(2)	and	unity	(3)	yielding	a	system	of	equations:		
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(2)	Pr 𝑋𝒿 = 0 = Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 ∗ Pr	(𝑌𝒿 = 𝑦)^

[XY 	
(3)	 Pr	(𝑌𝒿 = 𝑦)^

[XY = Pr 𝑌𝒿 = 0 + 𝑘 ∗ 𝑛 = 1			
	

The	 probability	 that	 a	 zero	 is	 observed	 given	 there	 are	 no	 transcripts	 in	 the	
sample,	 Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 0 ,	 was	 assumed	 to	 be	 1.	 With	 the	 preceding	
assumption,	solving	for	Pr 𝑌𝒿 = 0 	and	𝑛	gives:	

	
(4)	𝑛 = _`UV Z𝒿XY

^
	

(5)	Pr 𝑌𝒿 = 0 =
UV W𝒿XY `ab∗ UV	(W𝒿XY	 	Z𝒿X[b

cda

_`ab∗ UV	(W𝒿XY	 	Z𝒿X[b
cda

	

	
In	this	way,		Pr 𝑌𝒿 = 𝑦 	was	defined	by	(4)	for	𝑦	in	𝑌𝒿	less	than	or	equal	to	𝑘	and	
greater	than	zero,	and	defined	by	(5)	for	𝑦	in	𝑌𝒿	equal	to	zero.	For	𝑦	in	𝑌𝒿	greater	
than	𝑘,	the	prior	Pr 𝑌𝒿 = 𝑦 	was	defined	to	be	equal	to	zero.	
	 In	the	third	step,	 the	previously	computed	prior,	Pr 𝑌𝒿 = 𝑦 ,	 the	fraction	
of	 zero	 observations	 in	 a	 given	 gene,	Pr	(𝑋𝒿 = 0),	 and	 the	 drop-out	 injection	
distribution,	Pr	(𝑋𝒿 = 0	 	𝑌𝒿 = 𝑦 ,	were	utilized	to	estimate	with	Bayes’	 theorem	
the	 density	 of	 the	 drop-out	 recovery	 distribution,	 	Pr	(𝑌𝒿 = 𝑦	 	𝑋𝒿 = 0 .	 During	
the	generation	of	simulated	technical	replicates	for	zero	observations	and	count	
observations	 less	 than	 or	 equal	 to	𝑘,	 values	 were	 sampled	 from	 the	 drop-out	
recovery	 and	 injection	 distributions	 as	 described	 in	 the	 pseudocode	 of	 the	
algorithm.	
	
Observing	 real	 technical	 noise.	 	 Brain	 whole	 tissue	 total	 RNA	 (Agilent	
Technologies,	cat	540005)	was	diluted	to	10pg	aliquots	and	added	to	1μL.	cDNA	
conversion,	 library	 preparation,	 and	 sequencing	 were	 performed	 by	 the	
Wellcome	 Trust	 Center	 for	 Human	 Genomics	 Sequencing	 Core.	 Blank	 samples	
were	identically	prepared	with	nuclease	free	water.	Samples	were	pipetted	into	
96-well	plates	 and	 treated	as	 single	 cells	using	Smartseq2	cDNA	conversion	as	
described	by	Picelli	et	al16	with	minor	modifications.	The	 library	was	prepared	
using	 Fludigm’s	 recommendations	 for	 Illumina	 NexteraXT	 at	 ¼	 volume	 with	
minor	modifcations,	 and	 sequenced	on	 the	 Illumina	HiSeq4000	platform.	 	Raw	
reads	 were	 mapped	 to	 hg19	 using	 STAR17.	 Exact	 position	 duplicates	 were	
removed,	and	features	were	counted	using	HTseq	17.	
	
Clustering	of	counts	data.	BackSPIN,	 SC3	and	RaceID2	were	 run	according	 to	
algorithm-specific	 recommendations	 13-15.	 RaceID2	 was	 allowed	 to	 identify	
cluster	 number	 under	 default	 parameters.	 For	 the	 brain	 and	 blanks	 control	
experiment	 data,	 RaceID2	 was	 modified	 to	 skip	 normalization	 since	 scaled	
counts	per	million	normalization	had	already	been	applied	 to	 the	data	set.	The	
number	of	clusters,	k,	selected	for	SC3	clustering	was	determined	empirically	by	
selecting	k	with	the	optimal	silhouette	distribution	across	noise	injected	counts	
matrices.		
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Computation	of	consensus	matrix.		100	simulated	replicate	matrices	for	n	cells	
and	 m	 genes	 were	 clustered	 using	 the	 respective	 clustering	 algorithm	 (SC3,	
BackSPIN,	RaceID2)	as	described	above.	Cluster	labels	were	used	to	compute	an	
n	 x	 n	 binary	 association	 matrix	 for	 each	 clustering.	 Each	 element	 of	 the	
association	matrix	represents	a	cell-cell	interaction,	where	a	value	of	1	indicates	
that	two	cells	share	a	cluster	and	a	value	of	0	indicates	two	cells	do	not	share	a	
cluster.	 An	 arithmetic	mean	was	 taken	 for	 each	 respective	 element	 across	 the	
resulting	100	association	matrices	 to	produce	an	n	x	n	noise	consensus	matrix,	
where	 each	 element	 represents	 the	 fraction	 of	 noise	 injected	 counts	 matrices	
that,	upon	clustering,	resulted	in	two	cells	sharing	a	cluster.	
	
	
Computation	 of	 BEARscc	 cluster	 metrics.	 To	 calculate	 cluster	 stability,	 the	
noise	 consensus	matrix	was	 subset	 to	 cells	 assigned	 to	 the	 cluster.	The	 cluster	
stability	was	then	calculated	as	the	arithmetic	mean	of	the	upper	triangle	of	the	
subset	noise	consensus	matrix.	To	calculate	cluster	promiscuity,	 the	rows	of	the	
noise	 consensus	 matrix	 were	 subset	 to	 cells	 assigned	 to	 the	 cluster	 and	 the	
columns	are	subset	to	the	cells	not	assigned	to	the	cluster.	For	clusters	with	as	
many	 or	 more	 cells	 assigned	 to	 them	 than	 not	 assigned,	 the	 promiscuity	 was	
defined	as	the	arithmetic	mean	of	the	elements	in	the	subset	matrix.	Otherwise,	
the	columns	were	further	subset	to	the	same	number	of	cells	as	were	assigned	to	
the	 cluster,	 where	 the	 cells	 outside	 of	 the	 cluster	 with	 the	 strongest	 mean	
association	with	cells	inside	the	cluster	are	chosen.	The	promiscuity	was	defined	
as	 the	 arithmetic	 mean	 of	 the	 elements	 in	 this	 further	 subset	 matrix.	 	 Each	
cluster’s	promiscuity	was	subtracted	from	its	stability	to	calculate	cluster	score.	
		
	
Computation	 of	 BEARscc	 cell	 metrics.	 To	 calculate	 a	 cell’s	 stability,	 the	
arithmetic	mean	was	taken	of	that	cell’s	association	frequencies	with	other	cell’s	
within	 the	 cluster.	 To	 calculate	 a	 cell’s	 promiscuity,	 there	were	 two	 cases.	 For	
cells	in	clusters	with	as	many	or	more	cells	assigned	to	them	than	not	assigned,	
the	 promiscuity	 was	 the	 arithmetic	 mean	 of	 that	 cell’s	 association	 frequencies	
with	all	cells	not	assigned	to	 the	relevant	cluster.	For	cells	 in	clusters	of	size	n,	
with	 fewer	cells	 assigned	 to	 them	 than	not	assigned,	 the	 cell’s	promiscuity	was	
the	arithmetic	mean	with	the	n	cells	not	assigned	to	the	cluster	with	the	highest	
association	frequencies.	Each	cell’s	promiscuity	was	subtracted	from	its	stability	
to	calculate	cell	score.	
	
Estimation	of	cluster	number	k.	In	order	 to	determine	 the	cluster	number,	k,	
from	 the	 hierarchical	 clustering	 of	 the	 noise	 consensus,	 the	 resulting	
dendrogram	was	cut	multiple	times	to	form	N	clusterings	with	cluster	numbers	
k=1	to	k=N	clusters.	The	average	score	metric	was	computed	for	each	clustering,	
and	 k	 was	 chosen	 by	 taking	 the	 k	with	 the	 maximum	 average	 score	metric.	
Evaluating	 all	 possible	 k	 from	 1	 to	 the	 number	 of	 cells	 in	 the	 experiment	 is	
computationally	 expensive	 and	 unlikely	 to	 be	 biologically	 meaningful.	 In	 this	
work,	N	was	capped	at	0.1	times	the	number	of	cells	in	the	experiment:	N=10	for	
the	 brain	 and	 blanks	 control,	 N=30	 for	 the	 murine	 intestine	 experiment,	 and	
N=300	for	the	murine	brain	data.	
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Gene	 sampling.	 For	 comparison	 with	 BEARscc,	 100	 subsampling	 iteration	
matrices	 for	 n	 cells	 and	 m	 genes	 were	 generated	 by	 sampling	 one	 half	 of	
expressed	 genes	 and	 clustered	 using	 the	 respective	 clustering	 algorithm	 (SC3,	
BackSPIN,	 RaceID2).	 For	 each	 dataset,	 genes	were	 excluded	with	 less	 than	 25	
total	 raw	counts	across	all	 samples	 in	 the	cohort.	The	remaining	genes	 formed	
the	 sample	 space.	 In	 each	 subsampling	 iteration,	 one	 half	 of	 the	 genes	 were	
sampled	without	replacement,	and	their	expression	across	cells	was	used	as	the	
counts	matrix.	 Identically	 to	 the	 computation	 of	 the	 BEARscc	 noise	 consensus	
matrix,	 cluster	 labels	were	used	 to	 compute	an	n	x	n	binary	association	matrix	
for	 each	 clustering,	 and	 an	 arithmetic	 mean	 was	 taken	 for	 each	 respective	
element	 across	 the	 resulting	 100	 association	 matrices	 to	 produce	 an	 n	 x	 n	
subsampling	 consensus	 matrix.	 Identically	 to	 BEARscc	 analysis,	 the	 BEARscc	
score	metric	was	used	to	determine	cluster	number	k,	and	the	resulting	cluster	
labels	 for	 each	 dataset	 and	 algorithm	 were	 compared	 with	 BEARscc	 by	
computing	the	adjusted	rand	index	for	each	with	respect	to	the	relevant	ground	
truth.	
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Supplementary	 Figure	 1	 BEARscc	 accurately	 models	 technical	 variability.		
Scatterplots	 of	 observed	 vs	 simulated	 mean	 expression	 (a)	 and	 variance	 in	
expression	(b),	based	on	data	from	brain	RNA	control	experiment.	ERCC	spike-in	
values	are	circled	in	black,	human	genes	are	shown	in	blue.	c,	Difference	between	
simulated	and	observed	drop-out	frequency	across	genes.	
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Supplementary	Figure	2	BEARscc	applied	to	the	brain-and-blanks	control	
experiment	in	combination	with	BackSPIN	(a),	RaceID2	(b)	and	SC3	(c).	Top:	bar	
graphs	showing	how	the	clusters	generated	by	using	each	clustering	algorithm	
alone	(‘original	clusters’)	relate	to	sample	type	(brain	or	blank)	and	batch	(A	or	
B).	RaceID2	and	SC3	clusters	are	visibly	confounded	by	batch.	Bottom:	for	
BEARscc	applied	with	each	algorithm,	the	noise	consensus	matrix	is	shown.	The	
bars	above	the	matrix	show	(from	top):	original	clusters	with	algorithm	alone,	
the	batch,	clusters	derived	after	application	of	BEARscc,	and	the	sample	type.			
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	Supplementary	 Figure	 3	 BEARscc	 identifies	 robust	 clusters	 in	 data	 from	
murine	 intestinal	 cells.	 A,	 Cluster	 scores	 for	 “main”	 clusters	 (1-5)	 and	 outlier	
clusters	 (6-22).	 Circle	 size	 reflects	 number	 of	 cells	 per	 cluster.	 Colors	 are	 the	
same	as	in	subfigure	b.	b,	BEARscc	noise	consensus	matrix	for	murine	intestinal	
cells	clustered	with	RaceID2.	Above	heatmap:	published	clusters	(top)	and	noise	
consensus	 clustering	 (bottom,	 colors	 indicate	 closest	 match	 in	 the	 published	
clustering).	
	

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/118919doi: bioRxiv preprint 

https://doi.org/10.1101/118919
http://creativecommons.org/licenses/by-nd/4.0/


	
Supplementary	Figure	4	BEARscc	correctly	detects	that	separation	of	“stem-
like”	cell	clusters	1	and	2	is	based	on	weak	expression	differences.	(a)	Heatmap	
of	expression	of	genes	characteristic	of	clusters	1	and	2	(as	described	in	the	
original	manuscript),	and	(b)	clusters	1	and	5.	Columns	in	each	heatmap	are	
ordered	by	library	size	per	cell,	rows	sorted	by	significance	of	expression	fold-
change	between	clusters.	Boxplots	on	the	left	denote	the	significance	of	
difference	in	expression	between	the	two	clusters	(Wilcoxon	rank-sum	test).	Red	
denotes	the	observed	values,	and	simulated	technical	replicates	are	shown	in	
gray.	Black	solid	vertical	line	denotes	Bonferroni-corrected	significance	
threshold.	
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