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Abstract

Cell migration within tissues involves the interaction of many cells from distinct
subpopulations. In this work, we present a discrete model of collective cell migra-
tion where the motion of individual cells is driven by random forces, short range
repulsion forces to mimic crowding, and longer range attraction forces to mimic
adhesion. This discrete model can be used to simulate a population of cells that
is composed of K > 1 distinct subpopulations. To analyse the discrete model we
formulate a hierarchy of moment equations that describe the spatial evolution of
the density of agents, pairs of agents, triplets of agents, and so forth. To solve the
hierarchy of moment equations we introduce two forms of closure: (i) the mean field
approximation, which effectively assumes that the distributions of individual agents
are independent; and (ii) a moment dynamics description that is based on the Kirk-
wood superposition approximation. The moment dynamics description provides an
approximate way of incorporating spatial patterns, such as agent clustering, into the
continuum description. Comparing the performance of the two continuum descrip-
tions confirms that both perform well when adhesive forces are sufficiently weak.
In contrast, the moment dynamics description outperforms the mean field model
when adhesive forces are sufficiently large. This is a first attempt to provide an
accurate continuum description of a lattice-free, multi-species model of collective

cell migration.
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1 1 Introduction

> In vivo cell migration involves many different cell types interacting with each
s other. For example, tumour invasion involves malignant cancer cells moving
s+ through normal surrounding tissues (Weinberg, 2009). Interactions between
s different cell types are also captured in certain in vitro experiments, such as the
¢ migration of malignant melanoma cells, which is thought to be enhanced when
7 these cells are moving amongst skin cells (Eves et al., 2003). Multiple species
s of cells can also be created in experiments where some subpopulation of cells,
o amongst an otherwise identical subpopulation, are labelled and tracked over
1 time (Simpson et al. 2006; Simpson et al., 2007). While some mathematical
un models explicitly account for interactions between different subpopulations
12 of cells (Painter and Sherratt, 2003), most mathematical models deal with a

13 single population of cells only (Sherratt and Murray, 1990; Maini et al., 2004).

1 A common approach to modelling cell migration is to use a lattice-based ran-
15 dom walk model. This approach captures details of the motion of individual
16 cells, which is attractive because this kind of information can be linked to
17 time lapse images from experiments. The continuum-limit description of such
18 a lattice-based model can also be used to study the group behaviour. Although
19 some previous lattice-based models account for interactions between different
2 types of cells (Simpson et al., 2009; Penington et al., 2011), these lattice-based
a1 models are unrealistic because real cells do not move on regular lattice-based
2 structures. Other limitations of lattice-based models include restrictions on
23 cell size. For example, the diameter of a typical melanoma cell is approxi-
2+ mately 18 um (Treloar et al., 2013) whereas the diameter of a typical skin cell
25 is approximately 25 pm (Simpson et al., 2013). In a model with both types

s of cells present, it is not possible to accommodate these differences in cell size
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o7 if we use a standard lattice-based approach where each cell occupies a single
2 lattice site (Binder and Simpson, 2016).

2 To address these limitations, we define a lattice-free model that can be used
3 to describe the migration of a population of cells that is composed of many
a1 potentially distinct subpopulations. We adopt a modelling framework that is
» an extension of previous approaches by Newman and Grima (2004) and Mid-
1 dleton and co-workers (2014). The work by Newman and Grima considered
s a stochastic model of individual cell migration, with chemotactic effects, and
55 they described the continuum limit using a Langevin formulation. The work of
55 Newman and Grima (2004) was then extended by Middleton and co-workers
w» (2014) who also considered a stochastic model of individual cell migration in
s terms of a Langevin formulation, however they considered both a traditional
s mean field continuum approximation as well as a more sophisticated moment
» closure continuum approximation that accounts for the spatial and temporal
s dynamics of pairs of agents. A key feature of both these previous models is that
2 they are appropriate for studying the collective migration of a single popula-
i3 tions of cells. However, many practical problems in development and disease
s progression involves multiple interacting subpopulations of cells. Therefore,
s the main aim of the current study is to develop a discrete model of collective
s migration where the total population of cells consists of an arbitrary number
s of interacting subpopulations. Our discrete model incorporates random cell
s motility, adhesion between cells and finite size effects (crowding). We allow
s for differences in cell size, cell motility and cell adhesion between the different
so subpopulations. In addition to producing stochastic realisations of the dis-
51 crete model, we also analyse the continuum limit using both a standard mean
s field approximation and a more sophisticated moment dynamics approxima-
53 tion. Comparing averaged behaviour from the discrete simulations with the
s« solution of the continuum models confirms that the mean field approach can
55 be inaccurate when adhesion is sufficiently strong. This is important because
ss almost all mathematical models of collective cell migration invoke the mean
sv field approximation (Sherratt and Murray, 1990; Painter and Sherratt, 2003;
s Maini et al., 2004).

so This manuscript is organised in the following way. In Section 2 we describe

o0 the discrete model. In Section 3.1, we analyse the discrete model, showing how
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s1 we can obtain a continuum description of the average behaviour of the dis-
&2 crete model. In particular, we focus on two different continuum descriptions:
3 (i) a mean field approximation; and (ii) a higher-order moment dynamics ap-
& proximation. Results in Sections 3.2-3.3 compare solutions of both continuum
s approximations and averaged discrete results for problems involving one and
s two interacting subpopulations, with additional comparisons presented in the
&7 Supplementary Material. In Section 3.4 we investigate how the accuracy of the
¢ MFA and KSA approximations depends on the choice of model parameters.
s Finally, in Section 4, we summarise our work and highlight opportunities for

7 future investigation.

n 2 Discrete model

72 We consider a population of N cells that is composed of an arbitrary number of
73 subpopulations, K > 1. Illustrative schematics showing interactions between
72 individuals in a population with K = 1 and K = 2 subpopulations are given

75 in Figure 1(a)-(b), respectively.

7 We begin by assuming that each individual cell is a point mass and that its
77 movement can be described by an equation of motion. For simplicity, from
75 this point on, we restrict our attention to a one-dimensional geometry, and in
79 Section 4 we discuss how the framework can be adapted to higher dimensions.
s 1o begin describing the collective motion, we assume that the motion of each

a1 cell is governed by Newton’s second law,

d?z; .

miizzvi—i-ZRij—i-Q, ZZl,...,N, (2.1)

dt? —

J#i
22 where z; is the position of the ith cell, m; is its mass, and R;; is an interaction
ss force between the ith and jth cells. V; is the viscous force between the cell
s and the surrounding medium, and (; is the stochastic force associated with
ss random Brownian motion. According to Stokes’ law, the viscous force on a

ss small spherical particle moving in a viscous fluid is given by

dl’i

sz where p > 0 is the drag coefficient. If we neglect inertial forces and invoke
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s Stokes’ law (Middleton et al., 2014), we arrive at a system of Langevin stochas-

s tic differential equations (SDEs) given by

dxi .
JF

o0 Wwhere Rij = ,uF” and C,L = /,Lfl
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Fig. 1. (a)-(b) Representative plot of single- and multi-species systems of cells,
respectively. In (a) we show the intraspecies force, F'(r), and in (b) we show both
intraspecies forces, F'''(r) and F?2(r), and interspecies forces, F''2(r) and F2!(r).
Here, r is the distance between cells. (c) Dimensionless force law function Z(r),
given by Equation (2.5), for various values of a. Here, § = 25 pum corresponds to a

typical cell diameter.

o In summary, according to Equation (2.3), the collective migration of cells is de-

» termined by a balance between cell-to-cell interactions (short-range crowding
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s and longer range adhesion), stochastic forces, and viscous forces. Collective
o cell migration that is driven by unbiased stochastic forces is thought to be
s relevant in many applications, such as collective cell spreading in many single-
% species in vitro experiments (Simpson et al., 2013). Therefore, we focus on
o7 unbiased stochastic forces by sampling &; from a Gaussian distribution with

% zero mean and zero auto-correlation (Middleton et al. 2014).

o It is biologically reasonable to model the interaction forces between cells, F;,
w0 to have different amplitudes for subpopulations of cells. This is relevant if
1w we wish to specify different adhesion forces between different subpopulations
02 (Steinberg, 1996). For simplicity, we assume Fj; = Fj;, and we specify the
03 interaction force to be

Fij = fo Z(r) sgn(z; — z;), (2.4)

e where fj is the dimensional amplitude of the interaction force, Z(r) is the
10s dimensionless force law function that depends on the separation distance,
ws and r = |z; — z;|. The function sgn is the signum function. The particular
w7 choice of Z(r) depends on phenomenological cellular behaviour we wish to
s model. Several force laws have been suggested, including a linear spring model
s (Murray et al., 2009) and non-linear force laws such as Morse (Middleton et
uo al., 2014) or Lennard-Jones (Jeon et al., 2010) potentials. In this work we

1 adopt a modified Morse potential force law, so that

2<exp(—2a (r—20)) —exp(—a(r — 5))), r < 26,
Z(r) = 2<exp(—2a (r — 8)) — exp(—a (r — 5))) g(r), 25 <r<35 (25)
0, r > 30,

2 where a is a parameter that controls the shape of the force function, as illus-
s trated in Figure 1(c), and 4 is the cell diameter. The distance r = § corresponds
s to the case where two cells are just in contact with each other. In this model
s we have Z(J) = 0 and Z(r) = 0 for » > 3. Introducing the cell diameter
us 0 in Equation (2.5) allows us to more realistically model the behaviour of

w7 multi-species populations of cells with different diameters.

us  Equation (2.5) incorporates the Tersoff cut-off function, g(r) (Tersoff, 1988),
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o to capture a finite interaction range between cells. This function is given by

g(r) = ;(1 — sin (7r2r2; 5)). (2.6)

120 The interaction range has been chosen to be 39 (Srinivas et al., 2004).

1 A representative plot of Z(r) for different values of a is given in Figure 1(c).
122 The force function consists of two regimes: short-range repulsion and longer
123 range attraction. The repulsive term mimics crowding effects while the attrac-
124 tive tail models adhesion. While all of the results presented in this work are
125 for this particular choice of force law, it is straightforward to incorporate other
126 choices of Z(r).

127 3 Results and discussion

ws 3.1  Mathematical model for an arbitrary number of subpopulations

120 We consider a total population of N cells that come from K subpopulations of
10 cells, so that N = >K  n,, where n, is the number of cells in subpopulation
1 k. This framework can be used to model both situations where each subpopu-
132 lation is distinct (Eves et al. 2003) and situations where each subpopulation is
133 composed of tagged, but otherwise identical cells (Simpson et al. 2006; Simp-
e son et al. 2007). In addition, these distinct subpopulations may differ in many
s ways, such as differences in diameter, motility rates, or interaction forces and

136 they can be arbitrarily arranged in space.

17 We define the one-cell probability density function (PDF), Pj(z,t), as the
133 probability that the position of cell 7 is in the small neighbourhood [z, z + dx]
13 at time ¢. Similarly, we define the two-cell PDF, Py (z,y,t), as the probability
1o that cells ¢ and j lie in [z, 2 + dz| and [y,y + dy], respectively, at time . At

w1 present, we do not specify which of the subpopulations these cells belong to.

12 Given that the motile behaviour of cells is governed by Equation (2.3), we can
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113 relate the PDFs to the position of cells as follows (van Kampen, 1975),

Pi(z,t) = (0" (x — (1)), (3.1)
Py (x,y,t) = (8" (& — 2,(1)) ™ (y — y;(1))), (3-2)

s where z;(t) and y;(t) are the positions of cells given by Equation (2.3). The
1us angled brackets indicate an average over a sufficiently large number of identi-
us cally prepared initial conditions and a sufficiently large number of realisations
17 of the stochastic force. Further background explanation about Equations (3.1)

s and (3.2) is given in the Supplementary Material.

s The time evolution of P{(x,t) is governed by a Fokker-Planck equation (Sup-

150 plementary Material),

IP}(z,1)

5, = DAPi(z,1) -V (fi Pi(x,1)), (3.3)

151 which describes the motion of particles under the influence of random forces,
12 proportional to the diffusivity, D, and directed drift forces, f;. The force f;
153 acting on cell ¢ in subpopulation [ may be expressed as the sum of two types
1« of forces: intraspecies forces exerted by other members of subpopulation [, and

155 interspecies forces exerted by cells from all other subpopulations, giving
1l = 1k
fi=>_Fj +> ) Fy. (3.4)
i k#l jek

155 Combining Equations (3.1), (3.3) and (3.4), and taking the convolution of the

157 interaction force and a d-function centred at y;, we obtain

8P{9(;c,t) = DAP(z,1)
- v<j€%:# /QF”(%' —y)0(x —z(t)) 6(y — y;(t)) dy >

=S V(Y [P )0 - w0) 8 - 5 0)dy ), (35

k£l jek

155, where () denotes the domain. The second and third terms on the right hand
150 side of Equation (3.5) are advection terms that incorporate intraspecies and

160 interspecies forces, respectively. Combining Equations (3.2) and (3.5), and


https://doi.org/10.1101/119586
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119586; this version posted March 22, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11 interchanging summation and integration, we obtain

OPi(x,t)

— DAPi(x.1) — / Pl

JGl,J;ﬁz

—ZV/Flkx— ZP2 x,y,t)dy, (3.6)

k£l jek

12 where, from this point forward, we drop the subscript i on z;.

163 1o make the transition from individual level behaviour in a discrete simulation

164 to the population level dynamics, we define the following quantities,

ZP’ z,t), (3.7)

ZEL',
pél(:v,y,t)— Z > Bl(ayt), (3.8)
zeﬁjeﬁ,ﬁéz
0 (.t ZZ (ryt),  U#m, (3.9)
nlnm ieL jeL

s where p)(x,t) is the normalised one-cell density distribution of subpopula-
s tion [, pif(z,y,t) is the density-density correlation function that captures in-
17 traspecies correlations, and pi™(z,y, t) is the density-density correlation func-

168 tion that captures interspecies correlations.

160 To proceed, we sum over the index i in Equation (3.6) and apply the definitions
o given in Equations (3.7)-(3.9). We repeat this procedure K times for each
i subpopulation to yield a system of K non-linear integro partial differential
2 equations (IPDEs), that can be written as

l
W:Dmg(x,t) (g — 1) (/F” T —y pz’(x,y,t)dy)

—anv(/ﬂFlk(:v—y)pé'“(x,y,t)dy>, (3.10)

k£l

173 for each subpopulation [. We define the PDF of the total population of N cells

s as a weighted sum of the individual distributions,
TS
piotal(g, N Z ng pi(z,t). (3.11)

15 Equation (3.10) shows that the evolution of p!(z,t) depends on p¥(z,y,t). To

17 derive an evolution equation for pl(z,y,t) we begin with the two-cell Fokker-
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177 Planck equation,

8P2ij(x,y7t) ij 0 ij 0 ij

(3.12)

s where cells 7 and j both belong to subpopulation /. The forces f; and f;, applied
o to cells 7 and j, can be written as the sum of intraspecies and interspecies

1o forces. For example, the force on an arbitrary cell z can be written as
K
f=2 Fi+> > Fi (3.13)
s#z k#l sek

1 Adopting the interaction force law, Equation (2.4), using the definition of
12 the two-cell PDF as given by Equation (3.2), and evaluating the required

183 convolutions, we can rewrite Equation (3.12) as

10
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(3.14)

where the second and third terms on the right hand side of Equation (3.14) represent interactions between cells ¢ and j, the

fourth and fifth terms on the right hand side of Equation (3.14) represent interactions between cells ¢ and j and other cells

within subpopulation [, and the sixth and seventh terms on the right hand side of Equation (3.14) represent interactions between

cells ¢ and j and cells in other subpopulations.
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188 The three-particle normalised density functions can be defined as,

péms(l‘ Y,z t Z Z Z ng .I' yyzat)v (315)
nlnmns i€l jEm gEs
P (Y, 2,t) = S 3 S P,y 2,0), (3.16)

Tll n; — 1)ns

py (Y, 2, 1) = (s — 11)(7% —9) SN Y PPa,y, ). (3.17)

i€l jel,j#i gel,g#i,j

i€l jel,j#i g€s

1w We therefore require a definition for the three particle PDF, Pi(x,y, z,t),

o similar to Equation (3.2),

Py (a,y, 2. t) = (3(a — @i(t)) 6y — y;(£)) 6(= — 2,(1))). (3.18)

w1 To proceed we divide Equation (3.14) by ny(n; — 1), and combine Equations
02 (3.14)-(3.18), summing over the indices ¢ and j, to obtain an expression for

103 the evolution of p(z,y,1),

apQ(gty’) DAg2(x Y, )
o GRCEICA)

- (P2 )

0
—(m—2)5- o | = 2 ph ey, 2,0 dz

(n; —2) / Fy — 2) o (z,y, 2,t) dz

T / F*(x — 2) ¥ (2, y, 2, 1) dz
k# ox 3

- an o / F*(y — 2) p¥*(z,y, 2, t) dz. (3.19)
k£l

s The total system of equations governing the evolution of the density-density
15 correlation functions for K subpopulations consists of K equations in the
s form of Equation (3.19), and K! equations for the interspecies density-density

w7 correlation functions, p§'(z,y, t).

18 This procedure for deriving evolution equations for the density and density-

109 density correlation functions can be repeated to yield a hierarchy of N — 1

12
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200 systems of IPDEs and a system of Fokker-Planck equations that govern the
21 N-level density. At each level d, where d € [1, N], the d-density function py
22 depends on the next order, pyi1. This means that the full hierarchy of equa-
203 tions is, in general, both analytically and numerically intractable. Therefore,
20 We must invoke some approximations to proceed, and we will now discuss two

205 different approximations.

20 3.1.1 Mean field approzimation

27 The simplest way to approximate the hierarchy is to truncate it at the first
28 level by writing the density-density correlation function in terms of the one-cell

200 density functions (Baker and Simpson, 2010),

P (z,y,t) = ph(w,t) pi(y, 1) (3.20)

20 This approximation, often called the Mean Field Approximation (MFA), im-
2 plies that the probability of finding one cell at [,z + dx] at time ¢ is indepen-
22 dent of the probability of finding another cell at [y, y + dy] at the same time.
213 MFA-based equations are, by far, the most popular way to describe collective
2 cell migration (Sherratt and Murray, 1990; Painter and Sherratt, 2003; Maini
25 et al., 2004).

26 We now present MFA equations for the cases relevant to both monoculture
a7 (K = 1) and co-culture (K = 2) experiments. First, for K = 1, substituting
28 Equation (3.20) into Equation (3.10), we obtain

apl(x, t)

o = DApi(a.t) = (N = DV (pi(a 1) V(2,1)), (3.21)

210 where
Viat)= | Fla—y)pily.0)dy, (3.22)

220 is the velocity field induced by interactions between cells. Second, for K = 2,

13
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21 the MFA leads to two coupled equations,

WD papie 1) — o~ 0¥ (phe ) V! 0.1)

- nzv(p}(x, 1) V(z, t)), (3.23)
aplé?t) — DA (2, 1) — (ng — 1)v(p§<x,t) sz(x,t)>

- nlv(pf(x, 1) V2 (z, t)), (3.24)
V) = [ Fw = ) pi () dy. (3.25)

22 where indices [,m =1, 2.

23 3.1.2 Moment dynamics approzimation

2« A more sophisticated approach is to use a closure relation to write for the
25 three-particle correlation function in terms of the two-particle correlation func-
26 tion (Baker and Simpson, 2010; Middleton et al., 2014). A commonly-used
27 closure relations is the Kirkwood superposition approximation (KSA) (Kirk-

28 wood, 1935), which can be written as

Im ls ms
ms py (2, y,t) py (2, 2,1) p3(y, 2, t
p;lg (l’, Y, Z,t) — 2 ( ) 2 ( ) 2 ( )7 (326)

ph(z,t) p(y, t) pi(z,t)

29  where the subpopulations [, m and s are not necessarily distinct.

20 For monoculture experiments with K = 1, the KSA continuum model can be

14
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231 Written as

apléf’t) = DAp(z,1) — (N = 1)V ( J, F =) w1 dy)’ 327
Mgéy’t) = Dg}h(ma Y, t)
— (%(F(x — y)pz(%yvt>>

- %(F(y - x)pQ(x,y,t))
0 pg(x,y,t)pg(Lz,t)pg(y,z,t)
-3 /QF(x_ ) pi(x, 1) pr(y,t) pr(z, 1) 4
0 po(,y,t) p2(x, 2, t) pa(y, 2, 1)
_(N_Q)i/QF(y_Z) pi(x,t) pr(y, t) pr(z,t) 4

(3.28)

22 It is useful to note that there is more than one way to solve a problem with
23 K =1 using the KSA framework. One approach would be to solve Equations
24 (3.27) and (3.28) simultaneously. However, it is more computationally efficient
25 to solve Equation (3.28) to give pa(x,y,t), and then to obtain pi(z,t) by

236 numerical integration

pl(xvt) :/QPQ(xayat) dy (329)

27 For co-culture experiments with K = 2, the KSA continuum model can be

28 Written as

A _ Diaplet) — (- 09 ( [ P~ )Gty )
— Ny V(/Q F2(x —5y) py*(x,y,t) dy), (3.30)
Opi(z,1)

= DAR (e, 0) = (2 = DV ( [ F2(e =)o ) dy)

—n V(/Q FH(z —y)p3t(x,y,t) dy), (3.31)

15
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opy* (z,y,1)

- DApél(l’, Y, t)

_ ;:C (F“(m —y)p' (2, t>)

_ a(z (F”(y — ) py (2,9, t))

ot

11 11 11
— (4 _2)(9ax/QFll($_z) Py (7, y,t) py (7, 2,1) py (Y, 2, 1) dz

pi(x,t) pi(y,t) pi(z,t)

11 11 11
_ (nl _2)§g/§2Fll(y_Z) Y2 (.T,y,t)p2 (.T,Z,t)pz (y,Z,t) dz

pi(z,t) pi(y,t) pi(z,t)
0 /F12(x_ ) pa' (2, 8) (@, 2,0) py?(y: 2, 1)
Q

ox pilx, t) piy,t) pi(z,t)

(9 12 pél(‘xayﬂf) p%Q(SL’,Z,t) p%Q(y,Z,t)
—ng— [ F*(y—2) . - 5 dz,

0y Ja pl(xvt) Pl(y, t) p1(27t>

(3.32)
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L1

op32(z,y,t)

- DAp§2(x7 Y, t)

_ ;:C (F22(:v —y)py (2, y, t>)

_ a(z (F22(y — ) py’ (2, y, t))

ot

22 22 22
— (s _Q)aax/QFZQ(x_z) Py (z,y,t) po’(w, 2, 1) p3° (y, 2, ) dz

pi(x,t) pi(y,t) pi(z,t)

22 22 22
_ (ng _2)§g/§2F22(y_Z) Y2 (.T,y,t)p2 (.T,Z,t)pz (y,Z,t) dz

pi(z,t) pi(y,t) pi(z,t)
a /Fgl(x_Z)p%Z(x,y,t)pgl(m,Z,t)pgl(y,z,t)d
Q

ox pilx, t) piy,t) pi(z,t)

(9 21 p%2($,y,t) p%l(x,z,t) p%l(y,z,t)
—ni— [ F*(y—2) . - 5 dz,

0y Ja pl(xv t) P1 (y, t) pl(za t)

(3.33)
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]!

op3?(z,y,1)

= DAp;Q(ZE, Y, t)
0

ot

0

~ (ny — 1)21:/91?11(3: -
~(m -5 [ Py -

~ (=15 [ Py -

2 3z, y,t) pi(z, 2, ) p3P(y, 2, 1)
) 3z, y, t) ps(z, 2, ) p3t(y, 2, 1)
) 3 (z,y, t) ps'(z, 2, t) p3t(y, 2, 1)

) 3 (z,y, t) ps(z, 2, ) p3*(y, 2, 1)

-5 <F12(SU —y)py’(z,y, t>>
~ 5 (F”(y — ) py’(2,y, t>>

~ (ng — 1)51/91?12(3; -

dz

pi(x, t) pi(y,t) pi(z,t)

dz

pi(x,t) pi(y,t) pi(z,t)

dz
pi(x, t) pi(y,t) pi(z,t)

dz,
pi(x,t) pi(y,t) pi(z,t)

(3.34)
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239

240

241

242

op3' (z,y,1)

ot :DApgl(.T,y,t)

_ i (F21(:c —y)p3' (2, y, t))

- (P -0 )

0 p3 (@,y, 1) p' (. 2,t) p3' (Y, 2, 1)
_n—l—/me—z 2\ H R T 2 AT T g,
(= gy Jo ) G S D Pl 1)

0 p3 (x,y, ) p3* (2, 2,t) p3*(y, 2, 1)
—n—l—/FzQy—z 20 L2 T 2 Wy
e = ) gy ot A T e ) )

0 p3 (2,9, ) p3* (2, 2,t) p3*(y, 2, 1)
(= )2 [ g - o) RO 0020 o,
R T AL C Al e Ty e g poy

0 Py (2,y, 1) p3 (2, 2,t) p3' (y, 2, 1)
— —1)— [ F'(x — 20 VB2 v VIR DTy, 3.35
(m =15 [ Fw=2) Rty izt (3:39)

Again, there are multiple strategies for solving the KSA equations when K = 2. Here, we solve Equations (3.32) and (3.33) to

give pit(z,y,t) and p3?(x,y, t), respectively. Using these results we calculate p}(z,t) and p?(x,t) by numerical integration, similar
to Equation (3.29). To obtain p3*(z,y,t) and p3'(z,y,t), we use p*(z,y,t) = pi(z,t)pi(y,t) and p3'(z,y,t) = pi(z, t)pi(y, ),

respectively.
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23 Now that we have documented both the MFA and KSA continuum approxima-
214 tions for both single species monoculture (K = 1) and two-species co-culture
25 (K = 2) experiments, we will now solve these governing equations for both

us cases and compare results with averaged data from discrete simulations.
ar 3.2 Application to monoculture experiments, K =1

2s  We first consider the situation where we have one population of cells, K = 1. In
20 all of our numerical results we always fix the diffusivity to be D = 300 pm?h~!
20 (Treloar et al. 2013). To emphasize the importance of non mean-field effects,
1 all simulation results in the main paper involve strong adhesion, where fy
2 is sufficiently large. This situation is relevant when we apply our model to
23 mimic the collective migration of epithelial cells (Treloar et al., 2013). In
»s4  contrast, if the models are applied to deal with the collective migration of
255 mesenchymal cells; without significant adhesion (Simpson et al., 2013), then
6 additional results in the Supplementary Material document with reduced fy

27 are more relevant.

s oince we consider unbiased random forces, we sample & from a Gaussian

x0  distribution with zero mean and zero auto-correlation

<gi(t)gj (t’)> _ leaijatt,, (3.36)

260 which is a white noise limit (Supplementary Material). The variance of &; is

261 given by

Var(¢§;) = le, (3.37)

2 where At is the duration of the time step used in the discrete simulations.

%3 The initial distribution of cells in the monoculture simulations is given by

0, 0 pm < x <600 pm,
a(zr) ={25 x 1073, 600 um < z < 1400 pm, (3.38)
0, 1400 pm < x < 2000 i,

e on 0 < x <2000 pm, which is a typical length scale for an in wvitro cell mi-
265 gration experiment (Jin et al. 2016). Here, a(z) is a function of position, and

6 we sample from this function to define the initial distribution of cells in the

20


https://doi.org/10.1101/119586
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119586; this version posted March 22, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s discrete simulations. This initial distribution corresponds to a confined group
s Of cells in the centre of the domain. When presenting results from simula-
20 tions we refer to both the dimensional density of cells, pi(x,t) [cells/um], as
a0 well as the non-dimensional density of cells relative to the carrying capacity
on density, pi(z,t)/C, where C is the carrying capacity density that is given by
o2 C = NJ§/L, where N is the maximum number of cells of diameter ¢ that
a3 can be distributed along a domain of length L without compression. Periodic

o boundary conditions are imposed for all simulations.

25 'To solve the MFA model, we set p;(z,0) = a(x), and to solve the KSA model,
26 we note that since cells are randomly placed according to Equation (3.38),
a7 there are no spatial correlations in the initial positions of the cells. Therefore,
zs  the initial conditions for the KSA model are given by p;(z,0) = «a(z) and
20 po(z,y,0) = a(x)a(y). With this information, Equations (3.21) and (3.28)
280 are solved using the method of lines with spatial and temporal discretisations
251 chosen to be sufficiently fine that the numerical solutions are grid indepen-
22 dent. The discrete model, Equation (2.3), is numerically integrated using a
23 fourth order Runge-Kutta (RK4) method (Press et al., 2007) and density dis-
284 tributions are obtained by considering a large number of identically prepared
s simulations. Results in Figure 2 compare numerical solutions of the MFA and
26 KSA continuum descriptions with averaged data from discrete simulations.
27 Snapshots of the discrete simulations are shown in Figure 2(a)-(b). A com-
288  parison of the ensemble averaged data and the solution of the MFA and KSA
20 models are given in Figure 2(c) and Figure 2(e), respectively. To clearly com-
200 pare the performance of the MFA and KSA models near the position of the
21 spreading profile, we show a magnified region of the profiles in Figures 2(d)
20 and Figure 2(f).

203 In summary, we see that both the KSA and MFA models capture the overall
20 spreading behaviour of the collective migration reasonably well, as shown in
205 Figure 2(c) and Figure 2(e). However, when we examine the performance of
206 MFA model more closely, as illustrated in Figure 2(d), we see that the solution
207 of the MFA continuum model is not as steep as the discrete density data. In
208 contrast, the performance of the KSA model, as shown in Figure 2(f), provides
200 an improved match to the averaged discrete data. We now examine the relative

500 performance of the MFA and KSA approaches for two multi-species problems.

21
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Fig. 2. Comparison of ensemble averages of stochastic simulations and solutions of the MFA and KSA continuum models for a sin-
gle-species population of cells on a one-dimensional domain with 0 < z < 2000 pm. Snapshots in (a)-(b) show 200 realisations of the
discrete model at t = 0 and ¢t = 24 hours, respectively. The population of cells (green) initially occupies the central region, which is
800 pm wide, and has an initial density 25 x 1073 cells/um. Results in (c)-(f) show the cell density profiles obtained using an ensemble of
5 x 10° simulations (black dots) with binsize of 10 um. These results are compared to solutions of the MFA model, Equation (3.21) (red
lines), and the KSA model, Equation (3.28) (blue lines). Profiles are given at ¢t = 0,6,12,18, and 24 h, with the arrows indicating the
direction of increasing t. In (c)-(f) the cell density is reported in terms of the dimensional cell density, p;(x,t), as well as the dimensionless
cell density, p1(x,t)/C, where C' = 40 x 1072 cells/um. Equation (2.3) is integrated with At = 5 x 10~2 h, Equation (3.21) is integrated
with Az = 4 ym and At = 1072 h, and Equation (3.28) is integrated with Az = Ay = 4 um and At = 10~2 h. The remaining parameters
are N =20, a = 0.08 pum~!, § = 25 um, fy = 0.2 ym/h.
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s 3.8 Application to co-culture experiments, K = 2

;2 We now consider the evolution of two types of two-species problems. These two
303 problems involve different experimental designs. In both cases we choose the
s size of the cells in subpopulations 1 and 2 to be different. Here, the diameter of
305 cells in the first subpopulation is 4; = 18 pum, and the diameter of cells in the
306 second subpopulation is do = 25 um. We also introduce differing interspecies
w7 interaction parameters such as the interspecies force amplitude, f3?, shape
;8 parameter, ajo, and the interspecies diameter, d12, which corresponds to the

300 average radius of the different cell types.

s The first experiment involves one population of cells spreading through an-
sn  other background population of cells, and this mimics the way that an initially
sz confined population of tumour cells might spread through surrounding healthy
a3 tissue (Eves et al. 2003). To specify the initial condition for this problem we

s must describe the initial location of both subpopulations,

0, 0 pum < 2 <600 pum,
ar(z) =425 x 1073, 600 pm < z < 1400 pm, (3.39)
0, 1400 pm < 2z < 2000 pm,

315
10.8 x 1073, 0 pm < x < 600 pm,
az(z) =10, 600 pm < 2 < 1400 pm, (3.40)
10.8 x 1073, 1400 pm < z < 2000 pm,
s6 where aq(x) is a function of position that describes the initial location of cells
a7 from the first subpopulation, and as(z) is a function of position that describes
s1s the initial location of cells from the second subpopulation. This initial con-
s10  dition corresponds to the situation where the region 600 < x < 1400 pm is
w0 relatively densely occupied by subpopulation 1, and the remaining space is less
;1 densely populated by subpopulation 2. To initialise the discrete simulations
2 we sample from a;(z) and aq(z), and snapshots showing 200 realisations of
23 discrete model are given in Figure 3(a)-(c) at ¢ = 0, 12 and 24 hours, showing

320 how the two subpopulations mix.

s The second experiment that we consider corresponds to two initially adjacent

16 subpopulations of cells. The initial location of both subpopulations is given

23
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21 by
0, 0 pum < 2 <600 pum,
ay(z) =25 x 1078, 600 pm < x < 1000 pm, (3.41)
0, 1000 pm < 2 < 2000 pm,
328
0, 0 pm <2 <1000 pm,
az(7) = 425 x 1073, 1000 pm < z < 1400 pm, (3.42)
0, 1400 pm < x < 2000 pm.

2o To initialise the discrete simulations we sample from a;(z) and ay(z), and
10 snapshots showing 200 realisations of discrete model for the second initial
s condition are given in Figure 5(a)-(c) at ¢t = 0, 12 and 24 hours. Here we see
s that the two subpopulations mix near x = 1000 pm. Furthermore, we also see

;3 that both subpopulations spread into the initially vacant surrounding regions.

s« To obtain continuum results for the two-species problems, the MFA and KSA
135 continuum models, given by Equations (3.23)-(3.24) and Equations (3.32)-
1 (3.33), respectively, are solved using the method of lines with spatial and
;37 temporal discretisations chosen to be sufficiently fine that the numerical solu-
133 tions are grid independent (Supplementary Material). Results in Figures 3 and
339 b compare the performance of the MFA approach with the averaged discrete
s data. Since these simulations involve significant interaction forces, we see that
s the solution of the MFA model does not always accurately capture the details
a2 of how the subpopulations spread and interact with each other. Results in
w3 Figures 4 and 6 compare the performance of the KSA approach with the aver-
ss aged discrete data. Comparing the performance of the KSA and MFA models
us confirms that, similar to our results for the single-species problem in Figure
us 2, the KSA approach outperforms the MFA model.

s 3.4 Parameter sensitivity

us In this section we investigate how the accuracy of the both continuum ap-
s proximations depends on the choice of the model parameters. To explore this
0 question we re-examine the results of the first co-culture experiment, as il-
s lustrated in Figures 3-4, and we quantify how the accuracy of the KSA and

32 MFA continuum models depends on the strength of adhesion and the ratio

24
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Fig. 3. Comparison of ensemble averages of stochastic simulations and solutions of the MFA continuum model, given by Equations
(3.23)-(3.24), for a two-species population of cells on a one-dimensional domain with 0 < z < 2000 pm. Snapshots in (a)-(c) show 200
realisations of the discrete model at ¢t = 0,12, and 24 hours, respectively. Subpopulation 1 (orange) initially occupies the central region
at a density of 25 x 1073 cells/pm, and subpopulation 2 (green) initially occupies two outer regions at a density of 10.8 x 1073 cells/um.
Results in (d)-(i) show the density profiles obtained using an ensemble of 5 x 10° simulations (black dots) with binsize of 10 pm, and
the solutions of the MFA model (red lines) at ¢t = 0,6,12, 18 and 24 h, with the arrows indicating the direction of increasing t. Results
in (d)-(i) are shown in terms of the total population density, the density of subpopulation 1, and the density of subpopulation 2, as
indicated. Density profiles are reported in terms of the dimensional cell densities, p% (z,t) and p% (z,t), as well as the dimensionless cell
densities, pi(z,t)/Cy and p?(z,t)/Ca, where C7 = 55.5 x 1073 cells/um, Cy = 40 x 1073 cells/um. The MFA model is integrated with

1 1

Az =4 pm and At =5 x 1073 h. The remaining parameters are n; = 20, ng = 13, a; = 0.08 um™', as = 0.06 um~", a;9 = 0.07 pm 1!,

81 =18 pum, 9 = 25 pm, 612 = 21.5 pm, fi' = 1.5 pm/h, f22 =1 pm/h, f3? = 1.25 pm/h.
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< T
realisations of the discrete model at ¢t = 0,12, and 24 hours, respectively. Subpopulation 1 (orange) initially occupies the central region %E
=0

. _ . o . : . _ o2
at a density of 25 x 1073 cells/um, and subpopultation 2 (green) initially occupies two outer regions at a density of 10.8 x 1073 cells/um. 33
=Ny

Results in (d)-(i) show the density profiles obtained using an ensemble of 5 x 10° simulations (black dots) with binsize of 10 pum, and 29
S5c
the solutions of the KSA model (red lines) at t = 0,6, 12,18 and 24 h, with the arrows indicating the direction of increasing ¢. Results B3
S0

in (d)-(i) are shown in terms of the total population density, the density of subpopulation 1 and the density of subpopulation 2, as E.%
T . . . . o . . <o
indicated. Density profiles are reported in terms of the dimensional cell densities, p%(x,t) and p?(z,t), as well as the dimensionless ig-
cell densities, pi(z,t)/Cy and p?(z,t)/Cy, where C; = 55.5 x 1073 cells/um, Cy = 40 x 1073 cells/um. The KSA model is integrated ég
(o]
with Az = Ay = 4 pm and At = 5 x 1072 h. The remaining parameters are n; = 20, ng = 13, a; = 0.08 um~"', as = 0.06 pm™!, %g
Q

n

a1z = 0.07 pm~1, & = 18 pm, dy = 25 pm, d19 = 21.5 pm, fil = 1.5 ym/h, 32 =1 pm/h, f}2 = 1.25 pm/h.
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Fig. 5. Comparison of ensemble averages of stochastic simulations and solution of the MFA continuum model, given by Equations
(3.23)-(3.24), for a two-species population of cells on a one-dimensional domain with 0 < z < 2000 pm. Snapshots in (a)-(c) show 200
realisations of the discrete model at ¢ = 0,12, and 24 hours, respectively. Subpopulations 1 (green) and 2 (orange) initially occupy
adjacent regions at a density of 25 x 1073 cells/um. Results in (d)-(i) show the density profiles obtained using an ensemble of 5 x 10°
simulations (black dots) with binsize of 10 pm, and the solutions of the MFA model (red lines) at ¢t = 0,6, 12,18 and 24 h, with the arrows
indicating the direction of increasing ¢. Results in (d)-(i) are shown in terms of the total population density, the density of subpopulation
1 and the density of subpopulation 2, as indicated. Density profiles are reported in terms of the dimensional cell densities, pi(x,t) and
p3(z,t), as well as the dimensionless cell densities, pi(x,t)/C} and p}(z,t)/Ca, where C; = 40x 1073 cells/um, Cy = 55.5x 1073 cells/pum.
The MFA model is integrated with Az =4 ym and At = 5 x 1073 h. The remaining parameters are n; = 10, no = 10, a; = 0.06 ym™!,
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Fig. 6. Comparison of ensemble averages of stochastic simulations and solutions of the KSA continuum model, given by Equations
(3.32)-(3.33), for a two-species population of cells on a one-dimensional domain with 0 < z < 2000 pm. Snapshots in (a)-(c) show 200
realisations of the discrete model at ¢ = 0,12, and 24 hours, respectively. Subpopulations 1 (green) and 2 (orange) initially occupy
adjacent regions at a density of 25 x 1073 cells/um. Results in (d)-(i) show the density profiles obtained using an ensemble of 5 x 10°
simulations (black dots) with binsize of 10 pm, and the solutions of the KSA Equations (blue lines) at ¢ = 0,6,12,18 and 24 h, with
the arrows indicating the direction of increasing t. Results in (d)-(i) are shown in terms of the total population density, the density
of subpopulation 1 and the density of subpopulation 2, as indicated. Density profiles are reported in terms of the dimensional cell
densities, pi(z,t) and p?(z,t), as well as the dimensionless cell densities, pi(z,t)/Cy and p3(x,t)/Cs, where C; = 40 x 1073 cells/pm,
Coy = 55.5 x 1073 cells/um. The KSA model is integrated with Az = Ay = 4 ym and At = 5 x 1072 h. The remaining parameters
are ny = 10, ng = 10, a1 = 0.06 um™', as = 0.08 um™', ajo = 0.07 um~", 6; = 25 um, 6 = 18 pm, d12 = 21.5 pum, = 1.5 ym/h,
2 =2 pm/h, f3? =1.75 pm/h.
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53 of the two cell sizes in the co-culture experiment. To explore this we repeat
s the discrete simulations and vary the force amplitude f;!, which determines
35 strength of the cell-to-cell adhesion, as well as varying the ratio §;/ds. To
16 keep our analysis as straightforward as possible, we vary these two quantities

37 separately.

s 1o quantify the accuracy of both the MFA and KSA continuum approxima-

10 tions we define the following quantities,

1d .
Enra (t =7 > [Snira (i, £) — Saiscrete (7, )], (3.43)
=1
J . 2
EKSA j Z SKSA 2 t Sdiscrete(latﬂ ) (344>

[y

1=

30 where Enpa (f) and Exga () indicate mean squared error associated with the
1 MFA and KSA approximations, respectively. The index i denotes the spatial
s2 node, and [ = 200 is the total number of spatial nodes across the domain.
33 To construct these mean squared errors we compare the total density profiles
sea 50 that Syra(i,t) = pi(i,t) + pi(i,t) is the total population density predicted
% by the MFA continuum approximation, Sksa(i,t) = pi(i,t) + p?(i,t) is the
w6 total population density predicted by the KSA continuum approximation, and
367 Sdiscrete(i5 1) = pi(i,t) + p3(i,t) is the total population density obtained by

s considering an ensemble average of the discrete model.

30 Results in Figure 7 show Eypa (t) and Egga (t) as a function of §;/d, and fal.
s The vertical lines correspond to choices of d;/d5 and foll that are identical to
sn the parameter values used to construct the results in Figures 3-4. Overall, the
w2 results in Figure 7 show three main trends: (i) for all parameter choices consid-
;3 ered in the sensitivity analysis, the KSA approximation outperforms the MFA
s approximation; (i) the accuracy of both the MFA and KSA approximations
7 decrease with both d;/d, and f3'; and (iii) the accuracy of both the MFA and
s KSA approximations is more sensitive to changes in ¢;/d, than changes in fj!

sz for the range of parameters considered.

29
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Fig. 7. (a) Comparison of the accuracy of the MFA and KSA continuum approxi-
mations as a function of d1/d2 at time ¢t = 24 h for the first co-culture experiment.
All results in (a) correspond to d2 = 25 um, and the ratio d; /62 is varied by altering
d1. (b) Comparison of the accuracy of the MFA and KSA continuum approxima-
tions as a function of fo11 at time t = 24 h for the first co-culture experiment. All
data in (b) correspond to a fixed choice of f&2 = 1.0 um/h. Both subfigures show
Emra(t) (red dots) and Exga(t) (blue dots), and the dashed vertical line indicates
the parameter values presented previously in Figures 3-4. All continuum models are

solved numerically with Az = 4 ym and At =5 x 1073 h.

sz 4 Conclusions

;o In this work, we develop a discrete multi-species model of collective cell migra-
s0  tion. Our framework is very general, and can deal with genuine multi-species
31 problems where the subpopulations are distinct (Eves et al., 2003), as well
2 as other types of experiments where an otherwise identical subpopulation of
s cells is labelled (Simpson et al., 2007). Our discrete modelling framework can
s include various effects such as: random unbiased stochastic motion of individ-
;s ual cells; short range finite size effects to account for crowding interactions;
s longer range adhesive forces; as well as dealing with subpopulations of cells

sz that have different cell diameters.

s 10 analyse the discrete model, we derive a hierarchy of continuum moment
10 equations to describe the spatial dynamics of agents, pairs of agents, triplets
w0 of agents, and so forth. We then develop two different approximate solutions

s of the hierarchy of moment equations. Firstly, using the MFA, and secondly,

30
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s using the KSA. We compare both continuum approximations with ensemble

33 averages from discrete simulations.

s Overall, both continuum approximations match the broad features of the dis-
35 crete results reasonably well. When there is little or no adhesion, both contin-
36 uum models match the averaged discrete results extremely well. However, once
57 the adhesive force is sufficiently strong, the KSA continuum model matches
38 the averaged discrete results much better than MFA model. This difference
300 1S the consequence of adhesion causing correlations in the positions of agents
w0 in the discrete simulations (Baker and Simpson, 2010). These effects are ne-
s glected in the MFA model, however the KSA model explicitly includes the

w2 effects of pairwise correlations, po(z,y,1).

w3 There are many potential extensions which we leave for future analysis. All
w04 our analysis has been in one dimension, but many biological experiments are
ws in two or three dimensions (Treloar et al., 2013; Eves et al., 2003). It is rela-
ws tively straightforward to apply our continuum models to higher dimensional
w7 problems, however we choose to take the most fundamental approach here
w8 and focus on one dimension only. As it stands, isolated individual cells in
w0 our discrete model move due to unbiased random motion. However, in many
a0 applications cells move with a bias, such as in chemotaxis (Keller and Segel,
a1 1971). To extend our model to deal with chemotaxis we would need to intro-
a2 duce an evolution equation for some kind of nutrient, and to allow individual
a3 cells to move with some bias in response to the spatial gradient of the nutrient
as  (Keller and Segel, 1971). We also note that all non-MFA results are obtained
ss by approximately closing the system of continuum equations using the KSA,
as  however other kinds of closure relations could also be used (Murrell et al.,
a7 2004; Frasca and Sharkey, 2016).
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