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Abstract 14 

The rapid adoption of CRISPR technology has enabled biomedical researchers to conduct 15 

CRISPR-based genetic screens in a pooled format. The quality of results from such screens is 16 

heavily dependent on optimal screen design, which also affects cost and scalability. We present 17 

CRISPulator, a computational tool that simulates the impact of screen parameters on the 18 

robustness of screen results, thereby enabling users to build intuition and insights that will 19 

inform their experimental strategy. We illustrate its power by deriving non-obvious rules for 20 

optimal screen design. 21 

 22 
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 25 

Background 26 

Genetic screening is a powerful discovery tool in biology that provides an important functional 27 

complement to observational genomics. Until recently, screens in mammalian cells were 28 

implemented primarily based on RNA interference (RNAi) technology. Inherent off-target 29 

effects of RNAi screens present a major challenge [1]. In principle, this problem can be 30 

overcome using optimized ultra-complex RNAi libraries [2, 3], but the resulting scale of the 31 

experiment in terms of the number of cells required to be screened can be prohibitive for some 32 

applications, such as screens in primary cells or mouse xenografts. 33 

Recently, several platforms for mammalian cell screens have been implemented based on 34 

CRISPR technology [4]. CRISPR nuclease (CRISPRn) screens [5, 6] perturb gene function by 35 

targeting Cas9 nuclease programmed by a single guide RNA (sgRNA) to a genomic site inside 36 

the coding region of a gene of interest, followed by error-prone repair through the cellular non-37 

homologous end-joining pathway. CRISPR interference (CRISPRi) and CRISPR activation 38 

(CRISPRa) screens [7] repress or activate the transcription of genes by exploiting a catalytically 39 

dead Cas9 to recruit transcriptional repressors or activators to their transcription start sites, as 40 

directed by sgRNAs. 41 

 CRISPRn and CRISPRi have vastly reduced off-target effects compared with RNAi, and 42 

thus overcome a major challenge of RNAi-based screens. However, other challenges to 43 

successful screening [1] remain. The majority of CRISPRi and CRISPRn screens have been 44 

carried out as pooled screens with lentiviral sgRNA libraries. While this pooled approach has 45 

enabled rapid generation and screening of complex libraries, successful implementation of 46 
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pooled screens requires careful choices of experimental parameters. Choices for many of these 47 

parameters represent a trade-off between optimal results and cost.  48 

 49 

Results 50 

Here, we present a computational tool, termed CRISPulator, which simulates how experimental 51 

parameters will affect the detection of different types of gene phenotypes in pooled CRISPR-52 

based screens. CRISPulator is freely available online (http://crispulator.ucsf.edu) to enable 53 

researchers to develop an intuition for the impact of experimental parameters on pooled 54 

screening results, and to optimize the design of pooled screens for specific applications. It 55 

simulates all steps of pooled screens, as visualized in Fig. 1 and described in more detail in the 56 

Methods. 57 

Briefly, a theoretical genome is generated in which genes are assigned quantitative 58 

phenotypes (Fig. 2). Independently, the quantitative relationship between gene knockdown level 59 

and resulting phenotype is defined for each gene (Fig. 3). Next, a sgRNA library targeting this 60 

genome is defined. Each gene is targeted by a number of independent sgRNAs. The technical 61 

performance of each sgRNA is randomly assigned based on a user-defined distribution of 62 

CRISPRn or CRISPRi sgRNA activities (Fig. 4), and the initial frequency distribution is 63 

specified (Fig. 5).  64 

Simulation of the screen itself discretely models infection of cells with the pooled sgRNA 65 

library, phenotypic selection of cells and quantification of sgRNA frequencies in selected cell 66 

populations by next-generation sequencing. Based on the resulting data, hit genes are called (Fig. 67 

6) using our previously described quantitative framework [3], as detailed in the Online Methods. 68 

The performance of the screen with a specific set of experimental parameters is evaluated by 69 
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comparing the called hit genes to the actual genes with phenotypes defined by the theoretical 70 

genome. It is quantified either as overlap of the list of top called hits with the actual list of top 71 

hits, or as area under the precision-recall curve (AUPRC), a metric commonly used in machine 72 

learning (Fig. 7). 73 

A central consideration for all pooled screens is the number of cells used relative to the 74 

number of different sgRNAs in the library. We refer to this parameter as representation, and 75 

distinguish representation at the time of infection, representation at times during phenotypic 76 

selection, and – by extension – representation at the sequencing stage (where it is defined as the 77 

number of sequencing reads relative to the relative to the number of different sgRNAs). From 78 

first principles, higher representation is desirable to reduce Poisson sampling noise (“jackpot 79 

effects”); in practical terms, higher representation is also more costly. A major application of 80 

CRISPulator is the exploration of parameters to guide the choice of suitable representation at 81 

each step of the screen to enable researchers to strike the desired balance between screening cost 82 

and performance. 83 

CRISPulator implements two distinct strategies for phenotypic selection. In fluorescence-84 

activated cells sorting (FACS)-based screens, cell populations are separated based on a 85 

fluorescent reporter signal that is a function of the phenotype. We [8] and others [9] have 86 

successfully implemented such screens by isolating and comparing cell populations with the 87 

highest and the lowest reporter levels. More commonly, pooled screens are conducted to detect 88 

genes with growth or survival phenotypes [5-7] by comparing cell populations at an early time 89 

point with cells grown in the absence or presence of selective pressures, such as drugs or toxins.  90 

We first asked how representation at the infection, selection and sequencing stages 91 

affects FACS- and growth-based screens (Fig. 8). The performance of FACS-based screens was 92 
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most sensitive to the representation at the selection bottleneck, and least sensitive to 93 

representation at the infection stage, highlighting the importance of collecting a sufficient 94 

number of cells for each population during FACS sorting, ideally more than 100-fold the number 95 

of different library elements. By contrast, the performance of growth-based screens was similarly 96 

sensitive to representation at all stages.  97 

For FACS screens using a given number of cells, an important decision is how extreme 98 

the cutoffs defining the “high-reporter” and “low-reporter” bins should be. CRISPulator 99 

simulation suggests that separating and comparing the cells with the top quartile and bottom 100 

quartile reporter activity results in the optimal detection of hit genes (Fig. 9). Closer inspection 101 

revealed that while both signal (sgRNA frequency differences between the two populations) and 102 

the noise (due to lower representation in the sorted population) decrease with larger bin sizes, the 103 

signal-to-noise ratio reaches a local maximum around 25% (Fig. 10), close to the bin size chosen 104 

fortuitously in published studies [8, 9]. 105 

For growth-based screens, the duration of the screen influences the signal (by amplifying 106 

differences in frequency due to different growth phenotypes) but also the noise (by increasing the 107 

number of Poisson sampling bottlenecks generated by cell passaging or repeated applications of 108 

selective pressure). Interestingly, CRISPulator suggests that the effect of screen duration on 109 

optimal performance is different for genes with positive and negative phenotypes, and strongly 110 

depends on the presence of genes with positive phenotypes (Fig. 11). While genes with positive 111 

phenotypes (increased growth / survival) were detected more reliably after longer screens, genes 112 

with negative phenotypes (decreased growth / survival) were optimally detected in screens of 113 

intermediate duration, and their detection in longer screens rapidly declined if genes with 114 

stronger positive phenotypes were present in the simulated genome. While genes with positive 115 
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phenotypes are rare in screens based on growth in standard conditions [5-7], selective pressures, 116 

such as growth in the presence of toxin, can reveal strong positive phenotypes for genes 117 

conferring resistance to the selective pressure [7]. The optimal screen length for growth-based 118 

screens was dictated by a local maximum of the signal-to-noise ratio, which itself depended on 119 

the representation: screens with lower representation were performing better at shorter duration 120 

(Fig. 12). Our results therefore predict that especially for growth-based screens using selective 121 

pressures, and screens implemented with low representation, short durations are preferable. 122 

While CRISPRn and CRISPRi screens performed similarly in the simulations described 123 

above (Fig. 8-11), separate evaluation of genes with linear versus sigmoidal phenotype-124 

knockdown relationship revealed that CRISPRn outperforms CRISPRi for the detection of 125 

sigmoidal genes (which require very stringent knockdown to result in a phenotype), whereas 126 

CRISPRi performs relatively better for genes with a linear knockdown-phenotype relationship 127 

(Fig. 13).  128 

 129 

Discussion 130 

CRISPulator revealed several non-obvious rules for the design of pooled genetic screens, 131 

illustrating its usefulness. Since certain parameters used by CRISPulator (such as the quality of 132 

sgRNA libraries or the signal-to-noise of FACS-based phenotypes) are estimates informed by 133 

published data, but not directly known, the predicted screen performance does not represent 134 

absolute performance metrics. Rather, the goal is to predict the relative performance of screens 135 

conducted with different experimental parameters to enable researchers to optimize those 136 

parameters. The simulated sequencing reads generated by CRISPulator (Fig. 10) recapitulate 137 

patterns observed in experimental data (Fig. 14), thereby facilitating the interpretation of 138 
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suboptimal experimental data and providing a tool to predict which experimental parameters 139 

need to be changed to obtain data more suitable for robust hit detection 140 

 141 

Conclusions 142 

CRISPulator facilitates the design of pooled genetic screens by enabling the exploration of a 143 

large space of experimental parameters in silico, rather than through costly experimental trial and 144 

error. For pooled genetic screens in animal models, such as mice, choices of experimental 145 

parameters can also have ethical implications, namely the numbers of animals required to power 146 

the study. As larger numbers of pooled genetic screens are published, we will further refine the 147 

assumptions underlying the simulation using empirical data.  148 

 149 

Methods 150 

 151 

Code implementation and availability. CRISPulator was implemented in Julia 152 

(http://julialang.org), a high-level, high-performance language for technical computing. We have 153 

released the simulation code as a Julia package, Crispulator.jl. The software is platform-154 

independent and is tested on Linux, OS X (macOS), and Windows. Installation details, 155 

documentation, source code, and examples are all publicly available at 156 

http://crispulator.ucsf.edu.  157 

 158 

Simulated genome. A genome is defined by assigning a numerical, “true” phenotype to a 159 

number of genes. All of our results featured here used 500 genes in each simulation. 75% of 160 

genes were assigned a phenotype of 0 (wild-type), and 5% of genes were modeled as negative 161 
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control genes, also with a phenotype of 0. 10% of genes were assigned a positive phenotype 162 

randomly drawn (unless otherwise indicated) from a Gaussian distribution with μ=0.55 and 163 

σ=0.2 (clamped between [0.1, 1.0]), and 10% of genes were assigned a negative phenotype 164 

randomly drawn from an identical distribution except with μ=-0.55 and clamping [-1.0, -0.1] 165 

(Fig. 2). Next, each gene was randomly assigned a phenotype-knockdown function (Fig. 3) to 166 

simulate different responses of genes to varying levels of knockdown. 75% of genes were 167 

assigned a linear function that linearly interpolates between 0 and the “true” phenotype from 168 

above as a function of knockdown, the remaining 25% of genes were assigned a sigmoidal 169 

function with an inflection point, p, drawn from a distribution with a mean of 0.8 and standard 170 

deviation of 0.2; the width of the inflection region, k, (over which a phenotype increased from 0 171 

to the “true” phenotype, l) was drawn from a normal distribution with a mean of 0.1 and a 172 

standard deviation of 0.05. The function f was defined as follows: 173 

 174 

���� �
���
�	 0, � � 
 � �1, � � 
 � �12�������� · 1.05|�||�| � 1 � 1� , 
 � � � � � 
 � �  

 175 

where � � ���

��� ��,��� �
��,��
 176 

 177 

This specific sigmoidal function was chosen over the more standard special case of the logistic 178 

function or the Gompertz function because it is highly tunable and has a range between 0 and l 179 

on a domain of [0, 1].  180 

 181 
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Simulated sgRNA libraries. CRISPRn and CRISPRi sgRNA libraries are generated to target 182 

the simulated genome. For the results featured here, each gene was targeted by 5 independent 183 

sgRNAs. For CRISPRi screens, each sgRNA was randomly assigned a knockdown efficiency 184 

from a bimodal distribution (Fig. 4): 10% of sgRNAs had low activity with a knockdown drawn 185 

from a Gaussian (μ=0.05, σ=0.07), 90% of guides had high activity drawn from a Gaussian 186 

(μ=0.90, σ=0.1). We assumed such a high rate of active sgRNAs based on our recently 187 

developed highly active CRISPRi sgRNA libraries [10]. For CRISPRn screens, high-quality 188 

guides all had a maximal knockdown efficiency of 1.0 and were 90% of the population (the 10% 189 

low-activity CRISPRn guides were drawn from the same Gaussian (μ=0.05, σ=0.07) as above). 190 

The initial frequency distribution of sgRNAs in the library was modeled as a log-normal 191 

distribution such that a guide in the 95th percentile of frequencies is 10 times as frequent as one 192 

in the 5th percentile (Fig. 5), which is typical of high-quality libraries in our hands [7].  193 

 194 

Simulated screens. All steps of the pooled screens are simulated discretely. Infections are 195 

modeled as a Poisson process with λ=M.O.I of the infection. The initial pool of cells is randomly 196 

infected by sgRNAs based on the frequency of each sgRNA in the library. A λ=0.25 is used 197 

unless otherwise noted, which is commonly used to approximate single-copy infection [11]. Only 198 

cells with a single sgRNA are then used in subsequent steps, which is P(x=1; Poisson(λ=0.25)) ≈ 199 

19.5% of the initial pool. 200 

For CRISPRi screens, phenotypes for each cell were determined based on the sgRNA 201 

knockdown efficiency (from above) and based on both the phenotype and the knockdown-202 

phenotype relationship of the targeted gene. For CRISPRn screens, phenotypes for each cell 203 

were set using using sgRNA knockdown efficiency (specific for CRISPRn screens, see previous 204 
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paragraph) and the gene phenotype. If a cell was infected with a low-quality CRISPRn guide, it 205 

behaved similarly to a low-quality CRISPRi guide, i.e. very close to no activity. All cells with 206 

high-quality guides CRISPRn guides had a 1/9, 4/9, or 4/9 chance of having 0%, 50%, or 100% 207 

knockdown efficiency, respectively. This knockdown efficiency was then used with the 208 

knockdown-phenotype relationship and true phenotype of the gene to calculate the observed 209 

phenotype.  The assumption that only bi-allelic frame-shift mutations lead to a phenotype in 210 

CRISPRn screens for most sgRNAs is supported by the empirical finding that in-frame deletions 211 

mostly do not show strong phenotypes, unless they occur in regions encoding conserved residues 212 

or domains [10]. To mitigate this issue, some CRISPRn screens have been conducted in quasi-213 

haploid cell lines [6].  214 

FACS sorting was simulated by convoluting the theoretical phenotypes of each cell 215 

independently with a Gaussian (μ=0, σ) where σ is a tunable “noise” parameter, reflecting 216 

biological variance in fluorescence intensity of isogenic cells. The number of cells prior to this 217 

step is termed the bottleneck representation and is tunable. Post-convolution, cells were sorted 218 

according to their new, “observed” phenotype and then the bottom X percentile and top X 219 

percentile (X was real value between 0 and 50) were taken as the two comparison bins. 220 

Growth experiments were simulated as follows: (1) in the time frame that WT cells (true 221 

phenotype=0) divide once, cells with the maximal negative phenotype, -1, do not divide, and 222 

cells with maximal positive phenotype divide twice. For cells with phenotypes in between 0 and 223 

±1, cells randomly pick whether they behave like WT cells or maximal phenotype cells weighted 224 

by their phenotype (i.e. cells with phenotypes close to 0 behave mostly like WT cells). (2) After 225 

one timestep where WT cells double once, a random subsample of the cells is taken. The size of 226 
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the bottleneck is tunable. (3) This is repeated n number of times. Finally, the samples of cells at 227 

t=0 and t=n are taken as the two populations for comparison. 228 

 229 

Sample preparation was simulated by taking the frequencies of each guide in the cells 230 

after selection and constructing a categorical distribution with the frequencies as the weights. 231 

Next-generation sequencing was then simulated by sampling from this categorical distribution up 232 

to the number of total reads. 233 

 234 

Evaluation of screen performance. Based on the simulated sequencing read counts, P values 235 

and gene-level phenotypes were calculated for each gene essentially as previously described [3, 236 

7]. Briefly, observed sgRNA phenotypes were calculated as log2 ratios of sgRNA frequencies in 237 

two cell populations. Gene-level phenotypes were calculated by averaging the sgRNA 238 

phenotypes. P values were calculated based on the Mann-Whitney rank-sum test by comparing 239 

the phenotypes of sgRNAs targeting a given gene with the phenotypes of negative control 240 

sgRNAs. Genes were ranked by the product of the absolute gene-level phenotype and their –241 

log10 P value to call hit genes. Screen performance was quantified in two ways: As the overlap of 242 

the top 50 called hit genes with the top 50 actual hit genes (based on true phenotype), or as the 243 

area under the precision-recall curve (AUPRC). AUPRC was chosen over the more common area 244 

under the receiver operator characteristic (AUROC) due to the highly skewed nature of the 245 

generated dataset (<20% of dataset is made up of true hits). The AUPRC was calculated using a 246 

lower trapezoidal estimator, which had been previously shown to be a robust estimator of the 247 

metric [12]. For Figures 10 and 12, the “signal” of an experiment was defined as the median 248 

signal for true hit genes (ones initially labeled as having a positive or negative phenotype). The 249 
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true hit gene signal was calculated as the average ratio of the log2 fold change over the 250 

theoretical phenotype of all guides targeting that gene. Guides that dropped out of the analysis 251 

were excluded from the signal calculation. “Noise” was quantified as the standard deviation of 252 

negative-control sgRNA phenotypes, and the “signal-to-noise” ratio was the ratio of these two 253 

metrics. For display purposes, all are normalized in each graph. 254 

 255 

List of abbreviations 256 

AUPRC, area under the precision-recall curve 257 

CRISPRi, CRISPR interference 258 

CRISPRn, CRISPR nuclease 259 

FACS, fluorescence-activated cell sorting 260 

sgRNA, single guide RNA 261 
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 332 

 333 

Figure legends 334 

Figure 1. CRISPulator simulates pooled genetic screens to evaluate the effect of experimental 335 

parameters on screen performance. Overview of simulation steps: Parameters listed with bullet 336 

points can be varied to examine consequences on the performance of the screen, which is 337 
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evaluated as the detection of genes with phenotypes (quantified as overlap or area under the 338 

precision-recall curve, AUPRC). Details are given in the text and Methods.  339 

Figure 2. Phenotype distribution in the simulated genome. A typical distribution is shown, which 340 

includes 75% of genes without phenotype (green), 5% of negative control genes (pink), 10% of 341 

genes with a positive phenotype (blue), and 10% of genes with a negative phenotype (yellow). 342 

 343 

Figure 3. Relationship between gene knockdown level and resulting phenotype. This 344 

relationship is defined for each gene, and represents either a linear function (orange graphs) or a 345 

sigmoidal function (blue lines), as defined in the Online Methods. 346 

 347 

Figure 4.  CRISPRi sgRNA activity distribution. An example of a typical distribution for 1000 348 

guides is shown. 349 

 350 

Figure 5. Initial frequency distribution of sgRNAs. An example of a typical distribution is 351 

shown.  352 

 353 

Figure 6. Sample results from a CRISPulator simulation of a FACS-based screen.  Top row: 354 

Each point represents and individual sgRNA, plotting its read numbers in the simulated deep 355 

sequencing run for the “low reporter signal” bin and the “high reporter signal” bin. sgRNAs are 356 

color-coded to indicate whether they target a gene with a positive phenotype (knockdown 357 

increases reporter signal, blue), a gene with a negative phenotype (knockdown decreases reporter 358 

signal, red), a gene without phenotype (grey), or whether they are non-targeting control sgRNAs 359 

(black). Bottom row: Based on the observed sgRNA phenotypes, gene phenotypes are calculated 360 
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(mean log2 ratio of read frequencies in “high” over “low” bins), and a gene P value is calculated 361 

to express statistical significance of deviation from wild-type. These are visualized in volcano 362 

plots in which each dot represents a gene. Genes are color-coded to indicate the actual 363 

phenotype: positive, blue; negative, red; no phenotype, grey. 364 

 365 

Figure 7. Metrics to evaluate screen performance. (a) “Venn diagram” overlap between the 50 366 

genes with the strongest actual phenotypes, and the top 50 hit genes called based on the screen 367 

results – expressed as the ratio of the number of genes in the overlap over the number of called 368 

top hit genes, i.e. 50. (b) Area under the precision-recall curve (AUPRC). 369 

 370 

Figure 8. Importance of representation of library elements at different stages of the screen.  371 

CRISPulator simulations reveal the effect of library representation at different screen stages 372 

(Transfection, bottlenecks, sequencing) on hit detection. Simulations were run for FACS-based 373 

screens (top row) and growth-based screens (bottom row). Lines and light margins represent 374 

means and 95% confidence intervals, respectively, for 10 independent simulation runs.  375 

 376 

Figure 9. Effect of bin size on performance of FACS-based screens. Simulations were run for 377 

100x representation at the transfection, bottleneck and sequencing stages. Lines and light 378 

margins represent means and 99% confidence intervals, respectively, for 100 independent 379 

simulation runs.  380 

 381 

Figure 10. Effect of bin size on signal and noise of FACS-based screens. For FACS-based 382 

screens, the effect of the size of the sorted bins (see Fig. 1) on metrics for signal, noise, and 383 
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signal-to-noise ratio (scaled within each plot) is shown. Metrics are defined in the Online 384 

Methods. Simulations were run for 10x representation (top row) or 100x representation (bottom 385 

row) at the transfection, bottleneck and sequencing stages. Lines and light margins represent 386 

means and 99% confidence intervals, respectively, for 25 independent simulation runs. 387 

 388 

Figure 11. Effect of positive phenotypes on growth-based screens. For growth-based screens, the 389 

presence of genes with positive phenotypes (fitter than wild type) strongly influences hit 390 

detection as a function of screen duration. Screens were simulated for a set of genes in which 391 

10% of all genes had negative phenotypes (less fit than wild type), and 2% of genes had positive 392 

phenotypes. The strength of positive phenotypes was varied, as encoded by the heat map. Hit 393 

detection was quantified separately for genes with negative phenotypes (top row) and genes with 394 

positive phenotypes (bottom row). Simulations were carried out for screens with different 395 

durations, as measured by the number of passages. Lines and light margins represent means and 396 

95% confidence intervals, respectively, for 25 independent simulation runs. In a and c, hit 397 

detection is measured as Area under the Precision-Recall curve (AUPRC), as detailed in the 398 

Online Methods.  399 

 400 

Figure 12. Effect of duration of growth-based screens on performance. Screens were simulated 401 

for a set of genes in which 10% of all genes had negative phenotypes (less fit than wild type). 402 

Simulations were carried out for screens with different durations, as measured by the number of 403 

passages, and for different representations at the transfection, bottleneck and sequencing stages. 404 

Metrics for signal, noise, and signal-to-noise ratio are defined in the Online Methods. Lines and 405 
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light margins represent means and 95% confidence intervals, respectively, for 25 independent 406 

simulation runs. 407 

 408 

Figure 13. Comparison of CRISPRn and CRISPRi screen performance for genes with different 409 

knockdown-phenotype relationships. Simulations of FACS-based screens were run for 100x 410 

representation at the transfection, bottleneck and sequencing stages. The simulated genome 411 

contained 75% of genes with a linear knockdown-phenotype relationship and 25% of genes with 412 

a sigmoidal knockdown-phenotype relationship, as defined in the Online Methods. Performance 413 

in hit detection was quantified as AUPRC either for all genes, or only for linear or sigmoidal 414 

genes. Lines and light margins represent means and 99% confidence intervals, respectively, for 415 

100 independent simulation runs.  416 

 417 

Figure 14. Experimental data from FACS-based screens resembles simulated data shown in 418 

Figure 6. Grey dots: non-targeting sgRNAs, dots on a red-white-blue color scale: targeting 419 

sgRNAs. Number of deep sequencing reads for each sgRNA in two populations separated based 420 

on a fluorescent reporter signal are shown. (a) Screen carried out with high representation at all 421 

stages. (b) Screen with low representation at the infection stage. (c) Screen with low 422 

representation at the selection stage.  423 
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