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Abstract

The identification of disease associated modules based on protein-protein interaction
networks (PPINs) and gene expression data has provided new insights into the mechanistic
nature of diverse diseases. A major problem hampering their identification is the detection
of protein communities within large-scale, whole-genome PPINs. Current strategies
solve the maximal clique enumeration (MCE) problem, i.e., the enumeration of all
non-extendable groups of proteins, where each pair of proteins is connected by an edge.
The MCE problem however is non-deterministic polynomial time hard and can thus be
computationally overwhelming for large-scale, whole-genome PPINs.

We present ModuleDiscoverer, a novel approach for the identification of regulatory
modules from PPINs in conjunction with gene-expression data. ModuleDiscoverer is a
heuristic that approximates the community structure underlying PPINs. Based on a
high-confidence PPIN of Rattus norvegicus and publicly available gene expression data
we apply our algorithm to identify the regulatory module of a rat-model of diet induced
non-alcoholic steatohepatitis (NASH). We validate the module using single-nucleotide
polymorphism data from independent genome-wide association studies. Structural
analysis of the module reveals 10 sub-modules. These sub-modules are associated with
distinct biological functions and pathways that are relevant to the pathological and
clinical situation in NASH.

ModuleDiscoverer is freely available upon request from the corresponding author.

Introduction :

Structural analysis of intracellular molecular networks has attracted ample interest over
several decades [Albert, 2005]. This includes cellular networks such as protein interaction s
maps [Uetz et al., 2000], metabolic networks [Ravasz et al., 2002, /Schuster et al., 2002],
transcriptional regulation maps [Lee et al., 2002], signal transduction networks [Ma’ayan| s
et al., 2005 as well as functional association networks [Tong, 2004]. Recent advances s
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in the field of network science have focused on the identification of modules within the -
organism specific interactome [Ivanov et al., 2016]. The interactome captures interactions 8
between all molecules of a cell [Sanchez et al., 1999]. Common for biological networks, the o
interactome is represented as a graph composed of nodes denoting for cellular molecules 10
that are connected by edges representing interactions between them. Within the in- u
teractome, modules are sub-graphs that can be linked to phenotypes. Up to date, the 1w
identification of modules has been applied mostly in the context of human diseases based 13
on protein-protein interaction networks (PPINs) of Homo sapiens. Such disease modules 14
have been successfully identified for, e.g., asthma [Sharma et al., 2015], inflammatory 1
and malignant diseases [Gustafsson et al., 2014], obesity and type-2-diabetes (among 1
others) [Barrenis et al., 2012]. They provide new in-depth insights into the underlying 1
molecular mechanisms of diseases. For example, the asthma-associated module identified 18
by [Sharma et al., 2015|] revealed three pathways that had not been directly associated 10
with asthma before. Based on these findings a novel molecular mechanism in the regula- 2
tion of inflammation in asthma was proposed. 21
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Figure 1. The concept of disease modules exemplified using a sample PPIN. One or

more topological modules (highlighted red) contain proteins involved in similar biological
processes forming functional modules (highlighted blue). A disease module (highlighted
green) is a sub-network of proteins enriched with disease-relevant proteins, e.g., known
disease associated proteins.

There are three fundamental assumptions to the identification of disease modules 2

as summarized by [Barabasi et al., 2011 (Figure [1)). Firstly, entities forming dense 2
clusters within interactomes (topological modules) are involved in similar biological 2
functions (functional modules). Secondly, molecules associated to the same disease, 2
such as disease-associated proteins, tend to be located in close proximity within the
network, which defines the disease module. Thirdly, disease modules and functional 2
modules overlap. Thus, a disease can be seen as the breakdown of one or more connected 29
functional modules. 30
31

A variety of approaches have been developed for the identification of disease modules. =
They can be roughly categorized into two different groups. On the one hand, there s
are algorithms that make use of known disease-associated molecules or genetic loci,
the known interactome as well as some association function for the identification of s
disease modules and/or new disease-associated molecules [Oti et al., 2006}|George et al.| 3
2006} Kohler et al., 2008//Ahn et al., 2010, Ghiassian et al., 2015]. For example, the disease s
module detection (DIAMOnD) algorithm [Ghiassian et al., 2015| utilizes known disease- 3
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associated proteins (seed proteins) to identify proteins (DIAMOnD proteins) significantly s
connected to seed proteins. Iterative application of the algorithm results in a growing 4
disease module with a ranked list of DIAMOnD proteins, i.e., candidate disease-associated  a
proteins. On the other hand, there are algorithms that identify disease modules as well — «
as disease-associated molecules ”ab initio” based on the projection of omics data onto the 4
interactome in conjunction with a community structure detecting algorithm |[Barrenas| 4
et al., 2012|Gustafsson et al., 2014,|Zhang et al., 2015|. Like topological modules,
communities are groups of proteins with higher within-edge density compared to the 4
edge density connecting them [Fortunato, 2010]. For example, the approach presented — «
by [Barrenis et al., 2012| identifies protein communities by decomposition of the human 4
PPIN into sub-graphs of maximal cliques. A clique is a sub-graph (a group of proteins) 4
of the PPIN, where each pair of proteins is connected by an edge. A maximal clique so
is a clique that is not part of a larger clique. The regulatory module is then formed =
by the union of all maximal cliques that are significantly enriched with genes that are s
differentially expressed between samples of diseased and healthy subjects. 53
While these approaches have been presented specifically for the identification of s
disease-associated modules in H. sapiens, the idea is generalizable towards the detection  ss
of regulatory modules underlying an arbitrary phenotype of any organism. This can be of s
high interest, e.g., for the molecular characterization of animal models of human diseases, s
where the availability of human samples is limited. For example, the use of rodent models  ss
of fatty liver disease (FLD) provides a defined, rigorously controllable alternative to s
human liver tissue samples. They can be easily generated allowing for experiments with e
sufficient sample size to obtain statistically meaningful hypotheses. Furthermore, it is &«
much easier to control environmental factors, which is of high importance for systematic &
investigation of multifactorial diseases like FLD. However, up to date there is no model &
that completely reflects all aspects of FLD [Imajo et al., 2013]. Thus, identification of
regulatory modules underlying animal models of FLD can provide important informa- e
tion regarding their relevance towards the human condition in FLD on the molecular level. ¢
67

A major problem that hampers the efficient ab initio identification of regulatory e
modules is the detection of the community structure underlying PPINs. Algorithms
solving the maximal clique enumeration (MCE) problem as utilized by [Barrenas et al.| o
2012| are non-deterministic, polynomial time (NP) -hard [Eblen et al., 2012] and thus a =
computationally challenge regarding the processing of large-scale, genome-wide PPINs. =
73

We present ModuleDiscoverer, a new approach to the ab initio identification of
regulatory modules. ModuleDiscoverer is a heuristic that approximates the PPIN’s s
underlying community structure by iterative enumeration of cliques starting from random 7
seed proteins in the network. To demonstrate its application we identify the regulatory =
module underlying a diet induced rat model of non-alcoholic steatohepatits (NASH),
the severe form of the non-alcoholic fatty liver disease (NAFLD). The identified NASH- 1
regulatory module is then validated using single nucleotide polymorphism (SNP) data of s
NAFLD from independent genome-wide association studies (GWASs) as well as known &
gene-to-disease relations. Moreover, we show that the identified regulatory module &
reflects histological and clinical parameters as reported by |[Baumgardner et al., 2008],
who first introduced the animal model. 8
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1 Methods o

Microarray data, pre-processing and differential gene expression
analysis &7

Affymetrix microarray gene expression data of a rodent model of diet induced NASH &
published by [Baumgardner et al., 2008] was downloaded from Gene Omnibus Express e
[Barrett et al., 2013] (GSE8253). In brief, |Baumgardner et al., 2008] obtained the o
animal model by overfeeding rodents with a high-fat diet based on 70% corn oil at &
moderate caloric excess (220kcal * kg=3/* s« day=! ~ 17%) for 21 days via total enteral o
nutrition (TEN). They compared the treatment group against a control group of rats o
fed a diet based on 5% corn oil at normal caloric levels (187kcal * kg=>/*  day™') for 21 o
days via TEN. Gene expression in each experimental group was measured using three o
microarrays. 96

Affymetrix Rat Genome U34 arrays were annotated with custom chip definition o
files from Brainarray version 15 [Dai et al., 2005]. Raw-data was pre-processed using o
RMA [Irizarry et al., 2003]. Differential gene expression was assessed using limma [Ritchie| o
et al., 2015] with a p-value < 0.05 (additional file 2). 100

SNP-gene-disease and gene-disease association data 101

Disease-to-SNP relations as well as curated disease-to-gene associations for H. sapiens 1
were obtained from DisGeNET [Pinero et al., 2015]. All text-mining based disease-to- 103
SNP associations were removed. Furthermore, we removed all associations involving 10
genes without an orthologue in R. morvegicus. Orthology information was obtained 10
from the RGD [Shimoyama et al., 2015|. For the disease-to-gene associations we created 1o
a ”disease network” similar to |Goh et al., 2007]. In this network, we connected two 107
diseases (nodes) by an edge if they share >= 10 genes. Selecting the first neighbors 10
of the terms ”fatty liver” and ”"non-alcoholic fatty liver disease” yielded a list of 31 100

NAFLD-relevant diseases. 110
2 Results m
ModuleDiscoverer: detection of regulatory modules 12

The detection of regulatory modules is divided into 3 steps I - I11 (Figure. Starting with 13
a PPIN (Figure [2| Input) the algorithm first approximates the underlying community 1
structure by iterative enumeration of protein cliques from random seed proteins in the us
network (Figure [2] I). Next, DEGs obtained from high-throughput gene expression 1
data in conjunction with sets of randomly sampled genes (Figure [2| Input) are used to v
calculate a p-value for each clique (Figure [2| II). Finally, significantly enriched cliques s
are assembled (Figure [2] III) resulting in the identified regulatory module (Figure 119
Output). 120

Step I: Approximation of the PPIN’s community structure 121

Approximation of the community structure underlying the PPIN (Figure (2} I) is com- 12
posed of 3 phases: transformation, identification and extension. In brief, the PPIN is 12
transformed into a graph with labeled nodes and edges (Figure 3] A - B). Starting from 1
one or more random seed nodes the algorithm then identifies minimal cliques of size 12
three (Figure [3) C - E). Finally, all minimal cliques are stepwise extended competing for 12
the nodes in the network until no clique can be extended further (Figure|3| F). 127
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Figure 2. Given a PPIN and gene expression data (Input) the algorithm works in
3 steps. Step I) The community structure underlying the PPIN is approximated by
the identification of protein cliques. Step II) Identification of cliques significantly
enriched with DEGs. Step III) Assembly of the regulatory module based on the union
of significantly enriched cliques.

The number of seed nodes defines two strategies for the enumeration of cliques, 12
the single-seed and the multi-seed approach. Notably, there are advantages as well as 12
disadvantages for both strategies. Details on their performance as well as additional 13
examples are provided in additional file 1. The results are summarized and evaluated in =
the discussion section. In the following example we will illustrate our approach showing 1
one iteration of ModuleDiscoverer using three seed proteins (p4, p6 and p9). 133

Phase 1 of Step I: Transformation of the PPIN into a labeled graph: Figure 1
(A) shows a PPIN as provided by databases such as STRING [Szklarczyk et al., 2015]. 135
It consists of 10 nodes representing the proteins pl to pl0 and 26 connecting edges. 13
These edges refer to prior-knowledge interactions between connected proteins. First, the 17
network is transformed into an undirected labeled graph G(V, E) (Figure 3] B). The 13
graph G consists of 10 vertices V(G) = {v1,...,v10} and 26 edges F(G) = {ey,..., e} 13
Each vertex is labeled with one protein (pl - p10). Notably, a vertex can be labeled with 140
more than one protein. In such case, the proteins in the label form a clique in the PPIN  1a
(e.g., vertex pl, p2, p4 in figure (3| D). Two vertices v, and v, (with z,y € 1,...,10 and 1
x # y) are connected by an edge if there is at least one known relation in the PPIN s
between the proteins represented by v, as well as the proteins represented by v,. The 14
weight of the edge connecting v, and v, denotes for the number of relations between the s
proteins represented by v, and the proteins represented by v,. Initially, all edges have s
Weight 1. 147

Phase 2 of Step I: Identification of minimal cliques of size three: Starting s
with randomly selected seed proteins the algorithm first identifies minimal cliques of 140
size three. A seed is dropped if it is not part of a minimal clique. In Figure[3| (C), we 15
start with p4 (colored red) as a seed and search for any minimal clique of size three by s
exploring its neighbors (colored yellow) as well as their neighbors. The order in which 15

517
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Figure 3. Clique enumeration using ModuleDiscoverer. A) Sample PPIN with 10
proteins and 26 known relations. B) Representation of the PPIN as a undirected labeled
graph with each vertex representing one of the proteins in A). The edge weight denotes
for the number of existing relations between its connecting nodes. C-F) Red vertices
denote for seed nodes. Yellow vertices are first neighbors of seed nodes. Green vertices
represent cliques. Their label represents clique forming proteins.

vertices are explored is random. In our example, the first clique identified is formed by 13
pl, p2 and p4 and the corresponding vertices are merged into the vertex pl,p2,p4 (see 15
figure 3] D). Next, the weights of the edges are updated. In our example (Figure [3| D), 15
the edge between pl, p2, p4 and p3 is now weighted 3, since the proteins pl,p2 and p4d 156
are all connected to protein p3 (see figure [2) A). The edge’s weight connecting pl,p2,pd 15
with p5 remains 1, since only p4 is connected to p5. Following the same strategy, the s
minimal clique p5, p6, p7 is identified starting from the seed p6 (Figure 3} D) while the 150
seed p9 is merged with p8 and pl0 into p8, p9, p10 (Figure|3) E). All edge weights are 10
updated accordingly. 161

Phase 3 of Step I: Extension of all minimal cliques: All minimal cliques of size 1
three (Figure[3] E; green) are now iteratively extended in random order until they cannot 1
be enlarged further. Once a node becomes part of a clique, it cannot become part of 16
another clique, i.e., cliques compete for nodes in the graph. Starting from figure |3| (E), 16
pl, p2,pd is processed first. pl,p2,p4 is connected to p3 by an edge of weight 3. Thus, 1
all proteins pl, p2 and p4 are connected to p3 (see figure [3| A). Therefore, both vertices 1s7
can be merged to form the new vertex pl,p2,p3,p4 (Figure [3] F). Next, the clique 1
represented by pb, p6, p7 is processed. The edge connecting p5, p6, p7 with p8,p9,pl0 10
has a weight of 9. This indicates that all proteins of p5, p6, p7 are connected with all 170
proteins of p8, p9, p10. Therefore, both vertices are merged to form p5, p6, p7, p8, p9, p10
(Figure |3| F). Finally, no clique can be enlarged any further. The algorithm terminates 1
reporting two cliques, i.e., the clique formed by the proteins pl,...,p4 as well as the 13

/7
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clique formed by the proteins p5, ..., pl0. 174
175

Phases 1 - 3 of step I of the algorithm are repeated for n iterations with random seed 1
proteins in each iteration until the set of obtained cliques sufficiently approximates the 17
community structure underlying the PPIN. 178

Step II: Identification of significantly enriched cliques 179

In step II (Figure [2| II) all enumerated cliques are tested for their enrichment with 1
phenotype-associated proteins, e.g., proteins corresponding to DEGs from high-throughput 1
gene expression data (Figure [2| Input). The p-value for each clique is calculated using 1s
a permutation-based test |Ge et al., 2003]. In detail, for a gene expression platform 1
measuring N genes, with D € N being the set of DEGs, the gene sets B are created, each 1
containing |D| genes sampled from N. For each clique in C, the p-value p; p of clique ¢; 155

(i=1,...,|C]|) is calculated using the one-sided Fisher’s exact test. Accordingly, the 1
p-value p;; of clique ¢; is calculated for each gene set b in B. The final p-value p} is 1
then calculated according to equation 188

« _ VB :pip < pi,p|
p'L |B|

(1)

Step III: Assembly of the regulatory module 189

Based on a user defined p-value cutoff we filter significantly enriched cliques. Since 10
cliques can overlap in their proteins, the union of all significantly enriched cliques (Figure 1o
IIT) results in a large regulatory module (Figure |2} Output). This module summarizes 1
biological processes and molecular mechanisms underlying the respective phenotype. 103

Reproducibility of regulatory modules 104

ModuleDiscoverer is a heuristic that approximates the underlying community structure. 1
Since the exact solution is unknown, quality of the approximation cannot be assessed 196
directly. Instead, we can test if additional iterations of the algorithm, i.e., the enumeration 1o
of more cliques, has a qualitative impact on the regulatory module in terms of additional 1
nodes and edges. To this end, non-parametric bootstrapping sampling (with replacement) 1
is applied to assess reproducibility of the regulatory module. Based on the results of n 200
iterations of ModuleDiscoverer we create bootstrap samples of n iterations and identify 2u
the respective regulatory modules. Pairwise comparison of the regulatory modules in 22
terms of shared edges and nodes then provides a distance between the two regulatory 2
modules. The median of all distances divided by the average number of nodes and edges 20
reflects the stability of the regulatory module. See additional file 1 section 1.4 for details. 205

ModuleDiscoverer: application to biological data 206

To demonstrate the application of ModuleDiscoverer we used the PPIN of R. norvegicus 2o
in conjunction with gene expression data of a rat model of diet-induced NASH for the s
identification of a NASH-regulatory module. The results will be presented in three s
sections: (i) processing of the PPIN (Figure [2, I), (ii) identification of significantly 2w
enriched cliques based on high-throughput expression data (Figure [2} II) and, (iii) ou
assembly of the regulatory module based on the union of all significantly enriched cliques 2w
(Figure [2} IIT). Finally, the NASH-regulatory module will be analyzed and validated. 213
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Processing of the PPIN 214

The PPIN of R. norvegicus (STRING, version 10) was filtered for high-confidence s
relations with a score > 0.7. This retained 15436 proteins connected by 474395 relations. 26
Next, we used the single-seed approach of ModuleDiscoverer to enumerate maximal 217
cliques using 2,000,000 iterations. This identified 1,494,126 maximal cliques in total, 2s
enclosing 185,178 unique maximal cliques. Additionally, we applied ModuleDiscoverer 29
with 1,020,000 iterations using the multi-seed approach with 25 seed proteins per iteration. 2:
This resulted in 18,807,344 cliques in total enclosing 2,269,022 unique cliques. 21

Identification of significantly enriched cliques oo

Based on the expression data we identified 286 DEGs (p-value < 0.05) out of 4590 2
EntrezGenelD-annotated genes on the microarray platform (see additional file 2). 10,000 2
data sets were created sampling 286 random genes out of 4590 genes in the statistical s
background. Finally, genes of all data sets were translated into EnsemblProteinIDs using 2
the R-package org.Rn.eg.db. 27

P-value calculation according to equation |I| was performed for each clique satisfying 2
the following two properties. First, at least one protein in the clique is associated to 22
a DEG. Second, at least half of the proteins in the clique are associated to genes in 23
the statistical background. For the p-value cutoff 0.01 we identified 696 significantly ou
enriched cliques for the single-seed approach and 5386 significantly enriched cliques for 2
the multi-seed approach. Notably, permutation-based calculated p-values were similar 23
to p-values calculated using the one-sided Fisher’s exact test (additional file 3). 234

Assembly and analysis of the regulatory module 235

The assembled regulatory module (additional file 4) of the single-seed approach con- 2
tains five sub-networks composed of 311 proteins connected by 3180 relations. 175 of 2w
the 311 proteins are associated to background genes and 60 are associated to DEGs. 2
Similar, the regulatory module of the multi-seed approach contains five sub-networks 23
composed of 415 proteins and 4975 relations in total (Figure [). 210 of these 415 20
proteins are associated with background genes. 67 proteins are associated with DEGs. 2a
Both of the regulatory modules are significantly enriched (p < 10~%) with proteins 2o
associated to DEGs. Based on 100 bootstrap samples (see additional file 1 section 1.4) 2
we found that both regulatory modules are reproducible with an average variability 24
of less then 5% (additional file 5). Apart from a single edge the multi-seed regula- 2
tory module encloses the single-seed regulatory module. Thus, we decided to focus 2
on the multi-seed regulatory module as an extension to the single-seed regulatory module. 2«7
248

Next, we identified pathways significantly enriched with proteins for the regulatory 2o
module shown in figure 4| The results (additional file 6) highlighted NASH-relevant 25
pathways such as fatty acid degradation and elongation, PPAR signaling pathway [Souza{ 2
Mello, 2015], arachidonic acid metabolism |[Loomba et al., 2015|, the metabolism of 2
diverse amino acids |Cheng et al., 2012] as well as insulin signaling pathway |[Nassir| 2s3
and Ibdah, 2014}|Chitturi et al., 2002|. Identification of sub-modules based on edge- 2
betweenness [Newman and Girvan, 2003| in the network revealed 10 sub-modules. These 25
sub-modules are sparsely connected with each other but densely connected within s
themselves. In figure [} the sub-module membership of each protein is shape-coded. We 25
performed an enrichment analysis for the proteins of each sub-module to identify its s
potential biological function (additional file 7). 259
We found that the most central sub-module (Figure 4] circles) can be associated 20
with lipid biosynthetic process. For example, the KEGG PPAR-signaling pathway e
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fatty acid beta-oxidation
lipid biosynthetic process
proteolysis
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leukocyte aggregation
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Figure 4. The identified NASH-regulatory module. Nodes (proteins) are labeled with
the official gene symbol. Their membership in a sub-module is shape-coded.

sub-module association

is significantly enriched with proteins from the module. This pathway plays a key- 2
role in the development of FLD by regulating the beta-oxidation of fatty acids, the 2s
activation of anti-inflammatory pathways and the interaction with insulin signaling 2
[Pawlak et al., 2015|. In agreement with these findings the sub-module is directly s
connected to sub-modules associated to fatty acid beta-oxidation (diamonds), icosanoid- s
metabolic processes (parallelogram) and cellular signal transduction such as the insulin 2
signaling pathway (triangles). Another directly connected sub-module can be associated s
to the metabolism of cellular amino acids (V-shaped) such as alanine, aspartate and 2o
glutamate metabolism as well as phenylalanine, tyrosine and tryptophan metabolism. 20

The two remaining larger sub-modules can be associated to proteolysis (hexagons) an
and the metabolism of cellular proteins (round rectangle) with the latter being directly 2
connected to the sub-module associated with signal transduction (triangles). The o
connection between cellular protein metabolic processes such as the response to unfolded 2
proteins (see additional file 7, sub-module 8) and NAFLD as well as NASH has been s
studied extensively and is reviewed in |[Henkel and Green, 2013]. 216

Literature validation of the regulatory module 77

Both NASH regulatory modules (single-seed and multi-seed) were validated using curated
disease-to-SNP associations (see methods). Disease-to-SNP associations are based on 2o
DNA-sequence information. Thus, it can be considered independent from gene expression 280
data, which was used to identify the regulatory module. We found that in contrast to o
the set of DEGs, both regulatory modules are significantly enriched (p-value < 0.05) 2
with SNPs associated to NAFLD (additional file 8). 283

In addition to the validation based on SNP-information we used a list of curated 2s
disease-to-gene associations (see methods). The result of the enrichment analysis is s
summarized in figure Both regulatory modules show significantly enriched FLD- 2
associated diseases such as obesity, (non-insulin dependent) diabetes mellitus type-2, 2s
liver carcinoma and insulin resistance. Notably, these disease-terms show a slight, but  2ss
none significant enrichment for the set of DEGs. This demonstrates that the regulatory —2so
module is based on the integration of experimental data as well as PPI-knowledge. 200
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multi-seed regulatory module and proteins associated to DEGs. Higher values equal
lower p-values.

3 Discussion -

We have presented ModuleDiscoverer, an algorithm for the identification of regulatory 2
modules based on large-scale, whole-genome PPINs and high-throughput gene expression 203
data. To show applicability of the algorithm we identified a NASH-regulatory module 20
for which we relied on the STRING resource only. STRING integrates information from 20
a variety of resources, such as primary interaction databases, algorithms for interaction 20
prediction, pathway databases, text-mining and knowledge transfer based on orthology. 2o
Reported relations are thus based on known physical interaction as well as associative 20
information. To ensure quality of the relations we selected a high cutoff (>0.7) for the 2
combined edge score. While this retains only high-confidence relations it may introduce 300
knowledge bias. A yet to explore alternative might be the use of whole-genome gene su
regulatory networks (GRNs). Algorithms such as presented in [Altwasser et al., 2012] 30
are based on mathematical models that combine expression data and prior-knowledge 303
interaction data. In such GRNs, relations denote for functional relationship between 30
genes/proteins acting in common biological contexts, which equals networks derived from 305
STRING |[Szklarczyk et al., 2015]. This corresponds to the idea of regulatory modules 30
as shown in figure 307

308

To evaluate our algorithm (additional file 1) we used a small sub-network of the s
high-confidence PPIN of R. norvegicus. We showed that the single-seed approach as well 310
as the multi-seed approach work well in principle and highlighted their advantages as  su
well as disadvantages. 312
Using a single seed per iteration our algorithm will identify only maximal cliques. For s
large enough numbers of iterations the enumerated maximal cliques will cover all maximal s
cliques in the PPIN. These regulatory modules will be equal to the regulatory modules s
identified based on approaches utilizing MCE-problem solving algorithms such as MACE s
|[Kazuhisa Makino, 2004], c-isol [Hiiffner et al., 2009], CFinder |[Adamcsek et al., 2006], s
MCODE |Bader and Hogue, 2003| and igraph [Csardi and Nepusz, 2006]. Importantly, s
these algorithms process PPINs systematically and thus efficiently enumerate all maximal s
cliques compared to the randomization-based approach of ModuleDiscoverer. However, 3
given the PPIN we used in this study neither of these algorithms successfully terminated. sz
A possible explanation for the large number of required iterations of ModuleDiscoverer s
could be the high overlap of maximal cliques in the PPIN. Within such networks, small 33
maximal cliques that overlap larger maximal cliques are less frequently identified. Firstly, s
because a randomly selected seed protein is more likely a member of the larger clique. s
Secondly, during the iterative extension of cliques, the number of candidate proteins is 32
higher. As a consequence, proteins appearing in only small cliques may likely be missed s
because the required number of iterations for their discovery is too high. 328
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The multi-seed approach is intended to avoid the enumeration of mainly large maximal s
cliques in such PPINs. We found that multiple seeds per iteration decrease the probability s
for their enumeration and shift it towards overlapping smaller cliques. This effect can s
be explained by the competition of cliques for available nodes during their iterative s»
extension. This leads to the breakdown of large cliques into smaller cliques reducing s
the probability for their enumeration. Consequently, proteins appearing in only small s
maximal cliques are more often identified. As a drawback, a high number of seeds leads 335
to the excessive breakdown of large cliques. Thus, a large maximal clique, which is not s
significantly enriched with DEG-associated proteins may be selected because of all its s
small sub-cliques being significantly enriched. To this end, the final regulatory module 33
has to be tested for its enrichment with DEG-associated proteins and eventually, the s
number of random seeds should be lowered. 340

Thus, in cases where large-scale, genome-wide PPINs cannot be processed by MCE-  3a
solving algorithms, i.e., the regulatory module based on the exact solution cannot be s«
determined, the use of ModuleDiscoverer becomes favorable. In such situations it is 3
advisable to look at the identified regulatory modules of both, the single-seed as well as 34
the multi-seed approach. The single-seed based regulatory module is more consistent s
with results of MCE-based approaches. In turn, the multi-seed regulatory module will 34
extend the single-seed based regulatory module with proteins that may have been missed s
due to a PPIN structure of highly overlapping maximal cliques. 348

349

Analysis of the identified NASH-regulatory module showed its association with FLD- 350
related diseases. Notably, these diseases relate to the findings of [Baumgardner et al.| s
2008]. 352

The NASH-regulatory module (Figure highlights the disease-term obesity as 33
significantly enriched with proteins of the module (Figure. In agreement, [Baumgardner| sz
et al., 2008] observed a significant increase in body weight in the treatment group ss
compared to control (p<0.05). Moreover, they reported a significant increase in fat s
mass as percentage of body weight between treatment and control reflecting adiposity. ss
Additionally, serum leptin levels were observed to be significantly increased in the s
treatment group. The serum leptin level is a marker that positively correlates with  ss0
obesity [Al Maskari and Alnaqdy, 2006]. 360

Other significantly enriched disease terms include insulin resistance, diabetes mel- e
litus type-2 and diabetes mellitus, experimental. [Baumgardner et al., 2008] reported  se
significantly increased serum insulin concentrations compared to control rats that were s
overfed with a high-fat 5% corn oil diet at (220kcal x kg=3/* * day~' ~ 17%) for 21 days. e
They concluded that this observation points towards hyperinsulinemia, which can be 36
due to insulin resistance and is often associated with type-2 diabetes. 366

Finally, we found the disease-term fatty liver significantly enriched in proteins of the e
module. [Baumgardner et al., 2008 reported that histological examination of the liver ses
samples showed steatosis, macrophage infiltration and focal necrosis in the treatment s
samples. This was accompanied by significantly elevated serum alanine aminotransferase s
(ALT) levels and significantly increased serum and liver triglyceride concentrations. sn
Notably though, other inflammation associated scores such as hepatocellular ballooning s
and lobular inflammation/necrosis were reported to be elevated but not statistically s
significant. This could explain the non-significantly enriched disease-terms such as s
inflammation and liver-cirrhosis. 375

4 Conclusion 476

We presented ModuleDiscoverer, a heuristic approach for the identification of regulatory s
modules in large-scale, whole-genome PPINs. The application of ModuleDiscoverer s
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becomes favorable with increasing size and density of PPINs. Compared to a MCE-based 319
approach we demonstrated that ModuleDiscoverer identifies regulatory modules that can s
be identical (single-seed approach) or even more comprehensive (multi-seed approach). sa
We successfully applied our algorithm to experimental data for the identification of the s
regulatory module underlying a rat model of diet induced NASH. The identified NASH- 3
regulatory module is stable, biologically relevant and reflects experimental observations  sss
on the clinical and histological level. In contrast to the analysis based on DEGs alone, 35
the NASH-regulatory module is enriched with proteins associated to NASH-relevant s
diseases such as fatty liver, obesity and insulin resistance. Furthermore, we found the s
regulatory module significantly enriched with NAFLD-associated SNPs derived from s
independent GWASs. Altogether, we consider ModuleDiscoverer a valuable tool in the s
identification of regulatory modules based on large-scale, whole-genome PPINs and 3w
high-throughput gene expression data. 301
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Additional Files

Additional file 1 — Supplementary information

Supplementary information regarding the performance of ModuleDiscoverer.

Additional file 2 — List of differentially expressed genes as re-
ported by limma.

For each probe set Id (ProbeSetld) the table shows the associated Entrez-Gene-Id
(EntrezGeneld), the official gene symbol (GeneSymbol) and gene name (GeneName) as
well as the log2 fold-change (logFC) and the computed p-value (P-Value).

Additional file 3 — Comparing permutation-based p-values with
p-values calculated using Fisher’s exact test.

Fisher-exact test (green dot) and permutation based (blue line) p-value for each clique
over its rank of the permutation based p-value. Left: plot for single-seed regulatory
module; Right: plot for multi-seed regulatory module.

Additional file 4 — Cytoscape session of single-seed and multi-
seed regulatory module

A cytoscape session (.cys) containing the identified single-seed as well as multi-seed
regulatory module underlying the diet induced rat model of NASH. For each node, we
also provide information regarding additional identifiers such as EntrezGeneld (internal),
EnsemblProteinld (name), gene name (GENENAME) and symbol (SYMBOL) as well
as information regarding the sub-module membership (BetweennessCommunityMember-
ship), association to a differentially expressed gene (inForeground) and the actual log2
fold change (log2FC) or a background gene (inBackground) in the gene expression data
of Baumgardener et al. [Baumgardner et al., 2008].

Additional file 5 — Stability of the identified regulatory module

Plot outlining the stability in terms of nodes (left) and edges (right) of the single-seed
(top) and the multi-seed (down) regulatory module for increasing numbers of iterations.
Both plots shows that with more iterations the stability of the identified regulatory
modules increases. In other words, the use of additional iterations (and therefore the
enumeration of additional cliques) has a negligible effect on the structure of the identified
regulatory modules.

Additional file 6 — KEGG Pathway and GO enrichment analysis
results.

Each sheet contains the list of significantly enriched (p-value < 0.05) KEGG pathway
term ids (KEGGID) as well as GO-term ids (GO[BP,MF,CC]ID) for the three different
ontologies (BP: biological process; MF: molecular function; CC: cellular compartment).
For each ID, the term (Term), the p-value (Pvalue), the size (Size) as well as the number
of proteins in the respective set of genes (Count) are provided.

16/]17


https://doi.org/10.1101/119099
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119099; this version posted March 23, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Additional file 7 — KEGG-pathway and GO-term enrichment
results for the sub-modules of the multi-seed based regulatory
module.

Each sheet contains the list of significantly enriched (p-value < 0.05) KEGG pathway
term ids (KEGGID) as well as GO-term ids (GO[BP,MF,CC]ID) for the three different
ontologies (BP: biological process; MF: molecular function; CC: cellular compartment).
For each term (Term), the p-value (Pvalue), the size (Size) as well as the number of
proteins in the respective set of genes (Count) are provided.

Additional file 8 — Results of the enrichment analysis using
gene-disease as well as SNP-gene-disease associations from the
DisGeNet database.

For each disease id (Diseaseld), the tables outline the disease name (DiseaseName),
the calculated p-value (P-value) as well as the number of genes (not) in the regulatory
module ((n)M) and (not) associated to the disease ((n)D). Each table represents the
enrichment results for the set of DEGs, all disease associated proteins in the single-seed
or multi-seed regulatory module.
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