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Abstract

The identification of disease associated modules based on protein-protein interaction
networks (PPINs) and gene expression data has provided new insights into the mechanistic
nature of diverse diseases. A major problem hampering their identification is the detection
of protein communities within large-scale, whole-genome PPINs. Current strategies
solve the maximal clique enumeration (MCE) problem, i.e., the enumeration of all
non-extendable groups of proteins, where each pair of proteins is connected by an edge.
The MCE problem however is non-deterministic polynomial time hard and can thus be
computationally overwhelming for large-scale, whole-genome PPINs.
We present ModuleDiscoverer, a novel approach for the identification of regulatory
modules from PPINs in conjunction with gene-expression data. ModuleDiscoverer is a
heuristic that approximates the community structure underlying PPINs. Based on a
high-confidence PPIN of Rattus norvegicus and publicly available gene expression data
we apply our algorithm to identify the regulatory module of a rat-model of diet induced
non-alcoholic steatohepatitis (NASH). We validate the module using single-nucleotide
polymorphism data from independent genome-wide association studies. Structural
analysis of the module reveals 10 sub-modules. These sub-modules are associated with
distinct biological functions and pathways that are relevant to the pathological and
clinical situation in NASH.
ModuleDiscoverer is freely available upon request from the corresponding author.

Introduction 1

Structural analysis of intracellular molecular networks has attracted ample interest over 2

several decades [Albert, 2005]. This includes cellular networks such as protein interaction 3

maps [Uetz et al., 2000], metabolic networks [Ravasz et al., 2002,Schuster et al., 2002], 4

transcriptional regulation maps [Lee et al., 2002], signal transduction networks [Ma’ayan 5

et al., 2005] as well as functional association networks [Tong, 2004]. Recent advances 6
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in the field of network science have focused on the identification of modules within the 7

organism specific interactome [Ivanov et al., 2016]. The interactome captures interactions 8

between all molecules of a cell [Sanchez et al., 1999]. Common for biological networks, the 9

interactome is represented as a graph composed of nodes denoting for cellular molecules 10

that are connected by edges representing interactions between them. Within the in- 11

teractome, modules are sub-graphs that can be linked to phenotypes. Up to date, the 12

identification of modules has been applied mostly in the context of human diseases based 13

on protein-protein interaction networks (PPINs) of Homo sapiens. Such disease modules 14

have been successfully identified for, e.g., asthma [Sharma et al., 2015], inflammatory 15

and malignant diseases [Gustafsson et al., 2014], obesity and type-2-diabetes (among 16

others) [Barrenäs et al., 2012]. They provide new in-depth insights into the underlying 17

molecular mechanisms of diseases. For example, the asthma-associated module identified 18

by [Sharma et al., 2015] revealed three pathways that had not been directly associated 19

with asthma before. Based on these findings a novel molecular mechanism in the regula- 20

tion of inflammation in asthma was proposed. 21

22

functional module
enriched with proteins associated to a biological process

topological module
showing high degree of inner-connectiveness

disease module
enriched with disease-associated proteins

disease associated protein

protein

Figure 1. The concept of disease modules exemplified using a sample PPIN. One or
more topological modules (highlighted red) contain proteins involved in similar biological
processes forming functional modules (highlighted blue). A disease module (highlighted
green) is a sub-network of proteins enriched with disease-relevant proteins, e.g., known
disease associated proteins.

There are three fundamental assumptions to the identification of disease modules 23

as summarized by [Barabási et al., 2011] (Figure 1). Firstly, entities forming dense 24

clusters within interactomes (topological modules) are involved in similar biological 25

functions (functional modules). Secondly, molecules associated to the same disease, 26

such as disease-associated proteins, tend to be located in close proximity within the 27

network, which defines the disease module. Thirdly, disease modules and functional 28

modules overlap. Thus, a disease can be seen as the breakdown of one or more connected 29

functional modules. 30

31

A variety of approaches have been developed for the identification of disease modules. 32

They can be roughly categorized into two different groups. On the one hand, there 33

are algorithms that make use of known disease-associated molecules or genetic loci, 34

the known interactome as well as some association function for the identification of 35

disease modules and/or new disease-associated molecules [Oti et al., 2006,George et al., 36

2006,Köhler et al., 2008,Ahn et al., 2010,Ghiassian et al., 2015]. For example, the disease 37

module detection (DIAMOnD) algorithm [Ghiassian et al., 2015] utilizes known disease- 38
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associated proteins (seed proteins) to identify proteins (DIAMOnD proteins) significantly 39

connected to seed proteins. Iterative application of the algorithm results in a growing 40

disease module with a ranked list of DIAMOnD proteins, i.e., candidate disease-associated 41

proteins. On the other hand, there are algorithms that identify disease modules as well 42

as disease-associated molecules ”ab initio” based on the projection of omics data onto the 43

interactome in conjunction with a community structure detecting algorithm [Barrenäs 44

et al., 2012, Gustafsson et al., 2014, Zhang et al., 2015]. Like topological modules, 45

communities are groups of proteins with higher within-edge density compared to the 46

edge density connecting them [Fortunato, 2010]. For example, the approach presented 47

by [Barrenäs et al., 2012] identifies protein communities by decomposition of the human 48

PPIN into sub-graphs of maximal cliques. A clique is a sub-graph (a group of proteins) 49

of the PPIN, where each pair of proteins is connected by an edge. A maximal clique 50

is a clique that is not part of a larger clique. The regulatory module is then formed 51

by the union of all maximal cliques that are significantly enriched with genes that are 52

differentially expressed between samples of diseased and healthy subjects. 53

While these approaches have been presented specifically for the identification of 54

disease-associated modules in H. sapiens, the idea is generalizable towards the detection 55

of regulatory modules underlying an arbitrary phenotype of any organism. This can be of 56

high interest, e.g., for the molecular characterization of animal models of human diseases, 57

where the availability of human samples is limited. For example, the use of rodent models 58

of fatty liver disease (FLD) provides a defined, rigorously controllable alternative to 59

human liver tissue samples. They can be easily generated allowing for experiments with 60

sufficient sample size to obtain statistically meaningful hypotheses. Furthermore, it is 61

much easier to control environmental factors, which is of high importance for systematic 62

investigation of multifactorial diseases like FLD. However, up to date there is no model 63

that completely reflects all aspects of FLD [Imajo et al., 2013]. Thus, identification of 64

regulatory modules underlying animal models of FLD can provide important informa- 65

tion regarding their relevance towards the human condition in FLD on the molecular level. 66

67

A major problem that hampers the efficient ab initio identification of regulatory 68

modules is the detection of the community structure underlying PPINs. Algorithms 69

solving the maximal clique enumeration (MCE) problem as utilized by [Barrenäs et al., 70

2012] are non-deterministic, polynomial time (NP) -hard [Eblen et al., 2012] and thus a 71

computationally challenge regarding the processing of large-scale, genome-wide PPINs. 72

73

We present ModuleDiscoverer, a new approach to the ab initio identification of 74

regulatory modules. ModuleDiscoverer is a heuristic that approximates the PPIN’s 75

underlying community structure by iterative enumeration of cliques starting from random 76

seed proteins in the network. To demonstrate its application we identify the regulatory 77

module underlying a diet induced rat model of non-alcoholic steatohepatits (NASH), 78

the severe form of the non-alcoholic fatty liver disease (NAFLD). The identified NASH- 79

regulatory module is then validated using single nucleotide polymorphism (SNP) data of 80

NAFLD from independent genome-wide association studies (GWASs) as well as known 81

gene-to-disease relations. Moreover, we show that the identified regulatory module 82

reflects histological and clinical parameters as reported by [Baumgardner et al., 2008], 83

who first introduced the animal model. 84
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1 Methods 85

Microarray data, pre-processing and differential gene expression 86

analysis 87

Affymetrix microarray gene expression data of a rodent model of diet induced NASH 88

published by [Baumgardner et al., 2008] was downloaded from Gene Omnibus Express 89

[Barrett et al., 2013] (GSE8253). In brief, [Baumgardner et al., 2008] obtained the 90

animal model by overfeeding rodents with a high-fat diet based on 70% corn oil at 91

moderate caloric excess (220kcal ∗ kg−3/4 ∗ day−1 ∼ 17%) for 21 days via total enteral 92

nutrition (TEN). They compared the treatment group against a control group of rats 93

fed a diet based on 5% corn oil at normal caloric levels (187kcal ∗ kg−3/4 ∗ day−1) for 21 94

days via TEN. Gene expression in each experimental group was measured using three 95

microarrays. 96

Affymetrix Rat Genome U34 arrays were annotated with custom chip definition 97

files from Brainarray version 15 [Dai et al., 2005]. Raw-data was pre-processed using 98

RMA [Irizarry et al., 2003]. Differential gene expression was assessed using limma [Ritchie 99

et al., 2015] with a p-value < 0.05 (additional file 2). 100

SNP-gene-disease and gene-disease association data 101

Disease-to-SNP relations as well as curated disease-to-gene associations for H. sapiens 102

were obtained from DisGeNET [Piñero et al., 2015]. All text-mining based disease-to- 103

SNP associations were removed. Furthermore, we removed all associations involving 104

genes without an orthologue in R. norvegicus. Orthology information was obtained 105

from the RGD [Shimoyama et al., 2015]. For the disease-to-gene associations we created 106

a ”disease network” similar to [Goh et al., 2007]. In this network, we connected two 107

diseases (nodes) by an edge if they share >= 10 genes. Selecting the first neighbors 108

of the terms ”fatty liver” and ”non-alcoholic fatty liver disease” yielded a list of 31 109

NAFLD-relevant diseases. 110

2 Results 111

ModuleDiscoverer: detection of regulatory modules 112

The detection of regulatory modules is divided into 3 steps I - III (Figure 2). Starting with 113

a PPIN (Figure 2, Input) the algorithm first approximates the underlying community 114

structure by iterative enumeration of protein cliques from random seed proteins in the 115

network (Figure 2, I). Next, DEGs obtained from high-throughput gene expression 116

data in conjunction with sets of randomly sampled genes (Figure 2, Input) are used to 117

calculate a p-value for each clique (Figure 2, II). Finally, significantly enriched cliques 118

are assembled (Figure 2, III) resulting in the identified regulatory module (Figure 2, 119

Output). 120

Step I: Approximation of the PPIN’s community structure 121

Approximation of the community structure underlying the PPIN (Figure 2, I) is com- 122

posed of 3 phases: transformation, identification and extension. In brief, the PPIN is 123

transformed into a graph with labeled nodes and edges (Figure 3, A - B). Starting from 124

one or more random seed nodes the algorithm then identifies minimal cliques of size 125

three (Figure 3, C - E). Finally, all minimal cliques are stepwise extended competing for 126

the nodes in the network until no clique can be extended further (Figure 3, F). 127
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Figure 2. Given a PPIN and gene expression data (Input) the algorithm works in
3 steps. Step I) The community structure underlying the PPIN is approximated by
the identification of protein cliques. Step II) Identification of cliques significantly
enriched with DEGs. Step III) Assembly of the regulatory module based on the union
of significantly enriched cliques.

The number of seed nodes defines two strategies for the enumeration of cliques, 128

the single-seed and the multi-seed approach. Notably, there are advantages as well as 129

disadvantages for both strategies. Details on their performance as well as additional 130

examples are provided in additional file 1. The results are summarized and evaluated in 131

the discussion section. In the following example we will illustrate our approach showing 132

one iteration of ModuleDiscoverer using three seed proteins (p4, p6 and p9). 133

Phase 1 of Step I: Transformation of the PPIN into a labeled graph: Figure 134

3 (A) shows a PPIN as provided by databases such as STRING [Szklarczyk et al., 2015]. 135

It consists of 10 nodes representing the proteins p1 to p10 and 26 connecting edges. 136

These edges refer to prior-knowledge interactions between connected proteins. First, the 137

network is transformed into an undirected labeled graph G(V,E) (Figure 3, B). The 138

graph G consists of 10 vertices V (G) = {v1, . . . , v10} and 26 edges E(G) = {e1, . . . , e26}. 139

Each vertex is labeled with one protein (p1 - p10). Notably, a vertex can be labeled with 140

more than one protein. In such case, the proteins in the label form a clique in the PPIN 141

(e.g., vertex p1, p2, p4 in figure 3, D). Two vertices vx and vy (with x, y ∈ 1, . . . , 10 and 142

x 6= y) are connected by an edge if there is at least one known relation in the PPIN 143

between the proteins represented by vx as well as the proteins represented by vy. The 144

weight of the edge connecting vx and vy denotes for the number of relations between the 145

proteins represented by vx and the proteins represented by vy. Initially, all edges have 146

weight 1. 147

Phase 2 of Step I: Identification of minimal cliques of size three: Starting 148

with randomly selected seed proteins the algorithm first identifies minimal cliques of 149

size three. A seed is dropped if it is not part of a minimal clique. In Figure 3 (C), we 150

start with p4 (colored red) as a seed and search for any minimal clique of size three by 151

exploring its neighbors (colored yellow) as well as their neighbors. The order in which 152
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Figure 3. Clique enumeration using ModuleDiscoverer. A) Sample PPIN with 10
proteins and 26 known relations. B) Representation of the PPIN as a undirected labeled
graph with each vertex representing one of the proteins in A). The edge weight denotes
for the number of existing relations between its connecting nodes. C-F) Red vertices
denote for seed nodes. Yellow vertices are first neighbors of seed nodes. Green vertices
represent cliques. Their label represents clique forming proteins.

vertices are explored is random. In our example, the first clique identified is formed by 153

p1, p2 and p4 and the corresponding vertices are merged into the vertex p1, p2, p4 (see 154

figure 3, D). Next, the weights of the edges are updated. In our example (Figure 3, D), 155

the edge between p1, p2, p4 and p3 is now weighted 3, since the proteins p1,p2 and p4 156

are all connected to protein p3 (see figure 2, A). The edge’s weight connecting p1, p2, p4 157

with p5 remains 1, since only p4 is connected to p5. Following the same strategy, the 158

minimal clique p5, p6, p7 is identified starting from the seed p6 (Figure 3, D) while the 159

seed p9 is merged with p8 and p10 into p8, p9, p10 (Figure 3, E). All edge weights are 160

updated accordingly. 161

Phase 3 of Step I: Extension of all minimal cliques: All minimal cliques of size 162

three (Figure 3, E; green) are now iteratively extended in random order until they cannot 163

be enlarged further. Once a node becomes part of a clique, it cannot become part of 164

another clique, i.e., cliques compete for nodes in the graph. Starting from figure 3 (E), 165

p1, p2, p4 is processed first. p1, p2, p4 is connected to p3 by an edge of weight 3. Thus, 166

all proteins p1, p2 and p4 are connected to p3 (see figure 3, A). Therefore, both vertices 167

can be merged to form the new vertex p1, p2, p3, p4 (Figure 3, F). Next, the clique 168

represented by p5, p6, p7 is processed. The edge connecting p5, p6, p7 with p8, p9, p10 169

has a weight of 9. This indicates that all proteins of p5, p6, p7 are connected with all 170

proteins of p8, p9, p10. Therefore, both vertices are merged to form p5, p6, p7, p8, p9, p10 171

(Figure 3 F). Finally, no clique can be enlarged any further. The algorithm terminates 172

reporting two cliques, i.e., the clique formed by the proteins p1, . . . , p4 as well as the 173
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clique formed by the proteins p5, . . . , p10. 174

175

Phases 1 - 3 of step I of the algorithm are repeated for n iterations with random seed 176

proteins in each iteration until the set of obtained cliques sufficiently approximates the 177

community structure underlying the PPIN. 178

Step II: Identification of significantly enriched cliques 179

In step II (Figure 2, II) all enumerated cliques are tested for their enrichment with 180

phenotype-associated proteins, e.g., proteins corresponding to DEGs from high-throughput 181

gene expression data (Figure 2, Input). The p-value for each clique is calculated using 182

a permutation-based test [Ge et al., 2003]. In detail, for a gene expression platform 183

measuring N genes, with D ∈ N being the set of DEGs, the gene sets B are created, each 184

containing |D| genes sampled from N . For each clique in C, the p-value pi,D of clique ci 185

(i = 1, . . . , |C|) is calculated using the one-sided Fisher’s exact test. Accordingly, the 186

p-value pi,b of clique ci is calculated for each gene set b in B. The final p-value p∗i is 187

then calculated according to equation 1. 188

p∗i =
|∀B : pi,b ≤ pi,D|

|B|
(1)

Step III: Assembly of the regulatory module 189

Based on a user defined p-value cutoff we filter significantly enriched cliques. Since 190

cliques can overlap in their proteins, the union of all significantly enriched cliques (Figure 191

2, III) results in a large regulatory module (Figure 2, Output). This module summarizes 192

biological processes and molecular mechanisms underlying the respective phenotype. 193

Reproducibility of regulatory modules 194

ModuleDiscoverer is a heuristic that approximates the underlying community structure. 195

Since the exact solution is unknown, quality of the approximation cannot be assessed 196

directly. Instead, we can test if additional iterations of the algorithm, i.e., the enumeration 197

of more cliques, has a qualitative impact on the regulatory module in terms of additional 198

nodes and edges. To this end, non-parametric bootstrapping sampling (with replacement) 199

is applied to assess reproducibility of the regulatory module. Based on the results of n 200

iterations of ModuleDiscoverer we create bootstrap samples of n iterations and identify 201

the respective regulatory modules. Pairwise comparison of the regulatory modules in 202

terms of shared edges and nodes then provides a distance between the two regulatory 203

modules. The median of all distances divided by the average number of nodes and edges 204

reflects the stability of the regulatory module. See additional file 1 section 1.4 for details. 205

ModuleDiscoverer: application to biological data 206

To demonstrate the application of ModuleDiscoverer we used the PPIN of R. norvegicus 207

in conjunction with gene expression data of a rat model of diet-induced NASH for the 208

identification of a NASH-regulatory module. The results will be presented in three 209

sections: (i) processing of the PPIN (Figure 2, I), (ii) identification of significantly 210

enriched cliques based on high-throughput expression data (Figure 2, II) and, (iii) 211

assembly of the regulatory module based on the union of all significantly enriched cliques 212

(Figure 2, III). Finally, the NASH-regulatory module will be analyzed and validated. 213
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Processing of the PPIN 214

The PPIN of R. norvegicus (STRING, version 10) was filtered for high-confidence 215

relations with a score > 0.7. This retained 15436 proteins connected by 474395 relations. 216

Next, we used the single-seed approach of ModuleDiscoverer to enumerate maximal 217

cliques using 2,000,000 iterations. This identified 1,494,126 maximal cliques in total, 218

enclosing 185,178 unique maximal cliques. Additionally, we applied ModuleDiscoverer 219

with 1,020,000 iterations using the multi-seed approach with 25 seed proteins per iteration. 220

This resulted in 18,807,344 cliques in total enclosing 2,269,022 unique cliques. 221

Identification of significantly enriched cliques 222

Based on the expression data we identified 286 DEGs (p-value < 0.05) out of 4590 223

EntrezGeneID-annotated genes on the microarray platform (see additional file 2). 10,000 224

data sets were created sampling 286 random genes out of 4590 genes in the statistical 225

background. Finally, genes of all data sets were translated into EnsemblProteinIDs using 226

the R-package org.Rn.eg.db. 227

P-value calculation according to equation 1 was performed for each clique satisfying 228

the following two properties. First, at least one protein in the clique is associated to 229

a DEG. Second, at least half of the proteins in the clique are associated to genes in 230

the statistical background. For the p-value cutoff 0.01 we identified 696 significantly 231

enriched cliques for the single-seed approach and 5386 significantly enriched cliques for 232

the multi-seed approach. Notably, permutation-based calculated p-values were similar 233

to p-values calculated using the one-sided Fisher’s exact test (additional file 3). 234

Assembly and analysis of the regulatory module 235

The assembled regulatory module (additional file 4) of the single-seed approach con- 236

tains five sub-networks composed of 311 proteins connected by 3180 relations. 175 of 237

the 311 proteins are associated to background genes and 60 are associated to DEGs. 238

Similar, the regulatory module of the multi-seed approach contains five sub-networks 239

composed of 415 proteins and 4975 relations in total (Figure 4). 210 of these 415 240

proteins are associated with background genes. 67 proteins are associated with DEGs. 241

Both of the regulatory modules are significantly enriched (p < 10−4) with proteins 242

associated to DEGs. Based on 100 bootstrap samples (see additional file 1 section 1.4) 243

we found that both regulatory modules are reproducible with an average variability 244

of less then 5% (additional file 5). Apart from a single edge the multi-seed regula- 245

tory module encloses the single-seed regulatory module. Thus, we decided to focus 246

on the multi-seed regulatory module as an extension to the single-seed regulatory module. 247

248

Next, we identified pathways significantly enriched with proteins for the regulatory 249

module shown in figure 4. The results (additional file 6) highlighted NASH-relevant 250

pathways such as fatty acid degradation and elongation, PPAR signaling pathway [Souza- 251

Mello, 2015], arachidonic acid metabolism [Loomba et al., 2015], the metabolism of 252

diverse amino acids [Cheng et al., 2012] as well as insulin signaling pathway [Nassir 253

and Ibdah, 2014, Chitturi et al., 2002]. Identification of sub-modules based on edge- 254

betweenness [Newman and Girvan, 2003] in the network revealed 10 sub-modules. These 255

sub-modules are sparsely connected with each other but densely connected within 256

themselves. In figure 4, the sub-module membership of each protein is shape-coded. We 257

performed an enrichment analysis for the proteins of each sub-module to identify its 258

potential biological function (additional file 7). 259

We found that the most central sub-module (Figure 4, circles) can be associated 260

with lipid biosynthetic process. For example, the KEGG PPAR-signaling pathway 261
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Figure 4. The identified NASH-regulatory module. Nodes (proteins) are labeled with
the official gene symbol. Their membership in a sub-module is shape-coded.

is significantly enriched with proteins from the module. This pathway plays a key- 262

role in the development of FLD by regulating the beta-oxidation of fatty acids, the 263

activation of anti-inflammatory pathways and the interaction with insulin signaling 264

[Pawlak et al., 2015]. In agreement with these findings the sub-module is directly 265

connected to sub-modules associated to fatty acid beta-oxidation (diamonds), icosanoid- 266

metabolic processes (parallelogram) and cellular signal transduction such as the insulin 267

signaling pathway (triangles). Another directly connected sub-module can be associated 268

to the metabolism of cellular amino acids (V-shaped) such as alanine, aspartate and 269

glutamate metabolism as well as phenylalanine, tyrosine and tryptophan metabolism. 270

The two remaining larger sub-modules can be associated to proteolysis (hexagons) 271

and the metabolism of cellular proteins (round rectangle) with the latter being directly 272

connected to the sub-module associated with signal transduction (triangles). The 273

connection between cellular protein metabolic processes such as the response to unfolded 274

proteins (see additional file 7, sub-module 8) and NAFLD as well as NASH has been 275

studied extensively and is reviewed in [Henkel and Green, 2013]. 276

Literature validation of the regulatory module 277

Both NASH regulatory modules (single-seed and multi-seed) were validated using curated 278

disease-to-SNP associations (see methods). Disease-to-SNP associations are based on 279

DNA-sequence information. Thus, it can be considered independent from gene expression 280

data, which was used to identify the regulatory module. We found that in contrast to 281

the set of DEGs, both regulatory modules are significantly enriched (p-value < 0.05) 282

with SNPs associated to NAFLD (additional file 8). 283

In addition to the validation based on SNP-information we used a list of curated 284

disease-to-gene associations (see methods). The result of the enrichment analysis is 285

summarized in figure 5. Both regulatory modules show significantly enriched FLD- 286

associated diseases such as obesity, (non-insulin dependent) diabetes mellitus type-2, 287

liver carcinoma and insulin resistance. Notably, these disease-terms show a slight, but 288

none significant enrichment for the set of DEGs. This demonstrates that the regulatory 289

module is based on the integration of experimental data as well as PPI-knowledge. 290
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Figure 5. Enrichment of FLD-related diseases with proteins of the single-seed, the
multi-seed regulatory module and proteins associated to DEGs. Higher values equal
lower p-values.

3 Discussion 291

We have presented ModuleDiscoverer, an algorithm for the identification of regulatory 292

modules based on large-scale, whole-genome PPINs and high-throughput gene expression 293

data. To show applicability of the algorithm we identified a NASH-regulatory module 294

for which we relied on the STRING resource only. STRING integrates information from 295

a variety of resources, such as primary interaction databases, algorithms for interaction 296

prediction, pathway databases, text-mining and knowledge transfer based on orthology. 297

Reported relations are thus based on known physical interaction as well as associative 298

information. To ensure quality of the relations we selected a high cutoff (>0.7) for the 299

combined edge score. While this retains only high-confidence relations it may introduce 300

knowledge bias. A yet to explore alternative might be the use of whole-genome gene 301

regulatory networks (GRNs). Algorithms such as presented in [Altwasser et al., 2012] 302

are based on mathematical models that combine expression data and prior-knowledge 303

interaction data. In such GRNs, relations denote for functional relationship between 304

genes/proteins acting in common biological contexts, which equals networks derived from 305

STRING [Szklarczyk et al., 2015]. This corresponds to the idea of regulatory modules 306

as shown in figure 1. 307

308

To evaluate our algorithm (additional file 1) we used a small sub-network of the 309

high-confidence PPIN of R. norvegicus. We showed that the single-seed approach as well 310

as the multi-seed approach work well in principle and highlighted their advantages as 311

well as disadvantages. 312

Using a single seed per iteration our algorithm will identify only maximal cliques. For 313

large enough numbers of iterations the enumerated maximal cliques will cover all maximal 314

cliques in the PPIN. These regulatory modules will be equal to the regulatory modules 315

identified based on approaches utilizing MCE-problem solving algorithms such as MACE 316

[Kazuhisa Makino, 2004], c-isol [Hüffner et al., 2009], CFinder [Adamcsek et al., 2006], 317

MCODE [Bader and Hogue, 2003] and igraph [Csardi and Nepusz, 2006]. Importantly, 318

these algorithms process PPINs systematically and thus efficiently enumerate all maximal 319

cliques compared to the randomization-based approach of ModuleDiscoverer. However, 320

given the PPIN we used in this study neither of these algorithms successfully terminated. 321

A possible explanation for the large number of required iterations of ModuleDiscoverer 322

could be the high overlap of maximal cliques in the PPIN. Within such networks, small 323

maximal cliques that overlap larger maximal cliques are less frequently identified. Firstly, 324

because a randomly selected seed protein is more likely a member of the larger clique. 325

Secondly, during the iterative extension of cliques, the number of candidate proteins is 326

higher. As a consequence, proteins appearing in only small cliques may likely be missed 327

because the required number of iterations for their discovery is too high. 328
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The multi-seed approach is intended to avoid the enumeration of mainly large maximal 329

cliques in such PPINs. We found that multiple seeds per iteration decrease the probability 330

for their enumeration and shift it towards overlapping smaller cliques. This effect can 331

be explained by the competition of cliques for available nodes during their iterative 332

extension. This leads to the breakdown of large cliques into smaller cliques reducing 333

the probability for their enumeration. Consequently, proteins appearing in only small 334

maximal cliques are more often identified. As a drawback, a high number of seeds leads 335

to the excessive breakdown of large cliques. Thus, a large maximal clique, which is not 336

significantly enriched with DEG-associated proteins may be selected because of all its 337

small sub-cliques being significantly enriched. To this end, the final regulatory module 338

has to be tested for its enrichment with DEG-associated proteins and eventually, the 339

number of random seeds should be lowered. 340

Thus, in cases where large-scale, genome-wide PPINs cannot be processed by MCE- 341

solving algorithms, i.e., the regulatory module based on the exact solution cannot be 342

determined, the use of ModuleDiscoverer becomes favorable. In such situations it is 343

advisable to look at the identified regulatory modules of both, the single-seed as well as 344

the multi-seed approach. The single-seed based regulatory module is more consistent 345

with results of MCE-based approaches. In turn, the multi-seed regulatory module will 346

extend the single-seed based regulatory module with proteins that may have been missed 347

due to a PPIN structure of highly overlapping maximal cliques. 348

349

Analysis of the identified NASH-regulatory module showed its association with FLD- 350

related diseases. Notably, these diseases relate to the findings of [Baumgardner et al., 351

2008]. 352

The NASH-regulatory module (Figure 4) highlights the disease-term obesity as 353

significantly enriched with proteins of the module (Figure 5). In agreement, [Baumgardner 354

et al., 2008] observed a significant increase in body weight in the treatment group 355

compared to control (p≤0.05). Moreover, they reported a significant increase in fat 356

mass as percentage of body weight between treatment and control reflecting adiposity. 357

Additionally, serum leptin levels were observed to be significantly increased in the 358

treatment group. The serum leptin level is a marker that positively correlates with 359

obesity [Al Maskari and Alnaqdy, 2006]. 360

Other significantly enriched disease terms include insulin resistance, diabetes mel- 361

litus type-2 and diabetes mellitus, experimental. [Baumgardner et al., 2008] reported 362

significantly increased serum insulin concentrations compared to control rats that were 363

overfed with a high-fat 5% corn oil diet at (220kcal ∗ kg−3/4 ∗ day−1 ∼ 17%) for 21 days. 364

They concluded that this observation points towards hyperinsulinemia, which can be 365

due to insulin resistance and is often associated with type-2 diabetes. 366

Finally, we found the disease-term fatty liver significantly enriched in proteins of the 367

module. [Baumgardner et al., 2008] reported that histological examination of the liver 368

samples showed steatosis, macrophage infiltration and focal necrosis in the treatment 369

samples. This was accompanied by significantly elevated serum alanine aminotransferase 370

(ALT) levels and significantly increased serum and liver triglyceride concentrations. 371

Notably though, other inflammation associated scores such as hepatocellular ballooning 372

and lobular inflammation/necrosis were reported to be elevated but not statistically 373

significant. This could explain the non-significantly enriched disease-terms such as 374

inflammation and liver-cirrhosis. 375

4 Conclusion 376

We presented ModuleDiscoverer, a heuristic approach for the identification of regulatory 377

modules in large-scale, whole-genome PPINs. The application of ModuleDiscoverer 378
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becomes favorable with increasing size and density of PPINs. Compared to a MCE-based 379

approach we demonstrated that ModuleDiscoverer identifies regulatory modules that can 380

be identical (single-seed approach) or even more comprehensive (multi-seed approach). 381

We successfully applied our algorithm to experimental data for the identification of the 382

regulatory module underlying a rat model of diet induced NASH. The identified NASH- 383

regulatory module is stable, biologically relevant and reflects experimental observations 384

on the clinical and histological level. In contrast to the analysis based on DEGs alone, 385

the NASH-regulatory module is enriched with proteins associated to NASH-relevant 386

diseases such as fatty liver, obesity and insulin resistance. Furthermore, we found the 387

regulatory module significantly enriched with NAFLD-associated SNPs derived from 388

independent GWASs. Altogether, we consider ModuleDiscoverer a valuable tool in the 389

identification of regulatory modules based on large-scale, whole-genome PPINs and 390

high-throughput gene expression data. 391
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Additional Files

Additional file 1 — Supplementary information

Supplementary information regarding the performance of ModuleDiscoverer.

Additional file 2 — List of differentially expressed genes as re-
ported by limma.

For each probe set Id (ProbeSetId) the table shows the associated Entrez-Gene-Id
(EntrezGeneId), the official gene symbol (GeneSymbol) and gene name (GeneName) as
well as the log2 fold-change (logFC) and the computed p-value (P-Value).

Additional file 3 — Comparing permutation-based p-values with
p-values calculated using Fisher’s exact test.

Fisher-exact test (green dot) and permutation based (blue line) p-value for each clique
over its rank of the permutation based p-value. Left: plot for single-seed regulatory
module; Right: plot for multi-seed regulatory module.

Additional file 4 — Cytoscape session of single-seed and multi-
seed regulatory module

A cytoscape session (.cys) containing the identified single-seed as well as multi-seed
regulatory module underlying the diet induced rat model of NASH. For each node, we
also provide information regarding additional identifiers such as EntrezGeneId (internal),
EnsemblProteinId (name), gene name (GENENAME) and symbol (SYMBOL) as well
as information regarding the sub-module membership (BetweennessCommunityMember-
ship), association to a differentially expressed gene (inForeground) and the actual log2
fold change (log2FC) or a background gene (inBackground) in the gene expression data
of Baumgardener et al. [Baumgardner et al., 2008].

Additional file 5 — Stability of the identified regulatory module

Plot outlining the stability in terms of nodes (left) and edges (right) of the single-seed
(top) and the multi-seed (down) regulatory module for increasing numbers of iterations.
Both plots shows that with more iterations the stability of the identified regulatory
modules increases. In other words, the use of additional iterations (and therefore the
enumeration of additional cliques) has a negligible effect on the structure of the identified
regulatory modules.

Additional file 6 — KEGG Pathway and GO enrichment analysis
results.

Each sheet contains the list of significantly enriched (p-value < 0.05) KEGG pathway
term ids (KEGGID) as well as GO-term ids (GO[BP,MF,CC]ID) for the three different
ontologies (BP: biological process; MF: molecular function; CC: cellular compartment).
For each ID, the term (Term), the p-value (Pvalue), the size (Size) as well as the number
of proteins in the respective set of genes (Count) are provided.
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Additional file 7 — KEGG-pathway and GO-term enrichment
results for the sub-modules of the multi-seed based regulatory
module.

Each sheet contains the list of significantly enriched (p-value < 0.05) KEGG pathway
term ids (KEGGID) as well as GO-term ids (GO[BP,MF,CC]ID) for the three different
ontologies (BP: biological process; MF: molecular function; CC: cellular compartment).
For each term (Term), the p-value (Pvalue), the size (Size) as well as the number of
proteins in the respective set of genes (Count) are provided.

Additional file 8 — Results of the enrichment analysis using
gene-disease as well as SNP-gene-disease associations from the
DisGeNet database.

For each disease id (DiseaseId), the tables outline the disease name (DiseaseName),
the calculated p-value (P-value) as well as the number of genes (not) in the regulatory
module ((n)M) and (not) associated to the disease ((n)D). Each table represents the
enrichment results for the set of DEGs, all disease associated proteins in the single-seed
or multi-seed regulatory module.
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