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Abstract

A recent stream of alarming publications questions the validity of published neu-
roimaging findings. As a consequence, fMRI teams worldwide are encouraged to
increase their sample sizes to reach higher power and thus increase the positive
predictive value of their findings. However, an often-overlooked factor influenc-
ing power is the experimental design: by choosing the appropriate experimental
design, the statistical power of a study can be increased within subjects. By
optimizing the order and timing of the stimuli, power can be gained at no extra
cost. To facilitate design optimization, we created a python package and web-
based tool called Neurodesign to maximize the detection power or estimation
efficiency within subjects, while controlling for psychological factors such as the
predictability of the design. We implemented the genetic algorithm, introduced
by Wager and Nichols (2003) and further improved by Kao et al. (2009), to op-
timize the experimental design. The toolbox allows more complex experimental
setups than existing toolboxes, while the GUI provides a more user-friendly
experience. The toolbox is accessible online at www.neuropowertools.org.

1 Introduction

A recent stream of alarming publications questions the validity of published
neuroimaging findings (Eklund et al., 2016; Ioannidis, 2005; Open Science Col-
laboration, 2015). At the core of the reproducibility crisis is the lack of power
typically observed in neuroimaging Button et al. (2013), and more specifically,
fMRI studies (Durnez et al., 2014). The signal measured in fMRI is known to
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be very noisy, while the hypothesised effects are small, such that a push for
larger sample sizes promises a more powerful future for neuroimaging. Different
power analysis strategies offer a way to optimise the sample size for a specific
power level (Durnez et al., 2014; Mumford and Nichols, 2008; Hayasaka et al.,
2007; Durnez et al., 2016). However, fMRI data are typically acquired and ag-
gregated on two levels: within and between subjects. As such, increasing the
power of an fMRI experiment can be achieved by increasing the number of sub-
jects, but also via the within subjects experimental design. This is especially
true for smaller and more subtle effects, where the power curve is characterised
by a slower increase, and thus the resulting power is more affected by the num-
ber of subjects and the number of time points. In addition to the duration of
the experiment for each subject, the order and timing of different conditions
within the experiment also influence the power of the resulting analyses. The
goal in task fMRI experiments is often one of two: detection or estimation.
Detection refers to detecting the difference in brain activation between condi-
tions or groups, while estimation relates to estimating the exact shape of the
evoked fMRI response (called the haemodynamic response function, HRF). Ide-
ally, the design of an fMRI experiment changes according to the specific research
question asked. An optimal design with respect to these two distinct research
questions are said to maximize the detection power or the estimation efficiency
respectively. It is often argued that those two goals are opposite and an increase
in detection power inevitably leads to a decrease of estimation efficiency. For
example, when two trials of the same condition follow each other closely, the
signal tends to accumulate linearly (Dale, 1999), which makes it easier to de-
tect. Therefore, the experiments often consist of blocks of the same condition.
This type of design is called a blocked design. On the contrary, the accumu-
lation (and saturation) of the measured signal conceals the shape of the HRF.
To estimate the HRF, scientists often opt for an event-related design, where
both the timing and order of conditions are randomised. However, Kao et al.
(2009) show that the necessary trade-off between detection and estimation can
be improved using certain optimisation algorithms. Another important aspect
in an fMRI design is the psychological experience of the subject in the scanner.
With a blocked design, the design becomes very predictable for subjects which
can potentially bias the psychological function hypothesised in the first place.
To minimise the predictability, Buracas and Boynton (2002) propose the use of
m-sequences. Very often, the best design is a combination of a maximal signal
with low predictability. Therefore, Wager and Nichols (2003) suggest the use of
a genetic algorithm to find an optimisation between estimation efficiency, de-
tection power and predictability. This algorithm optimises a weighted average
of different outcome measures, with the weights depending on the hypothesis
and the expected outcome of the experiment. Later, the algorithm has been
further fine tuned and compared with other approaches (Kao et al., 2009). In
this paper, we present an implementation of the genetic algorithm for fMRI
designs, which is both available as a python module as well as a GUI web tool,
available at www.neuropowertools.org. The paper is structured as follows: we
start with a general description of the methodology in section 2. We show how
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designs can be compared and optimised using our python module in Section 3.
An overview of the GUI is given in Section 4. Finally, we conclude and compare
to other existing software in Section 5.

2 Design optimisation using the genetic algo-
rithm

2.1 Statistical measures of design optimality

The signal measured using fMRI is the blood oxygen level dependent (BOLD)
signal, which is a assumed to be related to the neural signal via convolution
with a hemodynamic response function (HRF). We consider the general linear
model as the underlying model for the statistical objective:

Y = Xβ + ε, ε ∼ N(0, σ).

We denote Y as the measured signal. Z represents the design matrix, β is
the response amplitude for each column/condition in X and ε the error. We
consider two types of design matrices X: the convolved model and the finite
impulse response (FIR) model. Figure 1 shows an example of both models. The
first model aims to estimate the amplitude of the signal, while the goal of the
latter is estimating the exact shape of the HRF.

Often, researchers are interested in specific hypotheses concerning particular
combinations of parameters. The parameter of interest can be estimated using
the least squares estimator:

β̂c = c′(X ′X)−1X ′Y,

and its variance,

V ar(β̂c) = σ2c(X ′X)−1c′,

with c the contrast vector of interest. To account for the specific character
of fMRI data, we alter the model slightly. Because fMRI timeseries data exhibit
substantial temporal autocorrelation, the data are assumed to follow the co-
variance matrix V , where off-diagonal values represent the correlation between
measurements at different time points. Furthermore, a regressor S, representing
low-frequency noise components, is added to the model (see Kao et al. (2009)
for detailed derivations). The resulting variance of the estimator becomes:

V ar(β̂c) = σ2c(X ′WX)−1c′,

with W = V − V S′(SV S′)−1SV . An optimal experimental design with
respect to the estimator minimises the variance of the estimator. We will there-
fore quantify the optimality of the design as c(X ′WX)−1c′. Most often, an
fMRI experiment has multiple contrasts of interest, c(X ′WX)−1c′ becomes a
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Figure 1: An experimental fMRI design with one stimulus type and two com-
mon models used in the GLM when modeling the resulting BOLD signal. The
first panel shows the timeseries of the stimulus onsets. The second panel shows
the stimulus onsets convolved with the double-gamma HRF, which can be in-
terpreted as the expected BOLD signal if the measurement is related to the
task. The parameter β in equation 1 with this model represents the amplitude
of the signal related to the task.The third panel shows the FIR model, with
each regressor a shifted version of the stimulus onsets. The β-parameters repre-
sent the amplitude of the HRF at specific time points following stimulus onset.
Units on the x-axis are seconds. Units on the y-axis are removed, as these are
meaningless and often rescaled to have unit height.
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square matrix. With rc the number of contrasts, there are two common ways
to quantify the optimality of the design:

F = rc/trace(C(X ′WX)−1C ′)for A optimality

F = det(C(X ′WX)−1C ′)−1/rc for D optimality

We denote Fe as the estimation efficiency if X is a FIR, and Fd as the
detection power if X is a convolved design matrix.

2.2 Psychological measures of design optimality

Apart from the statistical concept of design efficiency, it is important to account
for psychological factors that might render the experimental design invalid. The
most important factor is predictability. For example in experiments addressing
cognitive control, such as a stop-signal task, it is of the utmost importance that
the trial type on any given trial cannot be easily predicted from the trial type
on the previous trial, to avoid psychological confounding of the experiment. We
quantify the optimality of the design in terms of confounding as:

Fc =
R∑

r=1

Q∑
i=1

Q∑
j=1

nrij − (n− r)PiPj ,

where nrij is the number of trials of type i at timepoint t preceding a trial
of type j at timepoint t + r. Pi is the proportion that trial should occur in
the experiment. If Fc = 0, there are no unforeseen contingencies between trial
types. The final optimality criterion controls the desired trial type frequencies:
Ff =

∑Q
i=1 |ni − nPi|, with ni the number of trials of type i.

2.3 Multi-objective criterion

To ensure comparability across different optimality criteria, we first rescale the
the different optimality criterion to a scale of 0 to 1 as in Kao et al. (2009).
To find the maximum Fd and Fe possible, we first run an optimisation with
weights 1 for respectively Fd and Fe and weights 0 for the other optimality
criteria. In the multi-objective criterion, the Fd and Fe scores are divided by
their respective maximum to ensure scores between 0 and 1. For Ff and Fc,
the score for the worst possible design (a design with only the least probable
stimulus) is taken as the maximum score. Second, whereas larger Fe and Fd

represent better design, the opposite is true for Fc and Ff . Therefore the scores
for Fc and Ff are subtracted from 1. As such, the resulting optimality criteria
can be written as
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Figure 2: Graphical representation of the genetic algorithm. The examples in
each step are pieces of experimental designs with 3 different trial types. In the
example, the inter-trial interval is ignored.

F ∗i =
Fi

max(Fi)
, i = d, e;

= 1− Fi

max(Fi)
, i = c, f ;

As no design can ensure optimality in all four optimality criteria, the goal
of any design optimisation depends on the researcher’s goal of the experiment.
Given prespecified weights wi with i = c, d, e, f,

∑
i wi = 1, wi ≥ 0, we define

the weighted optimality criterion as: F∗ = wcFc + wdFd + weFe + wfFf .

2.4 Genetic algorithm

A genetic algorithm is a method for solving optimisation problems inspired by
natural selection in biological evolution. Contrary to classical optimisation algo-
rithms, a genetic algorithm generates a population of points at each iteration. A
graphic representation of the genetic algorithm with an fMRI example is shown
in Figure 2. The steps of the genetic algorithm are.

1. Create G initial designs.
2. Crossover. Pair the best G/2 designs with each other.
3. Mutation. Randomly switch q% of all trials by random trial types.
4. Immigration. Add new random designs to the population.
5. Natural selection. Compute optimality scores and select G best designs
6. Repeat step 2-5 until a stopping rule is met.

3 Neurodesign, python module

3.1 Installation

NeuroDesign is available on PyPi and can be installed as:
pip install neurodesign

Next, we will give an introduction to the python module. For all function-
ality, please refer to the manual.
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Figure 3: The basic layout of an experimental trial

3.2 Specifying the characteristics of the experiment

In a first step, the experiment should be described in the class called exper-
iment. This contains general information, such as the number of stimuli and
the duration of the experiment, but also more specific information, such as the
model with which the inter trial intervals (ITI) are sampled. This function will
generate the assumed covariance matrix, the drift function and the whitening
matrix. All parameters are described in Table 1, while a graphical representa-
tion of components of an experiment are described in Figure 3. We define a
simple experimental setup with 20 trials and 3 conditions, which we will use to
exemplify the next functions:

from neurodesign import geneticalgorithm

EXP = geneticalgorithm.experiment(

TR=1.2,

n_trials=20,

P = [0.3,0.3,0.4],

C = [[1,-1,0],[0,1,-1]],

n_stimuli = 3,

rho = 0.3,

stim_duration=1,

ITImodel = ’uniform’,

ITImin = 2,

ITImax=4

)

3.3 Generating a design matrix

Within the defined experimental setup, we can now define a design matrix, de-
velop the design matrix and compute the optimality scores using the class de-
sign. We use equal weights for the different optimality criteria for the weighted
average optimality attribute. The only input required is the stimulus order, the
ITI’s and an object of class geneticalgorithm.experiment:
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TR The repetition time of the scanner.
n stimuli The number of different stimulus types or conditions.
P The probabilities of each stimulus type.
C The contrast matrix.
rho The assumed autocorrelation coefficient
n trials The number of trials in the experiment. Either specify n trials or

duration
duration The total duration (seconds) of the experiment. Either specify

duration or n trials
resolution (default = 0.1) The resolution of the design matrix
t pre (default = 0) Duration (seconds) of the trial before the stimulus presentation

(eg. fixation cross)
stim duration The duration (seconds) of the stimulus.
t post (default = 0) Duration (seconds) of the trial after the stimulus presentation.
maxrep (default = None) The maximum number of times a stimulus is repeated consecu-

tively.
hardprob (default = False) True if the probabilities should be exactly the same as in P.
restnum (default = 0) The number of trials between rest blocks
restdur (default = 0) The duration (seconds) of a rest block
ITImodel Which ITI model to sample from. Possibilities: ’fixed’, ’uniform’

or ’exponential’
ITImin The minimum ITI (used with ’uniform’ or ’exponential’ ITImodel)
ITImean The mean ITI (used with ’fixed’ or ’exponential’ ITImodel)
ITImax The max ITI (used with ’uniform’ or ’exponential’ ITImodel)
confoundorder (default = 3) The order to which confounding is controlled

Table 1: Arguments for object of class geneticalgorithm.experiment
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from neurodesign import geneticalgorithm

DES1 = geneticalgorithm.design(

order = [0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1],

ITI = [2]*20,

experiment=EXP

)

DES1.designmatrix(); DES1.FCalc(weights=[0.25,0.25,0.25,0.25])

Now using matplotlib, we can plot the convolved design matrix:

import matplotlib.pyplot as plt

plt.plot(DES1.Xconv)

0 10 20 30 40 50 60 70
0.05

0.00

0.05

0.10

0.15

0.20

0.25

We can now define a new design and compare both designs:

DES2 = geneticalgorithm.design(

order = [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1],

ITI = [2]*20,

experiment=EXP

)

DES2.designmatrix(); DES2.FCalc(weights=[0.25,0.25,0.25,0.25])

print("Ff of Design 1: "+str(DES1.Ff))

print("Ff of Design 2: "+str(DES2.Ff))

print("Fd of Design 1: "+str(DES1.Fd))

print("Fd of Design 2: "+str(DES2.Fd))

Ff of Design 1: 0.857142857143

Ff of Design 2: 0.428571428571

Fd of Design 1: 0.0870022296147

Fd of Design 2: 0.69476511364

As the second design ignores the presence of the third condition, the fre-
quency optimality (Ff ) is much worse. However, the blocked character of the
design largely improves the detection power. The principles of the genetic algo-
rithm, such as crossover, can be applied to the designs:
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DES3,DES4 = DES1.crossover(DES2,seed=2000)

DES3.order

[0, 1, 2, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

DES4.order

[0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1]

3.4 Optimal design using the genetic algorithm

To use the genetic algorithm to find the optimal design, we use the genetical-
gorithm.population class, to denote the population of possible designs. All
parameters are described in Table 2.

POP = geneticalgorithm.population(

experiment=EXP,

weights=[0,0.5,0.25,0.25],

preruncycles = 10000,

cycles = 10000,

folder = "./",

seed=100

)

POP.naturalselection()

4 Neurodesign: the GUI

To make the methods more publicly available, we have created a graphic user
interface running in a web-application. The back-end of the application is writ-
ten in python and uses the python module neurodesign described above, the
front-end is generated using django, and the application is deployed through a
multi-container docker environment on Amazon Web Services.

There are 5 crucial windows of the GUI: main input, contrasts and probabil-
ities, review, console and settings. A part of the main input window is shown in
Figure 4, which has fields for most parameters from Table 1. Only the param-
eters P and C are asked in the second window (’Contrasts and probabilities’).
The review window shows all parameters and also prints out the default set-
tings for the genetic algorithm. These parameters, presented in Table 2, can
be adjusted in the settings window. The console allows for the optimizations
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experiment The experimental setup of the fMRI experiment (of class neurode-
sign.experiment)

G (default = 20) The size of each generation
R (default = [0.4,0.4,0.2]) The rate with which the orders are generated from (a) blocked

designs, (b) random designs and (c) m-sequences
q (default = 0.01) The percentage of mutations in each generation
weights The weights attached to [Fe, Fd, Ff , Fc]
I (default = 4) The number of immigrants in each generation
preruncycles The number of pre-run cycles to find the maximum value of Fe

and Fd

cycles The number of cycles in the optimisation
seed The random seed for the optimisation
Aoptimality (default = True) Optimises A-optimality if true, else D-optimality
convergence (default = 1000) After how many stable iterations is there convergence
folder The local folder to save the output
outdes (default = 3) The number of designs to be saved

Table 2: Arguments for object of class geneticalgorithm.population

to be started, stopped and followed. When a design optimization is started,
the user receives an email with a link to the console where the optimization
can be followed (Figure 5). Once the optimization is finished, a zip file can be
downloaded containing a chosen number of designs. Each design contains the
onsets for each stimulus, a report with design diagnostics (such as collinearity
among regressors, see Figure 3), and a script. The script can be used for future
reference, or for regenerating the designs locally.

5 Discussion

5.1 Default settings

Both the initialisation of the experiment, represented by the class experiment
in the python module and the main input window in the GUI, and the genetic
algorithm, represented by the class population in the python module and the
settings window in the GUI, have some default settings. The default settings
of the python module, shown in Tables 1 and 2, are optimised for a good opti-
misation, while the GUI’s default settings are optimised for short optimisation
duration. While the default settings for the GUI can lead to a sub-optimal de-
sign, the user is warned (with a big red textblock at the top of the page) that the
settings should be changed if the results will be used for a good optimisation.
We have chosen these sub-optimal defaults for the GUI to provide a fast run
through for first time users, as well as to avoid memory and CPU overload on
the server end. For the experiment, we assume a priori that there are no rest
blocks and that the trial only consists of stimulation (no fixation cross etc.).
There is by default no limit on the maximum number of times a stimulus can be
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Figure 4: Part of the input window for the GUI.
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Figure 5: Screenshot of the console where the optimisation can be followed.
Every 10 generations, the design is updated with the latest score and the best
design.
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Figure 6: Screenshot of the report describing the optimisation and the best 3
designs from the optimisation.
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repeated, and the stimulus frequency is not controlled with a hard limit. The
default resolution in the python module is 0.1 seconds, while in the GUI it is
0.25 seconds. For the genetic algorithm, the default settings are as follows. The
optimisation calculates the A-optimality. In each generation, the percentage of
mutations is 1%, the number of immigrants is 4 designs and the size of each
generation is 20 designs. When generating new designs, there are 40% blocked
designs, 40% random designs and 20% m-sequences. Convergence is reached
when the score is stable for 1000 generations. There are no default settings
on the number of cycles in the python module, while the GUI runs by default
10 cycles to find the maximum Fd and Fe and 100 cycles for the optimisation
(again with a clear message that this should be increased for optimal results).

5.2 Reproducibility

In line with the recent effort to make neuroimaging research fully reproducible,
this application makes it possible to track the exact source of each design. Low
level reproducibility is provided by making a script available for download with
which the optimisation can be regenerated. Running this script in python, given
that the required libraries are installed, will repeat the analysis. However, this
script will repeat the analysis but does not guarantee the same results as the
specific configuration of the computer on which the analysis is run can influence
the results.

Higher level reproducibility, that guarantees replicability not only of the
analysis but also of the results, is possible with the use of docker containers,
which is a small piece of software that emulates a given computational configura-
tion (operating system, libraries, python packages,...). Based on the model pre-
sented by BIDS-apps (Gorgolewski et al., 2016), our analyses run in docker con-
tainers that are open-source and available for download at https://hub.docker.com/r/neuropower/neuropower/.
Running the following command in a terminal will replicate the analysis that
has been performed through the GUI.

docker run -v /location_where_the_script_is/:/local \\

-it neuropower/neuropower python /local/name_of_the_script.py

This use of docker containers is not only well suited for reproducibility of
the GUI, but also allows the replication of results from a python script (given
that a random seed is set).

6 Conclusion

We present a toolbox for optimizing fMRI designs. The toolbox is an extension
of currently available toolboxes, allowing for more complex design and better
control and optimization of timing of stimuli. The toolbox is available through
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different modalities: a user-friendly GUI accessible at www.neuropowertools.org
and a python package. The code is available on www.github.com/users/neuropower.
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