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Abstract.

Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected
circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have
predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an
increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on
stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex
could evoke such a variety of effects in tone-evoked responses and in behavioral frequency
discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus
selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting
differences in circuitry or expression of optogenetic factors. Changes in neural population
responses consistently predicted behavioral changes for individuals separately, including
improvement and impairment in acuity. This correlation between cortical and behavioral change
demonstrates that, despite complex and varied effects these manipulations can have on neuronal
dynamics, the resulting changes in cortical activity account for accompanying changes in

behavioral acuity.

Author summary.

Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory
cortex, thereby controlling perceptual discrimination acuity. Modeling of such excitatory-inhibitory
circuits has predicted that suppressing the activity of inhibitory neurons can lead to increases or,
paradoxically, decreases in excitatory activity, depending on the architecture and modulation
parameters of the inhibitory component of the network. Here, we capitalized on differences
between subjects to test whether suppressing/activating inhibition and excitation across a range
of parameters in sensory cortex can in fact exhibit such paradoxical effects for both stimulus
sensitivity and behavioral discriminability. Indeed, we found that the same optogenetic
manipulation in the auditory cortices of different mice could improve or impair frequency
discrimination acuity, in a fashion that was predictable from the effects on cortical responses to
tones. The same manipulations sometimes produced opposite changes in the behavior of
different individuals, supporting theoretical predictions for inhibition-stabilized networks.
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Introduction.

Sensitivity to sensory signals depends on neuronal tuning to specific parameters of
sensory stimuli, such as orientation of edges for visual stimuli, or tone frequency for auditory
stimuli. Such neuronal selectivity arises in many brain areas and is shaped by complex,
interconnected circuits of excitatory and inhibitory neurons [1]. The balance between inhibitory
and excitatory stimulus representation in the sensory cortex has been proposed to underlie
learning- and adaptation- dependent changes in stimulus-driven responses [2]. Recently, a
number of studies have begun to unravel the role of inhibition in sensory processing, empowered
by recently developed optogenetic techniques [for example 3, 4-10]. These methods drive
specific classes of neurons to express an opsin, such that shining light over that brain area either
activates or suppresses neuronal activity selectively [11-15].

While optogenetic techniques provide exquisite molecular and temporal specificity for testing
the function of specific cell types in sensory acuity, they currently carry inherent and technical
limitations that can lead to different levels of opsin expression and activation or suppression
strength across individual animals. Since measurements are typically performed in multiple
animals, these specific differences are accounted for using statistical analyses while summarizing
the average effects of optogenetic perturbations. We postulated that these differences could be
instead exploited in order to characterize the diversity of effects across subjects, thereby
deepening our understanding of the function of inhibitory-excitatory interactions in sensory
processing.

Theoretically, it has been predicted that within balanced excitatory-inhibitory circuits,
increasing inhibition can either decrease excitatory neuronal activity or, paradoxically, increase it,
depending on specific perturbation parameters and circuit properties [16]. We therefore
hypothesized that the differences in technical parameters of optogenetic stimulations across
animals could evoke both positive and negative effects on the firing rate of the target neuronal
population. Focusing on tone frequency representation in the auditory cortex [9], we tested
whether this was indeed the case by up- or down- regulating the activity of either inhibitory or
excitatory neurons and measuring the resulting changes in frequency discriminability based on
neuronal population activity. Our previous analyses had demonstrated that, on average,
suppressing the activity of the most common class of interneuron, parvalbumin-positive neurons
(PVs), in auditory cortex (AC) impaired behavioral frequency discrimination acuity, while
activating PVs improved it, whereas activating excitatory neurons did not have an effect [9]. Here,
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we compared changes in neuronally predicted and behavioral frequency discrimination acuity due
to optogenetic manipulations.

Optogenetic interventions led to changes in tone-evoked responses of recorded neurons. As
predicted, the same manipulation sometimes produced opposite changes in neurometric
sensitivity and in behavior for different individuals. Computational analysis predicted consequent
changes in discrimination thresholds, which explained the measured behavioral changes,
including improvement or impairment of discrimination driven by the same optogenetic
manipulation in different individuals. Our results thus demonstrate that, although these
manipulations have complex effects on the neural network, the resultant changes in activity are

sufficient to predict changes in behavior.

Results.

Measuring frequency discrimination acuity.

To measure frequency discrimination acuity, we used a procedure based on pre-pulse
inhibition of the acoustic startle reflex (Figure 1A, B). Like other mammals, mice startle to loud
noise. The startle response, as measured by the change in pressure exerted by the subject on a
balance platform, is typically decreased when the startle noise is preceded by a brief tone that
mice can detect — a phenomenon termed pre-pulse inhibition (PPI). We presented mice with a
continuous tone at one frequency, which was stepped to a tone of a different frequency just prior
to the startle noise. The startle response was attenuated as the frequency difference between
background and pre-pulse tones increased (Figure 1B, C). This attenuation reflects the ability of
the mouse to detect frequency differences [9, 17]. We characterized frequency discrimination
acuity in terms of a behavioral threshold -- the frequency difference that produced 50% of the
maximum PPI (Figure 1 C).
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Figure 1: Measurement of behavioral frequency discrimination acuity.

A. Schematic of measurement of frequency discrimination acuity in mouse. Left: Startle response
is measured as pressure the subject exerts on a platform. Right: Sound stimulus time course: an
ongoing background tone (light gray, f1) is followed by a brief pre-pulse tone of different frequency
(dark grey band, f)) and then by a startle noise (thin black band, SN).

B. Normalized time course of platform pressure during the startle response to noise for different
pre-pulse tones for an exemplar mouse. Time relative to SN onset.

C. Pre-pulse inhibition measured as reduction in the acoustic startle response as a function of the
frequency shift (Af) between the background and pre-pulse tones (see Methods for definition) of
an exemplar mouse. PPI does not reach 100% because even with an easily identifiable prepulse
tones, the animal still startles. Dots: data, solid line: fit.

Neurometric discrimination thresholds from Fisher Information

Next, we recorded the activity of putative excitatory cells (Methods) in AC, while presenting
the awake head-fixed mouse with a random tone pip stimulus (50 ms tone pips presented every
500 ms, frequency changed at random, Figure 2A). For each frequency-tuned neuron, we
measured frequency response curves (mean firing rate as a function of tone frequency, Methods
and Figure 2B). To estimate a discrimination threshold from the frequency-tuned neural
population recorded in each mouse we used Fisher Information analysis. To do so, we fit
Gaussian functions to the response curve of each neuron, and assumed that neurons responded
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independently and with Poisson variability. Standard methods then provided the Fisher
information for frequency discrimination based on the population response (Methods; Figure 2C)
[18]. Fisher information quantifies the amount of information that neural responses provide to
distinguish nearby frequencies. Decoding sensitivity increases with Fisher information. Since
this information is large when the neural response changes quickly as a function of frequency, it
is higher on the slopes of the tuning curves than in the center.

The inverse square root of the Fisher Information bounds the accuracy with which nearby
frequencies can be distinguished based on population activity. This quantity is by definition the
neurometric threshold, and gives the frequency difference that can be discriminated with 70%
accuracy. Figure 2D shows the neurometric thresholds determined in an individual mouse on the
basis of the neural population recorded in its cortex.

A direct comparison of the neurometric threshold with behavior faces three challenges: (a)
discrimination accuracy need not translate linearly into thresholds determined from the pre-pulse
inhibition of the acoustic startle response measured here, (b) cortical recordings inevitably sub-
sample the population of responsive neurons, and (c) frequency discrimination is supported by
multiple pathways, some of which may not involve the auditory cortex. In general, we expect the
neurometric thresholds computed here to be higher than the behavioral thresholds, because of
the limited number of recorded neurons (e.g., Figure 2D).

In view of these challenges we did not seek to predict absolute behavioral thresholds from
the population of recorded frequency-tuned neurons. Rather, we made a differential estimate: we
manipulated excitatory and inhibitory neuronal activity in the auditory cortex optogenetically, and
tested whether there was a correlation between the resulting changes in the neurometric estimate
of discrimination thresholds and corresponding changes in behavior.
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Figure 2: Measurement of neurometric frequency discrimination acuity.

A. Left: Schematic of electrophysiological recording of neuronal responses in the primary
auditory cortex (A1) in awake mouse. Right: The stimulus consists of a pseudorandom sequence
of pure tones at varying frequency and intensity levels.

B. Representative frequency response function for a single neuron (f; = background tone in Fig.
1). Black dots: data, black line: fit.

C. Fisher information for tone discrimination (black) computed on the basis of frequency response
functions (gray dashed) of neurons (N=14) recorded in the same mouse.

D. Neurometric threshold for decoding frequency (solid) computed on the basis of the inverse
square root of Fisher Information computed in C. The neurometric threshold based on the
recorded population lies above behavioral threshold for discrimination around f; (dashed line).
Light blue band indicates the region in frequency space from which behavioral measurements
were taken.
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Optogenetically induced changes in neurometric and behavioral thresholds are correlated.

Frequency tuning of AC neurons is thought to depend on the combination of excitatory and
inhibitory inputs [9, 19-22]. To manipulate tone responses of AC neurons, we targeted the most
common interneuron subtype, parvalbumin-positive interneurons (PVs). We drove PVs to express
Archaerhodopsin (Arch) or Channelrhodopsin (ChR2) by injecting a floxed Arch- or ChR2-
encoding virus in PV-Cre mice. We verified the efficiency of the viral transfection and light
stimulation by measuring the effect of light on spontaneous firing rates of neurons. As expected,
when PVs were activated by light, thus increasing inhibition, spontaneous activity decreased in
the recorded population (Figure 3A) [10]. Optogenetically suppressing PVs had the opposite
effect: the spontaneous rate of most recorded neurons increased (Figure 3B). We also drove
excitatory neurons in AC to express ChR2 and found that optogenetic illumination of AC led to an
elevated spontaneous firing rate (Figure 3C). Thus, we reliably used light to manipulate the
activity of excitatory and PV neurons in AC.

We next measured the behavioral effects of manipulating neural activity in AC. On half of the
trials, we illuminated AC at the same time as providing the pre-pulse stimulus. Activating PVs
(Figure 3D) decreased the threshold for most animals (N=5) and increased it for some (N=2),
while a few (N=4) did not have a statistically significant threshold change. Suppressing PVs
(Figure 3E) produced an increase in the frequency discrimination threshold for two animals, and
did not produce statistically significant change for one animal. Optogenetically activating
excitatory neurons increased the threshold for most animals (N=3) and decreased it for one, with
one animal displaying no threshold change (Figure 3F). For several animals, (N=6) the
manipulations did not produce any significant behavioral changes.

Finally, we measured the effect of manipulating neuronal activity on the neurometric frequency
discrimination thresholds predicted from the recorded population. Activating PVs led to a
decrease in the predicted threshold (Figures 3G, 4A, B, blue) for most PV-ChR2 mice (N=7) and
an increase for some (N=2). The predicted threshold increased for three PV-Arch mice after
suppressing PVs (Figures 3H, 4A, B green), but decreased for two. Activating excitatory neurons
(Figures 3I, 4A, B, red) increased the predicted threshold for all CamKlla-ChR2 mice (N=3).
There was no predicted change for two mice (<2% change in predicted threshold).

A potential confound for optogenetic manipulation of cortical activity is the scattering of light
through the tip of the optic fiber. To prevent the light manipulation to serve as an additional pre-
pulse, we placed a bright LED in the chamber, which served to adapt the retina of the mouse to

scattered light from the optic fiber [23]. Another limitation of light-driven manipulations of neuronal
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activity is a potential cascade of prolonged circuit-level dynamics. Therefore, to facilitate the
comparison of the effect on light-off and light-on trials, light was presented on light-off trials as
well, but not concurrent with the prepulse and startle stimuli. Indeed, light presentation alone did
not affect the startle response (PV-ChR2 mice, blue light: N = 11, p>0.05; PV-Arch mice, green
light: N = 8, p>0.05) and thus did not serve as a pre-pulse of the acoustic startle response. As an
additional control, we injected a cohort of mice with virus carrying only the fluorescent reporter,
and not the opsin. In these animals, there were no significant effects on frequency discrimination
acuity (N = 6, p>0.05) [9]. These two aspects of stimulus design and control measurements thus
confirmed that the observed behavioral changes were unlikely due to artifacts of light
presentation, but rather due to light-driven manipulation of cortical activity.

For most individuals (N=15/19) and on average, the sign of the neurometric change in
threshold with the optogenetic manipulations matched the sign of the change in behavioral
threshold (Figure 4A, B). This qualitative agreement was striking, given that the
electrophysiological recordings only sample a few neurons, while the light has a global effect on
the auditory cortex and sometimes leads to opposite behavioral changes. To quantify the
correlation, we compared the neurometric and behavioral frequency discrimination thresholds for
each mouse, under light-on and light-off conditions. The number of recorded tone-responsive
neurons varied significantly between mice (14-104 per animal). Using the linear dependence of
the Fisher Information on population size we estimated that ~1000 independent neurons would
be necessary for the neurometric thresholds to match the absolute behavioral thresholds (see
Methods). This number differed between different mice, presumably because of the limited
sampling, although was consistent in order of magnitude. Since optimizing the size of the
population for each mouse would have skewed analysis across subjects, we divided the Fisher
Information computed from the population by the number of neurons, and then scaled the result
back linearly to the same effective population size for all mice (N = 1000 units).
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Figure 3: Optogenetic manipulation of PV activity shifts behavioral and neurometric frequency
discrimination thresholds in individual subjects.

A,B,C: Baseline firing rate of light-on versus light-off trials for all frequency-tuned neurons pooled
across subjects in PV-ChR2 (Blue), PV-Arch (Green), CamK2a-ChR2 (Red) mice, respectively.
D.E,F: PPI as a function of tone frequency shift for exemplar mice. Best estimated thresholds
(dashed lines) and uncertainties (overlaid gray rectangle) are plotted for reference. Black: light-off
trials; Blue, Green, Red: light-on trials. Dots: data, solid lines: best fit curve. G,H,l: Neurometric
threshold estimate as inverse square root of Fisher information (solid) and behavioral threshold at
f1, (horizontal dotted) for the same mice as D,E,F. Light blue bands indicate the region in
frequency space from which behavioral measurements were taken.
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We next compared the resulting estimate to the behavioral threshold. We first found a
correlation between the absolute behavioral and neurometric thresholds under all conditions
(Figure 4A, S2 Figure, S1 Table). The correlation was statistically significant (C = .37, p =.02,
N = 38, including a light-on and a light-off measurement for each of 19 mice), but only weakly so.
To test more closely the effect of the optogenetic manipulations, we computed an index of
change as the difference in thresholds before and after application of light, divided by the sum.
We found that index of change of the neurometric thresholds was strongly correlated with the
behaviorally measured index of change in frequency discrimination acuity threshold (Figure 4B,
C =.59,p =.007, N = 19).

These correlations suggest that: (a) auditory cortex does modulate frequency discrimination
behavior, (b) the effects seen in the small recorded patch are representative, and (c) individual
differences in auditory behavior are directly driven by differences in excitatory and inhibitory

interactions in cortical circuits.

Behavior Neurometric (scaled)
Mouse Type Toff AToff Ton ATon Ichange A Ichange Toff Ton Ichange Neurons
(%) | (%) | () | (%) (%) | (%)

| PV-Arch |21.5 | 1.7 22 2 0.00 .06 6.4 | 9.1 17 42
2 PV-ChR2 162 | 3 4.7 B -.53 .07 7.9 4.7 -.25 104
3 PV-ChR2 |22 4 6.0 1.7 -.54 A1 87 165 -.14 16
4 PV-ChR2 | 137 | 1.5 4 3 -.54 3 22.8 1 10.6 -.34 20
5 PV-ChR2 |16.7 | 1.6 3.6 2 -.63 .03 7.8 |89 .06 24
6 PV-ChR2 | 5.6 1.1 2.5 5 -.38 A1 82 |74 -.05 25
7 PV-Arch 3.7 4 19 2 .66 .04 7.8 | 8.6 .05 25
8 PV-Arch 141 1.9 16.9 9 .08 .04 12.5 | 144 .07 23
9 Pyr-ChR2 | 5.6 1.1 4.9 4 -.06 .1 83 | 7.0 -.08 19
10 Pyr-ChR2 | 6.8 9 3.2 5 -.35 .09 83 |53 =21 16
11 Pyr-ChR2 | .7 1.9 11 2 18 15 9.4 |12.8 15 23
12 Pyr-ChR2 [ 2.0 .01 3.4 3 .26 .04 50 |63 A1 26
13 Pyr-ChR2 | 3.1 .6 5.6 9 28 A1 6.7 |75 .05 43
14 PV-ChR2 | 3.2 3 3.2 4 -.01 .07 6.7 |69 .02 34
15 PV-ChR2 | 5.5 1.6 3.9 1.5 -.16 .23 10.3 | 5.5 -3 16
16 PV-ChR2 |9.6 1.9 10.2 ¥ .03 .10 9 5.6 -.11 14
17 PV-ChR2 2.0 4 2.6 1.5 .13 .30 57 169 .10 15
18 PV-ChR2 | 7.6 1.4 9.5 4 .10 .09 6.9 |6.2 -.05 22
19 PV-ChR2 | 8.3 5 8.4 .8 .01 .05 8.8 19.0 .01 39

S1 Table: Table containing mouse identity, type, relevant behavioral and neurometric thresholds,
as well as number of recorded neurons. Neurometric threshold computed using Fisher
information is scaled to an effective population size of 1000 neurons to control for differences in
numbers of measured neurons.
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Figure 4. Changes in A1 tone responses due to optogenetic manipulations predict changes in
behavioral frequency discrimination acuity across individuals.

A. Behavioral versus scaled neurometric frequency discrimination thresholds. Neurometric
threshold (computed as inverse of Fisher information squared for tone-evoked responses from all
neurons recorded in each mouse) is scaled to an effective population size of 1000 neurons to
control for differences in numbers of measured neurons. Changing this scale factor is equivalent
to changing y-axis labels. The scaled neurometric threshold based on the small recorded
population was significantly (but weakly so, C=.37, p=0.02) correlated with the behavioral
threshold (computed as the shift in frequency between the background and pre-pulse tone that
evoked 50% of the maximum PPIl). Each of 19 mice contributes 2 data points, representing the
threshold computed on the basis of light-on and light-off trials. Gray lines connect light-on and
light-off estimates for each mouse.

B. The index of change in neurometric threshold (difference between thresholds computed from
data on light-on vs. light-off trials divided by the sum) was strongly correlated with the behavioral
frequency discrimination (Correlation coefficient = 0.59, p=0.007). There is one data point for
each mouse. Gray line is the best fit line through the origin. Behavioral errors were computed as
described in the Methods.

Controls: effects of optogenetic manipulation on neural variability and correlations

Our model makes two assumptions that could be violated in neural systems: that cortical
neurons obey Poisson statistics and that neural responses are independent of one another. In
order to test the first assumption in our data, we measured the Fano factor of the recorded
neurons. A large Fano factor indicates high neuronal variability [24]. The average Fano factor was
around 1.2, similar to the value expected for Poisson neurons and to that previously measured
across different cortical areas [25]. We found that none of the three optogenetic manipulations
(PV-ChR2: t;35 = .4, p =.69; PV-Arch: tgg = .92, p = .36; Pyr-ChR2: t,;; = —.2, p = .84; Figure

5A-C) had a systematic effect on the distribution of Fano factors. This justified the original
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287 analysis, in which neurons were treated as Poisson, both with and without optogenetic
288  manipulation.

289 We next considered that neural variability has been observed to increase with the activity
290 level of neurons [26]. It is plausible that the most active neurons, which have the largest impact
291 on Fisher information, may be more variable than expected from the average Fano factor value.
292  The Fisher information decreases as the Fano factor increases (Figure 5G), so higher variability
293 in the most active neurons would disproportionately decrease the neurometric discriminability. To
294 test whether this might be the case, we computed the neurometric thresholds using a generalized
295 Poisson noise model that took into account the Fano factor of each recorded neuron separately.
296  Neurometric thresholds using this model changed only slightly from the thresholds computed
297 using the simple Poisson noise model (Figure 5H), again justifying our analysis.

298
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FIGURE 5
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Figure 5. Optogenetic manipulations do not change neuronal variability or correlations.

A-C. Fano factor pooled across mice distributions are similar under light-on and light-off
conditions. A: PV-ChR2, B: PV-Arch, C: CamK2a-ChR2. Black: light-off trials; Blue, Green, Red:
light-on trials. Dots

D-F. Pairwise correlation distributions pooled across mice are similar under light-on and light-off
conditions. D: PV-ChR2, E: PV-Arch, F: CamK2a-ChR2. Colors same as in A.

G. Increasing Fano factor reduces Fisher Information, shown here for a single neuron with
Gaussian tuning curve (amplitude = 8 spikes/s, center frequency 20kHZ, tuning width = 0.2
decades) with a constant baseline (2 spikes/s).

H. Incorporating the measured Fano factors into our model of neuronal firing via a generalized
Poisson model has a weak effect on the predicted threshold.
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We also measured the strength of pairwise neural correlations, and observed they tended
to be small but positive (Coy—_chrz = 09, tigzy = 28, p = 4.6 * 107%; Coy_aren = 13, tops = 22,
p =22%1077% Cpyr_chrz = .13, tog; = 32, p = 1.1+ 107*%*). The optogenetic manipulations had
no systematic effect on the distribution of correlations (paired t test ns: PV-ChR2 t 93, = .26, p =
.80; PV-Arch ts,, = —1.3, p=.18; Pyr-ChR2 tqg, = —1.7, p =.09; see Figure 5D-F, S1).
Correlations in similar models have been observed to lead only to small increases in population-
level discrimination threshold [27]. The small changes in threshold observed in previous work, in
addition to the negligible change in the correlation distribution that we observe upon optogenetic
manipulation, make it unlikely that correlations account for the neurometric threshold changes

that we see when cortex is manipulated.
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S1 Figure: Fano factor and correlation scatter plots comparing light-on and light-off conditions. A-
C: Fano factor with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2 mice, respectively.
D-F: Pairwise correlations with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2 mice,
respectively.

Discussion.

Theory has shown that providing inputs to inhibitory neurons in a balanced excitatory-
inhibitory network can lead to either a decrease, or, paradoxically, an increase of excitatory
responses, depending on the specifics of recurrent coupling in the network and the strength of the
manipulation of inhibitory activity [16].
Page 15

By examining changes evoked by optogenetic


https://doi.org/10.1101/119453
http://creativecommons.org/licenses/by-nc-nd/4.0/

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

bioRxiv preprint doi: https://doi.org/10.1101/119453; this version posted July 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

manipulations across subjects, we find that modifications of the excitatory-inhibitory interactions
in auditory cortex drive diverse, and sometimes opposite, changes in tone-evoked responses
across individuals. Remarkably, we found a strong correlation between these changes in
neuronal populations, and behavioral changes in the acuity of frequency discrimination by
individual mice. Thus our results demonstrate that the same optogenetic manipulations of
excitatory and inhibitory neuronal activity in different individuals, can have diverse effects on
sensory discrimination. More generally, these findings support a role for excitatory-inhibitory
networks in the cortex in mediating sensory discrimination.

Where does this variability in the effects of manipulations across animals arise from? Some of
the differences may be due to the inherent variability in circuitry across animals: the excitatory-
inhibitory circuit can have different connectivity patterns, and animals may exhibit differences in
frequency sensitivity due to a combination of genetic and environmental factors. In addition,
optogenetic manipulations introduce variability across animals due to technical limitations of the
technique. In testing the function of specific neuronal cell types in sensory processing, there are a
number of potential confounds. For example, the exact position of the needle for virus injection
within AC, the depth of penetration, and the spread of the virus, can all skew the extent to which
the virus is expressed within AC. The position of the optic cannula relative to the spread of the
virus injection as well as the recording electrode would affect how many neurons are stimulated
and how strongly, and also how many of those neurons are being picked up by the recording.
Small changes in any of these parameters can potentially lead to strong differences in the
functional effects of optogenetic perturbations, activating a different fraction of neurons across
different laminae, and in different tonotopic regions of the cortex. In this study, we capitalized on
these differences because they allowed us to assay the range of potential effects of optogenetic
manipulations. It was critical, however, to ensure that within animals, optogenetic manipulation
would produce the same effect during behavioral testing and during electrophysiological
recordings. We therefore used an implanted optic cannula and a light delivery system with the
same settings to deliver light both during the electrophysiological recording and the behavioral
measurements, so that stimulation parameters were the same for both.

Our results provide insight into potential role of cortical inhibition in shaping frequency
discrimination behavior. Cortical inhibitory neurons have been hypothesized to modulate
numerous aspects of tone-evoked responses in the excitatory cortical circuit, such as tuning
width, reliability of firing, tone-evoked response strength, and correlations in firing rate activity [2,
19, 28]. Neurons in the auditory cortex change their tuning properties with learning, attention or
experience [29-35], suggesting that these changes can underlie changes in auditory perception.
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Indeed, AC was shown to play an important function in enabling learning-driven changes in
auditory processing [17, 36]. Our present work demonstrates that modulation of excitatory-
inhibitory dynamics can in principle support a wide range of modulatory effects on auditory
frequency discrimination behavior.

The limited size of our recordings of 10-100 frequency-tuned neurons per animal precluded
direct prediction of behavioral thresholds: an extrapolation from the measured population
indicates that O(1000) neurons would be required to fully account for behaviorally observed
frequency discrimination threshold (S2 Figure). This observation is consistent with an anatomical
estimate suggesting that O(1000) neurons in the mouse AC are responsive to a given tone
(mouse cortex has ~10° neurons/mm?® [37], the AC is ~5 mm?® in size, ~30-50% of neurons are
frequency tuned, and the tuning width is ~1/10 of the auditory spectrum). The fact that we were
able to make strong predictions about optogenetic effects on behavior despite this sub-sampling
suggests that the changes we observed in the measured cortical neurons were representative of
changes occurring across the entire AC. Comprehensive recordings or imaging of more complete
populations of AC neurons will enable a test of the hypothesis that frequency discrimination
performance is limited by the encoding at the cortical level.

We observed a relationship between neural responses and behavior under the specific
conditions of optogenetic manipulations of cortex, but the methods used here will be broadly
useful for understanding other complex phenomena. For example, consider appetitive and
aversive conditioning which have been shown to effect cortical remapping [31, 38, 39], while
leading to diverse behavioral responses [9, 17]. In particular, such remapping leads to an
overrepresentation of the aversive stimulus in cortex, but while some animals show improved
frequency discrimination acuity, others are impaired. In fact, our results indeed show that different
ways over-representing the aversive stimulus can lead to improved or impaired acuity, depending
on the details of the change (Figure 6). For example, shifting the neural tuning curves towards the
aversive frequency leads to increased sensitivity near this tone (Figure 6B), while simply
increasing neural activity in response to tones near the aversive frequency can lead to impaired
discrimination (Figure 6C). Fisher information analyses which we used in our paper have proven
generally useful in understanding neural coding, providing insight about sound localization
strategies [40], sensitivity to variations in sound levels [41], habituation to repeated sounds [42],
detection of sound in noise [43] and heading perception [27]. Our method allows applications of
this technique to compare behavioral discrimination thresholds to neurometric uncertainty in tone

frequency estimation.
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Whereas we used responses to single tones as the stimulus in this study, AC neurons
generally respond to more complex sounds in a manner that is not well explained by the single-
tone responses [44, 45]. Our methods could be used to probe the fidelity of cortical
representation and behavior in response to any parameterized space of auditory stimuli, e.g.
auditory textures, phonemes, or overtone profiles. Similarly to work in visual texture perception
[46, 47], one could test the discrimination thresholds along different dimensions of the texture
space [48-50]. Changes in these thresholds due to optogenetic circuit manipulation could then be
compared with changes in a neurometric threshold based on Fisher Information, as applied here.
Such studies will elucidate the role of AC in facilitating complex auditory discrimination.

Viewed in aggregate in terms of a mean over individuals, our results would have yielded small
average effects with large individual variations appearing as “noise”. Averaging in this way would
have obscured the function of AC in frequency discrimination because the correlation between
individual circuit changes and individual behavioral changes would have been missed. It is only
by treating the mice as individuals that we were able to understand the general role auditory
cortex plays in shaping the response. We suggest that such attention to individual variation will be
broadly important throughout neuroscience as large-scale recordings begin to reveal the neural
basis of behavioral diversity.
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FIGURE 6
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Figure 6. Overrepresenting a specific frequency can increase or reduce sensitivity to that
frequency.

A. Fisher information (black) computed from a homogeneous population of neurons (responses in
gray) has an even sensitivity across a broad range of frequencies. A sample tuning curve (red) is
used to illustrate neural transformations in B and C. Neurons have baseline activity of 2 spikes/s,
peak response of 10 spikes/s, peak frequency spaced 1/20™ of a decade apart, with HWHM of .1
decades.

B. Fisher information is plotted for a neural population overrepresenting frequency f; by shifting
peak frequencies halfway between their original location in A and f;. Fisher information
approximately doubles near f;, but is reduced near the edges.

C. Fisher information is plotted for a neural population overrepresenting frequency f; by adding a
Gaussian bump near f; with an amplitude that diminishes with distance between the preferred
frequency of the neuron and f;. Fisher information is diminished at f;, leading to reduced
sensitivity at this frequency, despite its overrepresentation within the population firing activity.
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Methods.

Animals. All experiments were performed in adult male mice (supplier - Jackson Laboratories; age, 12-15
weeks; weight, 22-32 g; PV-Cre mice, strain: B6; 129P2-Pvalbtm1(cre)Arbr/J; CamKlla-Cre: B6.Cg-
Tg(CamKlla-Cre)T29-1Stl/J) housed at 28° C on a 12h light:dark cycle with water and food provided ad
libitum, 5 or fewer animals per cage. All animal work was conducted according to the guidelines of
University of Pennsylvania IACUC and the AALAC Guide on Animal Research. Anesthesia by isofluorane
and euthanasia by carbon dioxide were used. All means were taken to minimize the pain or discomfort of
the animals during and following the experiments. Experiments were performed as described previously
[9].

Viral constructs. Modified AAV vectors were obtained from Penn VectorCore. To suppress PVs, we used
modified AAV vector encoding Archaerhodopsin (Arch) under FLEX design (Addgene plasmid 22222,
AAV-FLEX-Arch-GFP [51]. To activate either PVs iin PV-Cre mice and or excitatory neurons in CamKIlla-
Cre mice, we used modified AAV encoding ChR2 under FLEX design (Addgene plasmid 18917 AAV-
FLEX-ChR2- tdTomato, ChR2 [52]. As a control, we used modified AAV vectors encoding only GFP or
tdTomato under FLEX design.

Experimental methods overview. Methods have been previously described [9]. Briefly, at least 10 days

prior to the start of experiments, mice were injected with a viral construct, if any, and implanted with optical
cannulas, and a headpost, as previously described, under isoflurane anesthesia. Viral construct injection
targeted AC using stereotaxic map. Fiber-optic cannulas were implanted bilaterally over the injection site
at depth of 0.5 mm from the scull surface, along the dorsal-ventral axis. After recovery, mice were
habituated to the head-fixing apparatus, and subjected to behavioral frequency discrimination tests for 1-3
days, followed by electrophysiological recordings in the auditory cortex. On half of the trials in behavioral
and neurophysiological recordings, light was presented through the fiber-optic cannula to activate or
suppress target neurons. Upon conclusion of experiments, brains were extracted, fixed and subjected to
immunostaining. Viral spread was confirmed postmortem by visualization of the fluorescent protein
expression in fixed brain tissue, and its co-localization with PV or excitatory neurons, following immuno-
histochemical processing with the appropriate antibody.

Behavioral frequency discrimination. Behavioral frequency discrimination was measured using a modified

PPI procedure on daily basis [9, 53]. As previously reported [9, 17], PPI provides psychometric response
curves for frequency discrimination over the course of a single session that lasts less than 1 h and does
not require training the subject, which can confound interpretation of fear conditioning. Mice were head-
fixed, connected to optical cannulas as needed, and placed on a load-bearing platform. Sound was
presented through a speaker, consisting of a background tone (15kHz, 10-20 s, 80 dB SPL) that, on each
trial, switched to a pre-pulse tone (10.2, 12.6, 13.8, 14.7, and 15.0 kHz, 60 ms, 80 dB SPL) followed by
startle noise (SS, broad-band noise, 100 dB SPL, 20 ms). The frequency difference between the

background and pre-pulse tone is denoted Af. Each session started with presentation of 10 startle-only
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trials, to ensure that the mouse habituated to the beginning of the session. Data from these trials were not
used for the analysis. Each pre-pulse tone was repeated in a pseudo-random order at least 5 times during
each behavioral session.

The Acoustic Startle Response (ASR) for a given Af was computed as the average over trials of the
difference between the maximum vertical force applied within the 500 ms window following SS and the

average baseline activity during 500 ms prior to SS. In each PPI session, the PPI was calculated as:
ASR(0) — ASR(Af)
ASR(0)

where PPI is reported in % relative to maximum PP/, and ASR(A4f) is measured using the 50% of the

PPI(Af) = 100

strongest ASR magnitudes for each PP frequency. 50% is chosen for consistency with previous work, as
the psychometric curve has the steepest slope at this value [17]. Behavioral threshold was determined by
fitting the PPl with a generalized logistic function, and defining the threshold for the fit as the Af that
produced 50% of the maximum PPI. Because the primary source of uncertainty related to how close the
animal’s threshold was to sampled points, we computed thresholds for the set of fits producing less than a
25% increase in MSE relative to the best fit (although increasing this cutoff to 60% yielded small
differences). We took the mean and standard deviation of the resulting set of thresholds to reflect the
animal’s threshold. Each psychometric functions consisted of 5 data points representing the difference
between the background frequency and 5 prepulse frequencies (PP). Each data point was obtained by
averaging ASRs from all repetitions corresponding to a given frequency. In a standard PPI session, 20
repetitions of each PP were presented (100 trials in total). However, if either threshold was out of the
range (0.5-32%) or the fit coefficient of the curve (R?) was below 0.7, the mouse underwent an additional
10 repetitions (50 trials). If threshold and fit curve failed to meet the above criteria after 200 trials, the
session was excluded from statistical analysis (3 out of 61 sessions). Previous studies have shown that
psychometric thresholds obtained from day-to-day measurements were stable [9, 17, 54]. Light-on trials
included a 1s laser presentation that starts 0.5 s preceding PP onset. Light-off trials included laser
presentation at quasi-random position during ITI. All analysis was performed separately on light-on and
light-off trials. Simple randomization was used to assign the subjects to the experimental groups. A
pseudorandom sequence was used for tone presentation during PPI tests. During PPI procedure, the
timing of the laser presentation on Laser-off trials was pseudo-randomized with respect to the timing of the
tones. Blinding of experiment with respect to animal groups was not possible as animals in different
groups underwent different experimental protocols.

Neuronal tone response measurement. All recordings were carried out inside a double-walled acoustic

isolation booth (Industrial Acoustics) as previously described [9]. Activity of neurons in the primary auditory
cortex of head-fixed, awake mice was recorded via a silicon multi-channel probe (Neuronexus). Putative
principal (excitatory) neurons were identified using waveform and spontaneous firing rate (for details see
[9]). Acoustic stimulus was delivered via a calibrated magnetic speaker (Tucker-Davis Technologies) [45].

We measured the frequency tuning curves by presented a train of 50 pure tones (50ms long, ISI 450 ms)
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with frequencies spaced logarithmically between 1 and 80 kHz and at 8 intensities (sound pressure levels,
SPLs) spaced uniformly between 10 and 80 dB, a standard procedure in characterizing auditory
responses, and determined the threshold amplitude for tone at each frequency for each neuron [9, 45]. For
data analysis we averaged responses of the neurons to each tone across 3 highest amplitudes. Each
tone was repeated twice in pseudo-random sequence and the stimulus was counter-balanced for laser
presentation. On light-on trials, light was presented via the optic cannulas, with the onset of 100 ms prior
to tone onset, and lasting for 250 ms. The full stimulus was repeated 5 times.

Histology. Virus spread was confirmed postmortem by visualization of the fluorescent protein expression in
fixed brain tissue, and its colocalization with PV or excitatory neurons, following immuno-histochemical
processing with the appropriate antibody.

Identification of Putative Excitatory Neurons. Putative principal (excitatory) neurons were identified using

waveform and spontaneous firing rate (for details see Aizenberg et al., 2015).

Neural Response Analysis. The neural frequency response function was calculated using the average

frequency tuning curve across the three highest intensities. The results were modeled using a Gaussian in
log-frequency space:

— )2
FR(f) = B+ Axexp —%

where B represents the baseline response, A represents the amplitude of the strongest evoked response
(relative to baseline), f;, represents the frequency evoking the strongest response, and ¢ corresponds to
the width of the frequency response function. Only neurons whose Gaussian fit had R? > .6 were kept for
further analysis.
In order to calculate Fano factor of a neuron, we calculated mean and variance of the firing rate to
each combination of frequency and SPL. The slope of these data was taken as an estimate of Fano factor.
The correlation between neurons (calculated only between simultaneously recorded neurons) was
computed using a reduced measure of deviation from the mean for each neuron:
i(f,d) =7 (f, d)

where k denotes the repetition number (1-5), i denotes the neuron, f denotes the frequency, d denotes

st (f,d) =

the intensity, r denotes the evoked response, 7 denotes the average response (firing rate) of a neuron to a
particular frequency and intensity, and F denotes the Fano factor of that neuron. For a generalized
Poisson process, s; has zero mean and unit variance because the variance is proportional to the mean.

The correlation between two neurons is then given by

C;j = (sF(f, d)Sjk(ﬂ A i.fa

Computing Fisher Information. Fisher information was calculated to provide a measure of neurometric

frequency discrimination. Fisher information was calculated numerically from the recorded data based on
the characterization of the neural responses (see Neural Response Analysis), and is given by:
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a 2

() = ) PGP (55108 PGi)

where P is the probability that the population of neurons produces 7 = (ny, n,...) spikes in response to the
tone f. Assuming Poisson variability and independent neurons,

—1i(f) n;
paip) = [ [padn = [ |42

. TLi!

L

where the first equation expresses the independent neuron assumption and the second step uses the
assumption of Poisson variability. Here, y; and n; are the expected and observed number of spikes from
neuron i, respectively. For mice where multiple recording sessions were performed, neurons were pooled
across sessions. A second model assumes independent neurons and uses a generalized Poisson
distribution:

a; (F)(a;(f) + nd)" te~@i(N+nido)
ni!

P(nlf) =

where a; = u;(f) * Fl._l/2 and 1;, =1- Fl._l/2 . This model only allows for Fano factors above 1, which is

consistent with other models of neural variability and measured cortical variability [24, 26]. We therefore

set any measured Fano factor less than 1 to exactly 1 for the purpose of the Fisher information calculation.

Estimating the number of neurons for neurometric thresholds. Animals displayed varying levels of
frequency discrimination acuity, and we measured different sized subsets of frequency-tuned neurons in
each experiment. In order to estimate the number of neurons required to account for behavioral
discrimination acuity from the measured population, we utilized the fact that Fisher information for a

population of independent neurons is the sum of the Fisher information from each neuron.

[(total) _ Z 1)
n

We then assume that the population of neurons that we measured are representative of the overall

population (at least the population that contributes to discrimination at the relevant frequency).

Ng
1) ~ LZ o 1 ot
Ng ] Ng

Here we use n to refer to the overall population that we seek to estimate, k to index the neurons that were

measured, N is the number of frequency-tuned neurons measured in a specific mouse, Iék) is the Fisher

Iétotal)

information of these experimentally measured neurons, and is the total information used to

calculate the neurometric threshold. Recalling that the neurometric threshold is defined as I=/2 | we then

have
J(total) — &I(total)
Ng E
. . then 2
We can rewrite this as Ny = N (E)
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where t,.; is this behaviorally measured threshold and t,,, is the neurometric estimate of the threshold.
This is plotted for each animal used in our analyses in S2 Figure, and we find that the average for both

light-on and light-off conditions is just about 10° neurons.
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S2 Figure. Number of frequency-tuned neurons required to account for behavioral sensitivity for each
mouse. Average of both light-on and light-off conditions is ~10° neurons.

Comparing behavioral and neurometric thresholds. Neural responses were accumulated over all recording

sessions for each mouse, and used to compute the Fisher information for the animal. The Fisher
information provides a bound on the variability of an unbiased estimator, and any criterion level of
decoding performance scales with the inverse-square root of the Fisher information. If neural responses
are independent, the Fisher information scales linearly with the number of neurons. In order to compare
threshold predictions between mice with different numbers of measured neurons, we computed the
average Fisher information per neuron. This allowed us to compare across mice and to estimate the
minimum number of effective frequency-tuned neural units that must contribute to explain the observed
frequency discrimination performance [18]. To estimate the neurometric threshold, we first computed the
inverse square root of the Fisher information per neuron, and took an average over a small region around
15 kHz (the baseline frequency used in behavioral tests). Only mice with more than 10 recorded
frequency-tuned neurons were included in the analysis (19 mice). Our estimate is a lower limit on the
uncertainty in the estimate of this tone frequency based on the recorded population responses. Since
Fisher information scales linearly in an independent population, this method also provides an estimate on
the effective number of neurons which must contribute to the tone representation in order to account for
behavioral discriminability (S2 Figure). The observed neurometric discriminability with order one thousand
independent neurons is similar to behavioral discrimination acuity.

Data availability. All relevant data will be deposited in the Dryad database and made publically available.

Code availability. All relevant code will be posted on Github and made publically available.
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598 Supplementary Information.

599

600 S1 Table: Table containing mouse identity, type, relevant behavioral and neurometric thresholds,
601 as well as number of recorded neurons. Neurometric threshold computed using Fisher
602 information is scaled to an effective population size of 1000 neurons to control for differences in
603  numbers of measured neurons.

604

605 S7 Figure: Fano factor and correlation scatter plots comparing light-on and light-off conditions. A-
606  C: Fano factor with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2 mice, respectively.
607 D-F: Pairwise correlations with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2 mice,
608 respectively.

609

610 S2 Figure. Number of frequency-tuned neurons required to account for behavioral sensitivity for
611 each mouse. Average of both light-on and light-off conditions is ~10° neurons.
612

613

614
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