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Abstract

Cell migration within tissues involves the interaction of many cells from distinct

subpopulations. In this work, we present a discrete model of collective cell migra-

tion where the motion of individual cells is driven by random forces, short range

repulsion forces to mimic crowding, and longer range attraction forces to mimic

adhesion. This discrete model can be used to simulate a population of cells that

is composed of K ≥ 1 distinct subpopulations. To analyse the discrete model we

formulate a hierarchy of moment equations that describe the spatial evolution of

the density of agents, pairs of agents, triplets of agents, and so forth. To solve the

hierarchy of moment equations we introduce two forms of closure: (i) the mean field

approximation, which effectively assumes that the distributions of individual agents

are independent; and (ii) a moment dynamics description that is based on the Kirk-

wood superposition approximation. The moment dynamics description provides an

approximate way of incorporating spatial patterns, such as agent clustering, into the

continuum description. Comparing the performance of the two continuum descrip-

tions confirms that both perform well when adhesive forces are sufficiently weak.

In contrast, the moment dynamics description outperforms the mean field model

when adhesive forces are sufficiently large. This is a first attempt to provide an

accurate continuum description of a lattice-free, multi-species model of collective

cell migration.
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1 Introduction1

In vivo cell migration involves many different cell types interacting with each2

other. For example, tumour invasion involves malignant cancer cells moving3

through normal surrounding tissues (Weinberg, 2009). Interactions between4

different cell types are also captured in certain in vitro experiments, such as the5

migration of malignant melanoma cells, which is thought to be enhanced when6

these cells are moving amongst skin cells (Eves et al., 2003). Multiple species7

of cells can also be created in experiments where some subpopulation of cells,8

amongst an otherwise identical subpopulation, are labelled and tracked over9

time (Simpson et al. 2006; Simpson et al., 2007). While some mathematical10

models explicitly account for interactions between different subpopulations11

of cells (Painter and Sherratt, 2003), most mathematical models deal with a12

single population of cells only (Sherratt and Murray, 1990; Maini et al., 2004).13

A common approach to modelling cell migration is to use a lattice-based ran-14

dom walk model. This approach captures details of the motion of individual15

cells, which is attractive because this kind of information can be linked to16

time lapse images from experiments. The continuum-limit description of such17

a lattice-based model can also be used to study the group behaviour. Although18

some previous lattice-based models account for interactions between different19

types of cells (Simpson et al., 2009; Penington et al., 2011), these lattice-based20

models are unrealistic because real cells do not move on regular lattice-based21

structures. Other limitations of lattice-based models include restrictions on22

cell size. For example, the diameter of a typical melanoma cell is approxi-23

mately 18 µm (Treloar et al., 2013) whereas the diameter of a typical skin cell24

is approximately 25 µm (Simpson et al., 2013). In a model with both types25

of cells present, it is not possible to accommodate these differences in cell size26
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if we use a standard lattice-based approach where each cell occupies a single27

lattice site (Binder and Simpson, 2016).28

To address these limitations, we define a lattice-free model that can be used29

to describe the migration of a population of cells that is composed of many30

potentially distinct subpopulations. We adopt a modelling framework that is31

an extension of previous approaches by Newman and Grima (2004) and Mid-32

dleton and co-workers (2014). The work by Newman and Grima considered33

a stochastic model of individual cell migration, with chemotactic effects, and34

they described the continuum limit using a Langevin formulation. The work of35

Newman and Grima (2004) was then extended by Middleton and co-workers36

(2014) who also considered a stochastic model of individual cell migration in37

terms of a Langevin formulation, however they considered both a traditional38

mean field continuum approximation as well as a more sophisticated moment39

closure continuum approximation that accounts for the spatial and temporal40

dynamics of pairs of agents. A key feature of both these previous models is that41

they are appropriate for studying the collective migration of a single popula-42

tions of cells. However, many practical problems in development and disease43

progression involves multiple interacting subpopulations of cells. Therefore,44

the main aim of the current study is to develop a discrete model of collective45

migration where the total population of cells consists of an arbitrary number46

of interacting subpopulations. Our discrete model incorporates random cell47

motility, adhesion between cells and finite size effects (crowding). We allow48

for differences in cell size, cell motility and cell adhesion between the different49

subpopulations. In addition to producing stochastic realisations of the dis-50

crete model, we also analyse the continuum limit using both a standard mean51

field approximation and a more sophisticated moment dynamics approxima-52

tion. Comparing averaged behaviour from the discrete simulations with the53

solution of the continuum models confirms that the mean field approach can54

be inaccurate when adhesion is sufficiently strong. This is important because55

almost all mathematical models of collective cell migration invoke the mean56

field approximation (Sherratt and Murray, 1990; Painter and Sherratt, 2003;57

Maini et al., 2004).58

This manuscript is organised in the following way. In Section 2 we describe59

the discrete model. In Section 3.1, we analyse the discrete model, showing how60

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2017. ; https://doi.org/10.1101/119586doi: bioRxiv preprint 

https://doi.org/10.1101/119586
http://creativecommons.org/licenses/by/4.0/


we can obtain a continuum description of the average behaviour of the dis-61

crete model. In particular, we focus on two different continuum descriptions:62

(i) a mean field approximation; and (ii) a higher-order moment dynamics ap-63

proximation. Results in Sections 3.2-3.3 compare solutions of both continuum64

approximations and averaged discrete results for problems involving one and65

two interacting subpopulations, with additional comparisons presented in the66

Supplementary Material. In Section 3.4 we investigate how the accuracy of the67

MFA and KSA approximations depends on the choice of model parameters.68

Finally, in Section 4, we summarise our work and highlight opportunities for69

future investigation.70

2 Discrete model71

We consider a population of N cells that is composed of an arbitrary number of72

subpopulations, K ≥ 1. Illustrative schematics showing interactions between73

individuals in a population with K = 1 and K = 2 subpopulations are given74

in Figure 1(a)-(b), respectively.75

We begin by assuming that each individual cell is a point mass and that its76

movement can be described by an equation of motion. For simplicity, from77

this point on, we restrict our attention to a one-dimensional geometry, and in78

Section 4 we discuss how the framework can be adapted to higher dimensions.79

To begin describing the collective motion, we assume that the motion of each80

cell is governed by Newton’s second law,81

mi
d2xi
dt2

= Vi +
∑
j 6=i

Rij + ζi, i = 1, . . . , N, (2.1)

where xi is the position of the ith cell, mi is its mass, and Rij is an interaction82

force between the ith and jth cells. Vi is the viscous force between the cell83

and the surrounding medium, and ζi is the stochastic force associated with84

random Brownian motion. According to Stokes’ law, the viscous force on a85

small spherical particle moving in a viscous fluid is given by86

Vi = −µ dxi
dt

, (2.2)

where µ > 0 is the drag coefficient. If we neglect inertial forces and invoke87
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Stokes’ law (Middleton et al., 2014), we arrive at a system of Langevin stochas-88

tic differential equations (SDEs) given by89

dxi
dt

=
∑
j 6=i

Fij + ξi, i = 1, . . . , N, (2.3)

where Rij = µFij and ζi = µ ξi.90
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Fig. 1. (a)-(b) Representative plot of single- and multi-species systems of cells,

respectively. In (a) we show the intraspecies force, F (r), and in (b) we show both

intraspecies forces, F 11(r) and F 22(r), and interspecies forces, F 12(r) and F 21(r).

Here, r is the distance between cells. (c) Dimensionless force law function Z(r),

given by Equation (2.5), for various values of a. Here, δ = 25 µm corresponds to a

typical cell diameter.

In summary, according to Equation (2.3), the collective migration of cells is de-91

termined by a balance between cell-to-cell interactions (short-range crowding92
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and longer range adhesion), stochastic forces, and viscous forces. Collective93

cell migration that is driven by unbiased stochastic forces is thought to be94

relevant in many applications, such as collective cell spreading in many single-95

species in vitro experiments (Simpson et al., 2013). Therefore, we focus on96

unbiased stochastic forces by sampling ξi from a Gaussian distribution with97

zero mean and zero auto-correlation (Middleton et al. 2014).98

It is biologically reasonable to model the interaction forces between cells, Fij,99

to have different amplitudes for subpopulations of cells. This is relevant if100

we wish to specify different adhesion forces between different subpopulations101

(Steinberg, 1996). For simplicity, we assume Fij = Fji, and we specify the102

interaction force to be103

Fij = f0Z(r) sgn(xi − xj), (2.4)

where f0 is the dimensional amplitude of the interaction force, Z(r) is the104

dimensionless force law function that depends on the separation distance,105

and r = |xi − xj|. The function sgn is the signum function. The particular106

choice of Z(r) depends on phenomenological cellular behaviour we wish to107

model. Several force laws have been suggested, including a linear spring model108

(Murray et al., 2009) and non-linear force laws such as Morse (Middleton et109

al., 2014) or Lennard-Jones (Jeon et al., 2010) potentials. In this work we110

adopt a modified Morse potential force law, so that111

Z(r) =


2
(

exp(−2a (r − δ))− exp(−a (r − δ))
)
, r < 2δ,

2
(

exp(−2a (r − δ))− exp(−a (r − δ))
)
g(r), 2δ ≤ r ≤ 3δ,

0, r > 3δ,

(2.5)

where a is a parameter that controls the shape of the force function, as illus-112

trated in Figure 1(c), and δ is the cell diameter. The distance r = δ corresponds113

to the case where two cells are just in contact with each other. In this model114

we have Z(δ) = 0 and Z(r) = 0 for r > 3δ. Introducing the cell diameter115

δ in Equation (2.5) allows us to more realistically model the behaviour of116

multi-species populations of cells with different diameters.117

Equation (2.5) incorporates the Tersoff cut-off function, g(r) (Tersoff, 1988),118
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to capture a finite interaction range between cells. This function is given by119

g(r) =
1

2

(
1− sin

(
π

2r − δ
2δ

))
. (2.6)

The interaction range has been chosen to be 3δ (Srinivas et al., 2004).120

A representative plot of Z(r) for different values of a is given in Figure 1(c).121

The force function consists of two regimes: short-range repulsion and longer122

range attraction. The repulsive term mimics crowding effects while the attrac-123

tive tail models adhesion. While all of the results presented in this work are124

for this particular choice of force law, it is straightforward to incorporate other125

choices of Z(r).126

3 Results and discussion127

3.1 Mathematical model for an arbitrary number of subpopulations128

We consider a total population of N cells that come from K subpopulations of129

cells, so that N =
∑K

k=1 nk, where nk is the number of cells in subpopulation130

k. This framework can be used to model both situations where each subpopu-131

lation is distinct (Eves et al. 2003) and situations where each subpopulation is132

composed of tagged, but otherwise identical cells (Simpson et al. 2006; Simp-133

son et al. 2007). In addition, these distinct subpopulations may differ in many134

ways, such as differences in diameter, motility rates, or interaction forces and135

they can be arbitrarily arranged in space.136

We define the one-cell probability density function (PDF), P i
1(x, t), as the137

probability that the position of cell i is in the small neighbourhood [x, x+ dx]138

at time t. Similarly, we define the two-cell PDF, P ij
2 (x, y, t), as the probability139

that cells i and j lie in [x, x+ dx] and [y, y + dy], respectively, at time t. At140

present, we do not specify which of the subpopulations these cells belong to.141

Given that the motile behaviour of cells is governed by Equation (2.3), we can142
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relate the PDFs to the position of cells as follows (van Kampen, 1975),143

P i
1(x, t) = 〈δ(N)(x− xi(t))〉, (3.1)

P ij
2 (x, y, t) = 〈δ(N)(x− xi(t)) δ(N)(y − yj(t))〉, (3.2)

where xi(t) and yj(t) are the positions of cells given by Equation (2.3). The144

angled brackets indicate an average over a sufficiently large number of identi-145

cally prepared initial conditions and a sufficiently large number of realisations146

of the stochastic force. Further background explanation about Equations (3.1)147

and (3.2) is given in the Supplementary Material.148

The time evolution of P i
1(x, t) is governed by a Fokker-Planck equation (Sup-149

plementary Material),150

∂P i
1(x, t)

∂t
= D∆P i

1(x, t)−∇
(
fi P

i
1(x, t)

)
, (3.3)

which describes the motion of particles under the influence of random forces,151

proportional to the diffusivity, D, and directed drift forces, fi. The force fi152

acting on cell i in subpopulation l may be expressed as the sum of two types153

of forces: intraspecies forces exerted by other members of subpopulation l, and154

interspecies forces exerted by cells from all other subpopulations, giving155

fi =
∑
j 6=i

F ll
ij +

K∑
k 6=l

∑
j∈k

F lk
ij . (3.4)

Combining Equations (3.1), (3.3) and (3.4), and taking the convolution of the156

interaction force and a δ-function centred at yj, we obtain157

∂P i
1(x, t)

∂t
= D∆P i

1(x, t)

−∇
〈 ∑

j∈l,j 6=i

∫
Ω
F ll(xi − y) δ(x− xi(t)) δ(y − yj(t)) dy

〉

−
K∑
k 6=l

∇
〈∑

j∈k

∫
Ω
F lk(xi − y) δ(x− xi(t)) δ(y − yj(t)) dy

〉
, (3.5)

where Ω denotes the domain. The second and third terms on the right hand158

side of Equation (3.5) are advection terms that incorporate intraspecies and159

interspecies forces, respectively. Combining Equations (3.2) and (3.5), and160
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interchanging summation and integration, we obtain161

∂P i
1(x, t)

∂t
= D∆P i

1(x, t)−∇
∫

Ω
F ll(x− y)

∑
j∈l,j 6=i

P ij
2 (x, y, t) dy

−
K∑
k 6=l

∇
∫

Ω
F lk(x− y)

∑
j∈k

P ij
2 (x, y, t) dy, (3.6)

where, from this point forward, we drop the subscript i on xi.162

To make the transition from individual level behaviour in a discrete simulation163

to the population level dynamics, we define the following quantities,164

pl1(x, t) =
1

nl

∑
i∈L

P i
1(x, t), (3.7)

pll2 (x, y, t) =
1

nl(nl − 1)

∑
i∈L

∑
j∈L,j 6=i

P ij
2 (x, y, t), (3.8)

plm2 (x, y, t) =
1

nlnm

∑
i∈L

∑
j∈L

P ij
2 (x, y, t), l 6= m, (3.9)

where pl1(x, t) is the normalised one-cell density distribution of subpopula-165

tion l, pll2 (x, y, t) is the density-density correlation function that captures in-166

traspecies correlations, and plm2 (x, y, t) is the density-density correlation func-167

tion that captures interspecies correlations.168

To proceed, we sum over the index i in Equation (3.6) and apply the definitions169

given in Equations (3.7)-(3.9). We repeat this procedure K times for each170

subpopulation to yield a system of K non-linear integro partial differential171

equations (IPDEs), that can be written as172

∂pl1(x, t)

∂t
= D∆pl1(x, t)− (nl − 1)∇

( ∫
Ω
F ll(x− y) pll2 (x, y, t) dy

)
−

K∑
k 6=l

nk∇
( ∫

Ω
F lk(x− y) plk2 (x, y, t) dy

)
, (3.10)

for each subpopulation l. We define the PDF of the total population of N cells173

as a weighted sum of the individual distributions,174

ptotal
1 (x, t) =

1

N

K∑
k=1

nk p
k
1(x, t). (3.11)

Equation (3.10) shows that the evolution of pl1(x, t) depends on pll2 (x, y, t). To175

derive an evolution equation for pll2 (x, y, t) we begin with the two-cell Fokker-176
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Planck equation,177

∂P ij
2 (x, y, t)

∂t
= D∆P ij

2 (x, y, t)− ∂

∂x

(
fi P

ij
2 (x, y, t)

)
− ∂

∂y

(
fj P

ij
2 (x, y, t)

)
,

(3.12)

where cells i and j both belong to subpopulation l. The forces fi and fj, applied178

to cells i and j, can be written as the sum of intraspecies and interspecies179

forces. For example, the force on an arbitrary cell z can be written as180

fz =
∑
s 6=z

F ll
zs +

K∑
k 6=l

∑
s∈k

F lk
zs . (3.13)

Adopting the interaction force law, Equation (2.4), using the definition of181

the two-cell PDF as given by Equation (3.2), and evaluating the required182

convolutions, we can rewrite Equation (3.12) as183
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∂P ij
2 (x, y, t)

∂t
= D∆P ij

2 (x, y, t)

− ∂

∂x

〈
F ll(x− y) δ(x− xi(t)) δ(y − yj(t))

〉
− ∂

∂y

〈
F ll(y − x) δ(x− xi(t)) δ(y − yj(t))

〉
− ∂

∂x

〈 ∑
g∈l,g 6=i,j

∫
Ω
F ll(x− z) δ(x− xi(t)) δ(y − yj(t)) δ(z − zg(t)) dz

〉

− ∂

∂y

〈 ∑
g∈l,g 6=i,j

∫
Ω
F ll(y − z) δ(x− xi(t)) δ(y − yj(t)) δ(z − zg(t)) dz

〉

−
K∑
k 6=l

∂

∂x

〈∑
g∈k

∫
Ω
F lk(x− z) δ(x− xi(t)) δ(y − yj(t)) δ(z − zg(t)) dz

〉

−
K∑
k 6=l

∂

∂y

〈∑
g∈k

∫
Ω
F lk(y − z) δ(x− xi(t)) δ(y − yj(t)) δ(z − zg(t)) dz

〉
, (3.14)

where the second and third terms on the right hand side of Equation (3.14) represent interactions between cells i and j, the184

fourth and fifth terms on the right hand side of Equation (3.14) represent interactions between cells i and j and other cells185

within subpopulation l, and the sixth and seventh terms on the right hand side of Equation (3.14) represent interactions between186

cells i and j and cells in other subpopulations.187
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The three-particle normalised density functions can be defined as,188

plms
3 (x, y, z, t) =

1

nlnmns

∑
i∈l

∑
j∈m

∑
g∈s

P ijg
3 (x, y, z, t), (3.15)

plls3 (x, y, z, t) =
1

nl(nl − 1)ns

∑
i∈l

∑
j∈l,j 6=i

∑
g∈s

P ijg
3 (x, y, z, t), (3.16)

plll3 (x, y, z, t) =
1

nl(nl − 1)(nl − 2)

∑
i∈l

∑
j∈l,j 6=i

∑
g∈l,g 6=i,j

P ijg
3 (x, y, z, t). (3.17)

We therefore require a definition for the three particle PDF, P ijg
3 (x, y, z, t),189

similar to Equation (3.2),190

P ijg
3 (x, y, z, t) = 〈δ(x− xi(t)) δ(y − yj(t)) δ(z − zg(t))〉. (3.18)

To proceed we divide Equation (3.14) by nl(nl − 1), and combine Equations191

(3.14)-(3.18), summing over the indices i and j, to obtain an expression for192

the evolution of pll2 (x, y, t),193

∂pll2 (x, y, t)

∂t
= D∆pll2 (x, y, t)

− ∂

∂x

(
F ll(x− y) pll2 (x, y, t)

)
− ∂

∂y

(
F ll(y − x) pll2 (x, y, t)

)
− (nl − 2)

∂

∂x

∫
Ω
F ll(x− z) plll3 (x, y, z, t) dz

− (nl − 2)
∂

∂y

∫
Ω
F ll(y − z) plll3 (x, y, z, t) dz

−
K∑
k 6=l

nk
∂

∂x

∫
Ω
F lk(x− z) pllk3 (x, y, z, t) dz

−
K∑
k 6=l

nk
∂

∂y

∫
Ω
F lk(y − z) pllk3 (x, y, z, t) dz. (3.19)

The total system of equations governing the evolution of the density-density194

correlation functions for K subpopulations consists of K equations in the195

form of Equation (3.19), and K! equations for the interspecies density-density196

correlation functions, pkl2 (x, y, t).197

This procedure for deriving evolution equations for the density and density-198

density correlation functions can be repeated to yield a hierarchy of N − 1199
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systems of IPDEs and a system of Fokker-Planck equations that govern the200

N -level density. At each level d, where d ∈ [1, N ], the d-density function pd201

depends on the next order, pd+1. This means that the full hierarchy of equa-202

tions is, in general, both analytically and numerically intractable. Therefore,203

we must invoke some approximations to proceed, and we will now discuss two204

different approximations.205

3.1.1 Mean field approximation206

The simplest way to approximate the hierarchy is to truncate it at the first207

level by writing the density-density correlation function in terms of the one-cell208

density functions (Baker and Simpson, 2010),209

plm2 (x, y, t) = pl1(x, t) pm1 (y, t). (3.20)

This approximation, often called the Mean Field Approximation (MFA), im-210

plies that the probability of finding one cell at [x, x+ dx] at time t is indepen-211

dent of the probability of finding another cell at [y, y + dy] at the same time.212

MFA-based equations are, by far, the most popular way to describe collective213

cell migration (Sherratt and Murray, 1990; Painter and Sherratt, 2003; Maini214

et al., 2004).215

We now present MFA equations for the cases relevant to both monoculture216

(K = 1) and co-culture (K = 2) experiments. First, for K = 1, substituting217

Equation (3.20) into Equation (3.10), we obtain218

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇(p1(x, t)V (x, t)), (3.21)

where219

V (x, t) =
∫

Ω
F (x− y) p1(y, t) dy, (3.22)

is the velocity field induced by interactions between cells. Second, for K = 2,220
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the MFA leads to two coupled equations,221

∂p1
1(x, t)

∂t
= D∆p1

1(x, t)− (n1 − 1)∇
(
p1

1(x, t)V 11(x, t)
)

− n2∇
(
p1

1(x, t)V 12(x, t)
)
, (3.23)

∂p2
1(x, t)

∂t
= D∆p2

1(x, t)− (n2 − 1)∇
(
p2

1(x, t)V 22(x, t)
)

− n1∇
(
p2

1(x, t)V 21(x, t)
)
, (3.24)

V lm(x, t) =
∫

Ω
F lm(x− y) pm1 (y, t) dy, (3.25)

where indices l,m = 1, 2.222

3.1.2 Moment dynamics approximation223

A more sophisticated approach is to use a closure relation to write for the224

three-particle correlation function in terms of the two-particle correlation func-225

tion (Baker and Simpson, 2010; Middleton et al., 2014). A commonly-used226

closure relations is the Kirkwood superposition approximation (KSA) (Kirk-227

wood, 1935), which can be written as228

plms
3 (x, y, z, t) =

plm2 (x, y, t) pls2 (x, z, t) pms
2 (y, z, t)

pl1(x, t) pm1 (y, t) ps1(z, t)
, (3.26)

where the subpopulations l, m and s are not necessarily distinct.229

For monoculture experiments with K = 1, the KSA continuum model can be230
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written as231

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇

( ∫
Ω
F (x− y) p2(x, y, t) dy

)
, (3.27)

∂p2(x, y, t)

∂t
= D∆p2(x, y, t)

− ∂

∂x

(
F (x− y) p2(x, y, t)

)
− ∂

∂y

(
F (y − x) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω
F (x− z)

p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− (N − 2)
∂

∂y

∫
Ω
F (y − z)

p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz.

(3.28)

It is useful to note that there is more than one way to solve a problem with232

K = 1 using the KSA framework. One approach would be to solve Equations233

(3.27) and (3.28) simultaneously. However, it is more computationally efficient234

to solve Equation (3.28) to give p2(x, y, t), and then to obtain p1(x, t) by235

numerical integration236

p1(x, t) =
∫

Ω
p2(x, y, t) dy. (3.29)

For co-culture experiments with K = 2, the KSA continuum model can be237

written as238

∂p1
1(x, t)

∂t
= D∆p1

1(x, t)− (n1 − 1)∇
( ∫

Ω
F 11(x− y) p11

2 (x, y, t) dy
)

− n2∇
( ∫

Ω
F 12(x− y) p12

2 (x, y, t) dy
)
, (3.30)

∂p2
1(x, t)

∂t
= D∆p2

1(x, t)− (n2 − 1)∇
( ∫

Ω
F 22(x− y) p22

2 (x, y, t) dy
)

− n1∇
( ∫

Ω
F 21(x− y) p21

2 (x, y, t) dy
)
, (3.31)
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∂p11
2 (x, y, t)

∂t
= D∆p11

2 (x, y, t)

− ∂

∂x

(
F 11(x− y) p11

2 (x, y, t)
)

− ∂

∂y

(
F 11(y − x) p11

2 (x, y, t)
)

− (n1 − 2)
∂

∂x

∫
Ω
F 11(x− z)

p11
2 (x, y, t) p11

2 (x, z, t) p11
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p1
1(z, t)

dz

− (n1 − 2)
∂

∂y

∫
Ω
F 11(y − z)

p11
2 (x, y, t) p11

2 (x, z, t) p11
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p1
1(z, t)

dz

− n2
∂

∂x

∫
Ω
F 12(x− z)

p11
2 (x, y, t) p12

2 (x, z, t) p12
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p2
1(z, t)

dz

− n2
∂

∂y

∫
Ω
F 12(y − z)

p11
2 (x, y, t) p12

2 (x, z, t) p12
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p2
1(z, t)

dz, (3.32)
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∂p22
2 (x, y, t)

∂t
= D∆p22

2 (x, y, t)

− ∂

∂x

(
F 22(x− y) p22

2 (x, y, t)
)

− ∂

∂y

(
F 22(y − x) p22

2 (x, y, t)
)

− (n2 − 2)
∂

∂x

∫
Ω
F 22(x− z)

p22
2 (x, y, t) p22

2 (x, z, t) p22
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p1
1(z, t)

dz

− (n2 − 2)
∂

∂y

∫
Ω
F 22(y − z)

p22
2 (x, y, t) p22

2 (x, z, t) p22
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p1
1(z, t)

dz

− n1
∂

∂x

∫
Ω
F 21(x− z)

p22
2 (x, y, t) p21

2 (x, z, t) p21
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p2
1(z, t)

dz

− n1
∂

∂y

∫
Ω
F 21(y − z)

p22
2 (x, y, t) p21

2 (x, z, t) p21
2 (y, z, t)

p1
1(x, t) p1

1(y, t) p2
1(z, t)

dz, (3.33)
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∂p12
2 (x, y, t)

∂t
= D∆p12

2 (x, y, t)

− ∂

∂x

(
F 12(x− y) p12

2 (x, y, t)
)

− ∂

∂y

(
F 12(y − x) p12

2 (x, y, t)
)

− (n2 − 1)
∂

∂x

∫
Ω
F 12(x− z)

p12
2 (x, y, t) p12

2 (x, z, t) p22
2 (y, z, t)

p1
1(x, t) p2

1(y, t) p2
1(z, t)

dz

− (n1 − 1)
∂

∂x

∫
Ω
F 11(x− z)

p12
2 (x, y, t) p11

2 (x, z, t) p21
2 (y, z, t)

p1
1(x, t) p2

1(y, t) p1
1(z, t)

dz

− (n1 − 1)
∂

∂y

∫
Ω
F 21(y − z)

p12
2 (x, y, t) p11

2 (x, z, t) p21
2 (y, z, t)

p1
1(x, t) p2

1(y, t) p1
1(z, t)

dz

− (n2 − 1)
∂

∂y

∫
Ω
F 22(y − z)

p12
2 (x, y, t) p12

2 (x, z, t) p22
2 (y, z, t)

p1
1(x, t) p2

1(y, t) p2
1(z, t)

dz, (3.34)
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∂p21
2 (x, y, t)

∂t
= D∆p21

2 (x, y, t)

− ∂

∂x

(
F 21(x− y) p21

2 (x, y, t)
)

− ∂

∂y

(
F 21(y − x) p21

2 (x, y, t)
)

− (n1 − 1)
∂

∂y

∫
Ω
F 21(y − z)

p21
2 (x, y, t) p21

2 (x, z, t) p11
2 (y, z, t)

p2
1(x, t) p1

1(y, t) p1
1(z, t)

dz

− (n2 − 1)
∂

∂y

∫
Ω
F 22(y − z)

p21
2 (x, y, t) p22

2 (x, z, t) p12
2 (y, z, t)

p2
1(x, t) p1

1(y, t) p2
1(z, t)

dz

− (n2 − 1)
∂

∂x

∫
Ω
F 12(x− z)

p21
2 (x, y, t) p22

2 (x, z, t) p12
2 (y, z, t)

p2
1(x, t) p1

1(y, t) p2
1(z, t)

dz

− (n1 − 1)
∂

∂x

∫
Ω
F 11(x− z)

p21
2 (x, y, t) p21

2 (x, z, t) p11
2 (y, z, t)

p2
1(x, t) p1

1(y, t) p1
1(z, t)

dz. (3.35)

Again, there are multiple strategies for solving the KSA equations when K = 2. Here, we solve Equations (3.32) and (3.33) to239

give p11
2 (x, y, t) and p22

2 (x, y, t), respectively. Using these results we calculate p1
1(x, t) and p2

1(x, t) by numerical integration, similar240

to Equation (3.29). To obtain p12
2 (x, y, t) and p21

2 (x, y, t), we use p12
2 (x, y, t) = p1

1(x, t)p2
1(y, t) and p21

2 (x, y, t) = p2
1(x, t)p1

1(y, t),241

respectively.242
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Now that we have documented both the MFA and KSA continuum approxima-243

tions for both single species monoculture (K = 1) and two-species co-culture244

(K = 2) experiments, we will now solve these governing equations for both245

cases and compare results with averaged data from discrete simulations.246

3.2 Application to monoculture experiments, K = 1247

We first consider the situation where we have one population of cells, K = 1. In248

all of our numerical results we always fix the diffusivity to be D = 300 µm2h−1
249

(Treloar et al. 2013). To emphasize the importance of non mean-field effects,250

all simulation results in the main paper involve strong adhesion, where f0251

is sufficiently large. This situation is relevant when we apply our model to252

mimic the collective migration of epithelial cells (Treloar et al., 2013). In253

contrast, if the models are applied to deal with the collective migration of254

mesenchymal cells, without significant adhesion (Simpson et al., 2013), then255

additional results in the Supplementary Material document with reduced f0256

are more relevant.257

Since we consider unbiased random forces, we sample ξi from a Gaussian258

distribution with zero mean and zero auto-correlation259 〈
ξi(t)ξj(t

′)
〉

=
2D

∆t
δijδtt′ , (3.36)

which is a white noise limit (Supplementary Material). The variance of ξi is260

given by261

Var(ξi) =
2D

∆t
, (3.37)

where ∆t is the duration of the time step used in the discrete simulations.262

The initial distribution of cells in the monoculture simulations is given by263

α(x) =


0, 0 µm ≤ x < 600 µm,

25× 10−3, 600 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm,

(3.38)

on 0 ≤ x ≤ 2000 µm, which is a typical length scale for an in vitro cell mi-264

gration experiment (Jin et al. 2016). Here, α(x) is a function of position, and265

we sample from this function to define the initial distribution of cells in the266
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discrete simulations. This initial distribution corresponds to a confined group267

of cells in the centre of the domain. When presenting results from simula-268

tions we refer to both the dimensional density of cells, p1(x, t) [cells/µm], as269

well as the non-dimensional density of cells relative to the carrying capacity270

density, p1(x, t)/C, where C is the carrying capacity density that is given by271

C = Nδ/L, where N is the maximum number of cells of diameter δ that272

can be distributed along a domain of length L without compression. Periodic273

boundary conditions are imposed for all simulations.274

To solve the MFA model, we set p1(x, 0) = α(x), and to solve the KSA model,275

we note that since cells are randomly placed according to Equation (3.38),276

there are no spatial correlations in the initial positions of the cells. Therefore,277

the initial conditions for the KSA model are given by p1(x, 0) = α(x) and278

p2(x, y, 0) = α(x)α(y). With this information, Equations (3.21) and (3.28)279

are solved using the method of lines with spatial and temporal discretisations280

chosen to be sufficiently fine that the numerical solutions are grid indepen-281

dent. The discrete model, Equation (2.3), is numerically integrated using a282

fourth order Runge-Kutta (RK4) method (Press et al., 2007) and density dis-283

tributions are obtained by considering a large number of identically prepared284

simulations. Results in Figure 2 compare numerical solutions of the MFA and285

KSA continuum descriptions with averaged data from discrete simulations.286

Snapshots of the discrete simulations are shown in Figure 2(a)-(b). A com-287

parison of the ensemble averaged data and the solution of the MFA and KSA288

models are given in Figure 2(c) and Figure 2(e), respectively. To clearly com-289

pare the performance of the MFA and KSA models near the position of the290

spreading profile, we show a magnified region of the profiles in Figures 2(d)291

and Figure 2(f).292

In summary, we see that both the KSA and MFA models capture the overall293

spreading behaviour of the collective migration reasonably well, as shown in294

Figure 2(c) and Figure 2(e). However, when we examine the performance of295

MFA model more closely, as illustrated in Figure 2(d), we see that the solution296

of the MFA continuum model is not as steep as the discrete density data. In297

contrast, the performance of the KSA model, as shown in Figure 2(f), provides298

an improved match to the averaged discrete data. We now examine the relative299

performance of the MFA and KSA approaches for two multi-species problems.300
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Fig. 2. Comparison of ensemble averages of stochastic simulations and solutions of the MFA and KSA continuum models for a sin-

gle-species population of cells on a one-dimensional domain with 0 ≤ x ≤ 2000 µm. Snapshots in (a)-(b) show 200 realisations of the

discrete model at t = 0 and t = 24 hours, respectively. The population of cells (green) initially occupies the central region, which is

800 µm wide, and has an initial density 25×10−3 cells/µm. Results in (c)-(f) show the cell density profiles obtained using an ensemble of

5× 105 simulations (black dots) with binsize of 10 µm. These results are compared to solutions of the MFA model, Equation (3.21) (red

lines), and the KSA model, Equation (3.28) (blue lines). Profiles are given at t = 0, 6, 12, 18, and 24 h, with the arrows indicating the

direction of increasing t. In (c)-(f) the cell density is reported in terms of the dimensional cell density, p1(x, t), as well as the dimensionless

cell density, p1(x, t)/C, where C = 40× 10−3 cells/µm. Equation (2.3) is integrated with ∆t = 5× 10−2 h, Equation (3.21) is integrated

with ∆x = 4 µm and ∆t = 10−2 h, and Equation (3.28) is integrated with ∆x = ∆y = 4 µm and ∆t = 10−2 h. The remaining parameters

are N = 20, a = 0.08 µm−1, δ = 25 µm, f0 = 0.2 µm/h.
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3.3 Application to co-culture experiments, K = 2301

We now consider the evolution of two types of two-species problems. These two302

problems involve different experimental designs. In both cases we choose the303

size of the cells in subpopulations 1 and 2 to be different. Here, the diameter of304

cells in the first subpopulation is δ1 = 18 µm, and the diameter of cells in the305

second subpopulation is δ2 = 25 µm. We also introduce differing interspecies306

interaction parameters such as the interspecies force amplitude, f 12
0 , shape307

parameter, a12, and the interspecies diameter, δ12, which corresponds to the308

average radius of the different cell types.309

The first experiment involves one population of cells spreading through an-310

other background population of cells, and this mimics the way that an initially311

confined population of tumour cells might spread through surrounding healthy312

tissue (Eves et al. 2003). To specify the initial condition for this problem we313

must describe the initial location of both subpopulations,314

α1(x) =


0, 0 µm ≤ x < 600 µm,

25× 10−3, 600 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm,

(3.39)

315

α2(x) =


10.8× 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

10.8× 10−3, 1400 µm < x ≤ 2000 µm,

(3.40)

where α1(x) is a function of position that describes the initial location of cells316

from the first subpopulation, and α2(x) is a function of position that describes317

the initial location of cells from the second subpopulation. This initial con-318

dition corresponds to the situation where the region 600 ≤ x ≤ 1400 µm is319

relatively densely occupied by subpopulation 1, and the remaining space is less320

densely populated by subpopulation 2. To initialise the discrete simulations321

we sample from α1(x) and α2(x), and snapshots showing 200 realisations of322

discrete model are given in Figure 3(a)-(c) at t = 0, 12 and 24 hours, showing323

how the two subpopulations mix.324

The second experiment that we consider corresponds to two initially adjacent325

subpopulations of cells. The initial location of both subpopulations is given326
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by327

α1(x) =


0, 0 µm ≤ x < 600 µm,

25× 10−3, 600 µm ≤ x < 1000 µm,

0, 1000 µm < x ≤ 2000 µm,

(3.41)

328

α2(x) =


0, 0 µm ≤ x < 1000 µm,

25× 10−3, 1000 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm.

(3.42)

To initialise the discrete simulations we sample from α1(x) and α2(x), and329

snapshots showing 200 realisations of discrete model for the second initial330

condition are given in Figure 5(a)-(c) at t = 0, 12 and 24 hours. Here we see331

that the two subpopulations mix near x = 1000 µm. Furthermore, we also see332

that both subpopulations spread into the initially vacant surrounding regions.333

To obtain continuum results for the two-species problems, the MFA and KSA334

continuum models, given by Equations (3.23)-(3.24) and Equations (3.32)-335

(3.33), respectively, are solved using the method of lines with spatial and336

temporal discretisations chosen to be sufficiently fine that the numerical solu-337

tions are grid independent (Supplementary Material). Results in Figures 3 and338

5 compare the performance of the MFA approach with the averaged discrete339

data. Since these simulations involve significant interaction forces, we see that340

the solution of the MFA model does not always accurately capture the details341

of how the subpopulations spread and interact with each other. Results in342

Figures 4 and 6 compare the performance of the KSA approach with the aver-343

aged discrete data. Comparing the performance of the KSA and MFA models344

confirms that, similar to our results for the single-species problem in Figure345

2, the KSA approach outperforms the MFA model.346

3.4 Parameter sensitivity347

In this section we investigate how the accuracy of the both continuum ap-348

proximations depends on the choice of the model parameters. To explore this349

question we re-examine the results of the first co-culture experiment, as il-350

lustrated in Figures 3–4, and we quantify how the accuracy of the KSA and351

MFA continuum models depends on the strength of adhesion and the ratio352
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Fig. 3. Comparison of ensemble averages of stochastic simulations and solutions of the MFA continuum model, given by Equations

(3.23)-(3.24), for a two-species population of cells on a one-dimensional domain with 0 ≤ x ≤ 2000 µm. Snapshots in (a)-(c) show 200

realisations of the discrete model at t = 0, 12, and 24 hours, respectively. Subpopulation 1 (orange) initially occupies the central region

at a density of 25× 10−3 cells/µm, and subpopulation 2 (green) initially occupies two outer regions at a density of 10.8× 10−3 cells/µm.

Results in (d)-(i) show the density profiles obtained using an ensemble of 5 × 105 simulations (black dots) with binsize of 10 µm, and

the solutions of the MFA model (red lines) at t = 0, 6, 12, 18 and 24 h, with the arrows indicating the direction of increasing t. Results

in (d)-(i) are shown in terms of the total population density, the density of subpopulation 1, and the density of subpopulation 2, as

indicated. Density profiles are reported in terms of the dimensional cell densities, p1
1(x, t) and p2

1(x, t), as well as the dimensionless cell

densities, p1
1(x, t)/C1 and p2

1(x, t)/C2, where C1 = 55.5 × 10−3 cells/µm, C2 = 40 × 10−3 cells/µm. The MFA model is integrated with

∆x = 4 µm and ∆t = 5 × 10−3 h. The remaining parameters are n1 = 20, n2 = 13, a1 = 0.08 µm−1, a2 = 0.06 µm−1, a12 = 0.07 µm−1,

δ1 = 18 µm, δ2 = 25 µm, δ12 = 21.5 µm, f11
0 = 1.5 µm/h, f22

0 = 1 µm/h, f12
0 = 1.25 µm/h.
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Fig. 4. Comparison of ensemble averages of stochastic simulations and solutions of the KSA continuum model, given by Equations

(3.32)-(3.33), for a two-species population of cells on a one-dimensional domain with 0 ≤ x ≤ 2000 µm. Snapshots in (a)-(c) show 200

realisations of the discrete model at t = 0, 12, and 24 hours, respectively. Subpopulation 1 (orange) initially occupies the central region

at a density of 25×10−3 cells/µm, and subpopultation 2 (green) initially occupies two outer regions at a density of 10.8×10−3 cells/µm.

Results in (d)-(i) show the density profiles obtained using an ensemble of 5 × 105 simulations (black dots) with binsize of 10 µm, and

the solutions of the KSA model (red lines) at t = 0, 6, 12, 18 and 24 h, with the arrows indicating the direction of increasing t. Results

in (d)-(i) are shown in terms of the total population density, the density of subpopulation 1 and the density of subpopulation 2, as

indicated. Density profiles are reported in terms of the dimensional cell densities, p1
1(x, t) and p2

1(x, t), as well as the dimensionless

cell densities, p1
1(x, t)/C1 and p2

1(x, t)/C2, where C1 = 55.5 × 10−3 cells/µm, C2 = 40 × 10−3 cells/µm. The KSA model is integrated

with ∆x = ∆y = 4 µm and ∆t = 5 × 10−3 h. The remaining parameters are n1 = 20, n2 = 13, a1 = 0.08 µm−1, a2 = 0.06 µm−1,

a12 = 0.07 µm−1, δ1 = 18 µm, δ2 = 25 µm, δ12 = 21.5 µm, f11
0 = 1.5 µm/h, f22

0 = 1 µm/h, f12
0 = 1.25 µm/h.
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Fig. 5. Comparison of ensemble averages of stochastic simulations and solution of the MFA continuum model, given by Equations

(3.23)-(3.24), for a two-species population of cells on a one-dimensional domain with 0 ≤ x ≤ 2000 µm. Snapshots in (a)-(c) show 200

realisations of the discrete model at t = 0, 12, and 24 hours, respectively. Subpopulations 1 (green) and 2 (orange) initially occupy

adjacent regions at a density of 25 × 10−3 cells/µm. Results in (d)-(i) show the density profiles obtained using an ensemble of 5 × 105

simulations (black dots) with binsize of 10 µm, and the solutions of the MFA model (red lines) at t = 0, 6, 12, 18 and 24 h, with the arrows

indicating the direction of increasing t. Results in (d)-(i) are shown in terms of the total population density, the density of subpopulation

1 and the density of subpopulation 2, as indicated. Density profiles are reported in terms of the dimensional cell densities, p1
1(x, t) and

p2
1(x, t), as well as the dimensionless cell densities, p1

1(x, t)/C1 and p2
1(x, t)/C2, where C1 = 40×10−3 cells/µm, C2 = 55.5×10−3 cells/µm.

The MFA model is integrated with ∆x = 4 µm and ∆t = 5× 10−3 h. The remaining parameters are n1 = 10, n2 = 10, a1 = 0.06 µm−1,

a2 = 0.08 µm−1, a12 = 0.07 µm−1, δ1 = 25 µm, δ2 = 18 µm, δ12 = 21.5 µm, f11
0 = 1.5 µm/h, f22

0 = 2 µm/h, f12
0 = 1.75 µm/h.
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Fig. 6. Comparison of ensemble averages of stochastic simulations and solutions of the KSA continuum model, given by Equations

(3.32)-(3.33), for a two-species population of cells on a one-dimensional domain with 0 ≤ x ≤ 2000 µm. Snapshots in (a)-(c) show 200

realisations of the discrete model at t = 0, 12, and 24 hours, respectively. Subpopulations 1 (green) and 2 (orange) initially occupy

adjacent regions at a density of 25 × 10−3 cells/µm. Results in (d)-(i) show the density profiles obtained using an ensemble of 5 × 105

simulations (black dots) with binsize of 10 µm, and the solutions of the KSA Equations (blue lines) at t = 0, 6, 12, 18 and 24 h, with

the arrows indicating the direction of increasing t. Results in (d)-(i) are shown in terms of the total population density, the density

of subpopulation 1 and the density of subpopulation 2, as indicated. Density profiles are reported in terms of the dimensional cell

densities, p1
1(x, t) and p2

1(x, t), as well as the dimensionless cell densities, p1
1(x, t)/C1 and p2

1(x, t)/C2, where C1 = 40 × 10−3 cells/µm,

C2 = 55.5 × 10−3 cells/µm. The KSA model is integrated with ∆x = ∆y = 4 µm and ∆t = 5 × 10−3 h. The remaining parameters

are n1 = 10, n2 = 10, a1 = 0.06 µm−1, a2 = 0.08 µm−1, a12 = 0.07 µm−1, δ1 = 25 µm, δ2 = 18 µm, δ12 = 21.5 µm, f11
0 = 1.5 µm/h,

f22
0 = 2 µm/h, f12

0 = 1.75 µm/h.
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of the two cell sizes in the co-culture experiment. To explore this we repeat353

the discrete simulations and vary the force amplitude f 11
0 , which determines354

strength of the cell-to-cell adhesion, as well as varying the ratio δ1/δ2. To355

keep our analysis as straightforward as possible, we vary these two quantities356

separately.357

To quantify the accuracy of both the MFA and KSA continuum approxima-358

tions we define the following quantities,359

EMFA(t) =
1

I

I∑
i=1

[SMFA(i, t)− Sdiscrete(i, t)]
2, (3.43)

EKSA(t) =
1

I

I∑
i=1

[SKSA(i, t)− Sdiscrete(i, t)]
2, (3.44)

where EMFA(t) and EKSA(t) indicate mean squared error associated with the360

MFA and KSA approximations, respectively. The index i denotes the spatial361

node, and I = 200 is the total number of spatial nodes across the domain.362

To construct these mean squared errors we compare the total density profiles363

so that SMFA(i, t) = p1
1(i, t) + p2

1(i, t) is the total population density predicted364

by the MFA continuum approximation, SKSA(i, t) = p1
1(i, t) + p2

1(i, t) is the365

total population density predicted by the KSA continuum approximation, and366

Sdiscrete(i, t) = p1
1(i, t) + p2

1(i, t) is the total population density obtained by367

considering an ensemble average of the discrete model.368

Results in Figure 7 show EMFA(t) and EKSA(t) as a function of δ1/δ2 and f 11
0 .369

The vertical lines correspond to choices of δ1/δ2 and f 11
0 that are identical to370

the parameter values used to construct the results in Figures 3-4. Overall, the371

results in Figure 7 show three main trends: (i) for all parameter choices consid-372

ered in the sensitivity analysis, the KSA approximation outperforms the MFA373

approximation; (ii) the accuracy of both the MFA and KSA approximations374

decrease with both δ1/δ2 and f 11
0 ; and (iii) the accuracy of both the MFA and375

KSA approximations is more sensitive to changes in δ1/δ2 than changes in f 11
0376

for the range of parameters considered.377
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Fig. 7. (a) Comparison of the accuracy of the MFA and KSA continuum approxi-

mations as a function of δ1/δ2 at time t = 24 h for the first co-culture experiment.

All results in (a) correspond to δ2 = 25µm, and the ratio δ1/δ2 is varied by altering

δ1. (b) Comparison of the accuracy of the MFA and KSA continuum approxima-

tions as a function of f11
0 at time t = 24 h for the first co-culture experiment. All

data in (b) correspond to a fixed choice of f22
0 = 1.0µm/h. Both subfigures show

EMFA(t) (red dots) and EKSA(t) (blue dots), and the dashed vertical line indicates

the parameter values presented previously in Figures 3-4. All continuum models are

solved numerically with ∆x = 4µm and ∆t = 5× 10−3 h.

4 Conclusions378

In this work, we develop a discrete multi-species model of collective cell migra-379

tion. Our framework is very general, and can deal with genuine multi-species380

problems where the subpopulations are distinct (Eves et al., 2003), as well381

as other types of experiments where an otherwise identical subpopulation of382

cells is labelled (Simpson et al., 2007). Our discrete modelling framework can383

include various effects such as: random unbiased stochastic motion of individ-384

ual cells; short range finite size effects to account for crowding interactions;385

longer range adhesive forces; as well as dealing with subpopulations of cells386

that have different cell diameters.387

To analyse the discrete model, we derive a hierarchy of continuum moment388

equations to describe the spatial dynamics of agents, pairs of agents, triplets389

of agents, and so forth. We then develop two different approximate solutions390

of the hierarchy of moment equations. Firstly, using the MFA, and secondly,391
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using the KSA. We compare both continuum approximations with ensemble392

averages from discrete simulations.393

Overall, both continuum approximations match the broad features of the dis-394

crete results reasonably well. When there is little or no adhesion, both contin-395

uum models match the averaged discrete results extremely well. However, once396

the adhesive force is sufficiently strong, the KSA continuum model matches397

the averaged discrete results much better than MFA model. This difference398

is the consequence of adhesion causing correlations in the positions of agents399

in the discrete simulations (Baker and Simpson, 2010). These effects are ne-400

glected in the MFA model, however the KSA model explicitly includes the401

effects of pairwise correlations, p2(x, y, t).402

There are many potential extensions which we leave for future analysis. All403

our analysis has been in one dimension, but many biological experiments are404

in two or three dimensions (Treloar et al., 2013; Eves et al., 2003). It is rela-405

tively straightforward to apply our continuum models to higher dimensional406

problems, however we choose to take the most fundamental approach here407

and focus on one dimension only. As it stands, isolated individual cells in408

our discrete model move due to unbiased random motion. However, in many409

applications cells move with a bias, such as in chemotaxis (Keller and Segel,410

1971). To extend our model to deal with chemotaxis we would need to intro-411

duce an evolution equation for some kind of nutrient, and to allow individual412

cells to move with some bias in response to the spatial gradient of the nutrient413

(Keller and Segel, 1971). We also note that all non-MFA results are obtained414

by approximately closing the system of continuum equations using the KSA,415

however other kinds of closure relations could also be used (Murrell et al.,416

2004; Frasca and Sharkey, 2016).417
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