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Abstract 

New genes, with novel protein functions, can evolve “from scratch” out of intergenic sequences. 

These de novo genes can integrate the cell's genetic network and drive important phenotypic innovations. 

Therefore, identifying de novo genes and understanding how the transition from noncoding to coding 

occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, 

hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated 

protein coding genes. To overcome these limitations, we developed a procedure that handles the usual 

pitfalls in de novo gene identification and predicted the emergence of 703 de novo genes in 15 yeast 

species from two genera whose phylogeny spans at least 100 million years of evolution. We established 

that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately 

maintained by selection. We validated 82 candidates, by providing new translation evidence for 25 of 

them through mass spectrometry experiments. We also unambiguously identified the mutations that 

enabled the transition from non-coding to coding for 30 Saccharomyces de novo genes. We found that de 

novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the 

probability of finding a fortuitous and transcribed ORF is the highest. We found a more than 3-fold 

enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, 

suggesting that meiotic recombination would be a major driving force of de novo gene emergence in 

yeasts.  

Introduction 

How new genes originate is a fundamental question in evolution. The mechanism of gene 

acquisition by de novo emergence from previously non-coding sequences, has long been considered as 

highly improbable (Jacob 1977; Kaessmann 2010). New genes were assumed to appear mostly from 

previously existing coding sequences, through duplication and divergence (Ohno 1970), horizontal 

transfer (Lerat et al. 2005), or through chimerism, see (Long et al. 2003; Bornberg-Bauer et al. 2010; 

Kaessmann 2010; Andersson et al. 2015) for reviews. However, for the last decade, a handful of de novo 

genes have been functionally characterized in all eukaryotic lineages, exemplifying their contribution to 

evolutionary innovations and their integration into central cellular functions (Begun et al. 2006; Levine et 

al. 2006; Begun et al. 2007; Zhou et al. 2008; Cai et al. 2008; Knowles and McLysaght 2009; Li et al. 

2010) and (Wu and Zhang 2013; McLysaght and Guerzoni 2015).  

By definition, a de novo gene that emerged in a given genome is taxonomically restricted to that 

single species or, if it originated before speciation, to a group of closely related species. However, 

Taxonomically Restricted Genes (TRG) also include highly diverged homologs, horizontally acquired 

genes from yet unsampled species and dubious Open Reading Frames (ORF) erroneously annotated as 
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protein coding genes (Khalturin et al. 2009; Tautz and Domazet-Lošo 2011). Conservative approaches 

used in the first case studies excluded all genes that had homologs, even in closely related species, and 

restricted the de novo candidates to the genes for which enabling mutations could be retraced from the 

ancestral non-coding sequence (Begun et al. 2006; Levine et al. 2006; Begun et al. 2007; Zhou et al. 

2008; Cai et al. 2008; Knowles and McLysaght 2009; Li et al. 2010). By contrast, large-scale approaches 

either considered all TRG as de novo genes (Carvunis et al. 2011, Neme and Tautz, 2013, Abrusan 2013), 

or classified TRG based on their probable origin (Donoghue et al. 2011). The issue of false positive TRG 

detection is therefore problematic, resulting in gene age underestimation, a matter still being debated 

(Moyers and Zhang 2014 Oct 13; McLysaght and Hurst 2016; Moyers and Zhang 2016; Domazet-Lošo et 

al. 2017; Moyers and Zhang 2017). Therefore, the quantitative importance of de novo gene emergence 

and their evolutionary dynamics remain poorly understood.  

Another open question in the field of gene origination is how DNA sequences undergo transition 

from noncoding to coding. In order for that to happen, the non-coding region needs to gain two 

properties: first, become an ORF and then being transcribed, or the other way round. The resulting mRNA 

molecule must be translated and the protein must enter into the cellular metabolism (Bornberg-Bauer et 

al. 2015; McLysaght and Guerzoni 2015; Schlötterer 2015). The RNA-first model, in which the formation 

of an ORF occurs in a region that is already transcriptionally active, is supported by previous reports on 

de novo genes (Cai et al. 2008; Zhou et al. 2008) and by both pervasive transcription (Nagalakshmi et al. 

2008; Djebali et al. 2012; Ruiz-Orera et al. 2014; Neme and Tautz 2016) and pervasive translation 

(Wilson and Masel 2011; Ingolia et al. 2014; Ji et al. 2015). Furthermore, the onset of transcription can be 

favored by pre-existing regulatory sequences (Knowles and McLysaght 2009; Siepel 2009) and notably 

by divergent transcription from bidirectional promoters (Core et al. 2008; Neil et al. 2009) which were 

shown to facilitate new gene origination (Gotea et al. 2013; Neme and Tautz 2013; Wu and Sharp 2013). 

However, this is not always necessary, as potentially coding de novo transcripts are not systematically 

enriched in bidirectional promoters in humans (Ruiz-Orera et al. 2015), nor in Drosophila, where it has 

been shown that regulatory regions can also emerge de novo, along with new genes (Zhao et al. 2014). 

Whether every noncoding sequence in a genome has the potential to evolve into a protein-coding 

gene is another crucial point of interest. In the continuum hypothesis, de novo gene birth is a gradual 

maturation process, from a pool of random non-coding sequences to fully mature genes (Carvunis et al. 

2011), while in the preadaptation hypothesis, de novo genes emerge by a non-gradual process, only within 

pre-adapted genomic regions, that harbor gene-like characteristics (Masel 2006; Wilson et al. 2017).  

In addition, independently of the mode of transition (RNA-first or ORF-first) or from its 

origination route (continuum or preadaptation hypotheses), a de novo gene first emerges at a low 
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frequency in a population and subsequently can either disappear or eventually reach fixation. Few 

population analyses showed that the life cycle of de novo genes would be relatively short and may depend 

on lineage-specific functional requirements (Palmieri et al. 2014; Zhao et al. 2014; Li et al. 2016).  

Here, we developed a multi-level systematic approach which addresses all the above issues and 

strikes a balance between previously published, broader proto-gene surveys (Carvunis et al. 2012) and 

stricter, but more limited approaches such as the ones applied in human (Knowles and McLysaght 2009). 

We used this approach to search for de novo genes in two yeast genera comprising a total of 15 species, 

which span at least 100 million years of evolution (Berbee and Taylor 2006). Based on our results, we 

propose a plausible mechanistic model of de novo gene emergence in yeasts, in which meiotic 

recombination plays a crucial role. 

Results  

A comprehensive methodology for a reliable genus-wide identification of de novo gene candidates 

We developed a novel approach to reliably identify de novo gene candidates at the genus level 

and applied it to two yeast genera with high quality genome assemblies: the genus Lachancea (Kellis et 

al. 2004; Souciet et al. 2009; Vakirlis et al. 2016)� and the well characterized genus Saccharomyces 

[(Scannell et al. 2011), Fig. S1 and Table S1].  

We first identified 1837 TRG, i.e. with no detectable homologs outside of each of the two genera 

after clustering all annotated CDS into singletons and homologous families, and performing an exhaustive 

similarity search with both single sequence-based and profile-based tools against several public databases. 

Then we inferred their branch of origin along the genus phylogeny by phylostratigraphy [see Methods, 

(Domazet-Lošo et al. 2007; Domazet-Lošo et al. 2017)]. Second, we eliminated 55 fast-diverging TRG 

families in Lachancea (no Saccharomyces TRG families were removed at this step), whose ages are most 

likely underestimated according to the expected number of false positive predictions given an 

evolutionary distance between homologs of simulated protein families (see Fig. S2, Fig. S3 and 

Methods). Third, we filtered out 1028 TRG that are more likely to be spurious ORFs than true protein-

coding genes. To this end, we developed a logistic regression classifier trained on codon usage and 

sequence-based properties of known noncoding sequences. The classifier assigns a statistical Coding 

Score (CS) to each TRG. We defined a genus-specific CS threshold above which we can expect only 5% 

of non-coding sequences erroneously classified as coding and removed 701 and 327 TRG with lower CS 

than the thresholds in Saccharomyces and in Lachancea, respectively (see Fig. 1A, Fig. S4, Table S2 and 

Methods). 
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A robust set of yeast de novo gene candidates  

Based on the above methodology, we selected 701 de novo gene candidates, which were derived 

from an estimated total of 366 events of de novo gene creation that took place during the evolution of the 

two genera (Fig. 1B, Table S3). For further analysis, we added 2 previously described de novo genes in S. 

cerevisiae, BSC4 (Cai et al. 2008) whose CS was below the genus threshold, and MDF1 (Li et al. 2010) 

which was not annotated in the version of the S. cerevisiae genome that we used (Scannell et al. 2011). 

We considered the de novo candidates as being “recent” when they were restricted to one species, i.e. 

when they emerged along a terminal branch of the phylogenetic tree or “ancient” when they emerged 

along an internal branch of the tree (Fig. 1A and 1B). Taken together, the 288 and 415 de novo gene 

candidates respectively account for 0.45% and 0.9% of the gene repertoire in Lachancea and 

Saccharomyces.  

We found that, in both genera, branch lengths correlated to the number of de novo origination events 

(Fig. 1C) suggesting that de novo emergence occurs at a coordinated pace with non-synonymous 

mutations. However, these results are best viewed qualitatively given the limited number of data points: 

the slopes of the fitted regression lines are unlikely to represent the true emergence rates. There is a 

smaller estimated time for the divergence between the Nakaseomyces/Candida and the Saccharomyces 

genus -from 57 to 87 Mya- than between the Kluyveromyces/Eremothecium and the Lachancea genus - 

from 84 to 126 Mya - (Kensche et al. 2008; Doyon et al. 2012; Beimforde et al. 2014; Marcet-Houben 

and Gabaldón 2015). However, the average number of events per lineage since the divergence of the 

Saccharomyces is significantly greater (83.8) that the one since the divergence of the Lachancea (31.7), 

(p=0.0058, Wilcoxon test). Similarly, the average number of origination events per substitution per site 

for each branch (i.e. branch length of the trees in Figure 1B) is 133.8 in Saccharomyces and 32.7 in 

Lachancea (p=0.002 Wilcoxon test). Both exogenous (different environmental or selective pressures) and 

intrinsic (differences in genome dynamics) factors could account for these variations. 

Experimental validation of de novo proteins 

We provide experimental evidence of translation for 25 de novo genes in Lachancea by 

performing tandem mass spectrometry (MS/MS) analysis at the whole proteome level in rich growth 

medium conditions (Table S2, Table S3 and Methods). Prior global proteomic experiments in S. 

cerevisiae validated 60 out of the 105 de novo gene candidates in that species (Table S4). Altogether, 

experimental evidence of translation validates 85 (12%) of our candidates, which we will refer to as 

validated de novo genes hereafter. Crucially, the CS of the validated de novo genes is very high (median 

at 0.95). Conversely, in the Lachancea species, we found that none of the TRG eliminated as spurious 

(based on their low CS) was detected by MS. Among the 302 CDS that we classified as spurious TRG in 
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S. cerevisiae, only 13 show evidence of translation, thus likely corresponding to false negatives that were 

misclassified by our logistic regression classifier. The median CS of the 85 validated de novo genes plus 

the 13 validated spurious TRG is 0.8, suggesting that our CS is a good indicator of protein expression (see 

Methods). 

In both genera, there are less recent than ancient validated de novo genes, with only three (12%) 

in Lachancea, and five (20%) in Saccharomyces, suggesting that recent de novo genes are poorly 

expressed. Among the validated de novo genes in S. cerevisiae, four have a known function: REC104 and 

CSM4 are involved in meiotic recombination, PEX34 is involved in the peroxisome organization, and 

HUG1 participates to the response to DNA replication stress (Table S4).  

The transition from non-coding to coding can be inferred for 30 Saccharomyces de novo genes 

The most convincing evidence of de novo gene birth stems from the unambiguous identification 

of the mutations that enabled the formation of an open reading frame in a given lineage, when compared 

to the orthologous non-coding regions closely related genomes. Based on multiple alignments between 

the de novo genes and their orthologous DNA sequences in closely related genomes as in (Knowles and 

McLysaght 2009) (see Methods), we identified one or several ancestral nucleotide(s) that once mutated, 

gave rise to the ORF for 30 de novo genes in Saccharomyces (Fig. 2). Among these 30 de novo genes that 

we hereafter label “reliable”, 27 belong to the “recent” group and show higher similarity to their 

orthologous intergenic regions compared to the genomic average. Therefore, they are probably some of 

the most recently emerged ones. 

No such mutational scenario could be retrieved in the Lachancea species, because their genomes 

are too divergent, with orthologous intergenic regions that no longer share significant similarity. 

 

De novo genes have unique sequence characteristics as compared to conserved genes 

The de novo candidates share a number of structural properties that differentiate them from the 

genes conserved outside the two genera. They are significantly shorter, have a lower codon adaptation 

index and a higher aggregation propensity compared to conserved genes (Fig. S5). Their biosynthetic cost 

is also lower than those of non-coding sequences, in agreement with an intermediate stage from a non-

coding to a coding state (Fig. S5). When recent, de novo genes are not enriched in intrinsically disordered 

regions compared to conserved genes. The low propensity of recent genes to disorder was previously 

reported in S. cerevisiae (Carvunis et al. 2012). When ancient, but in Lachancea only, de novo genes have 

a higher proportion of predicted disorder than conserved genes (Fig. 3), suggesting contrasted 

evolutionary pressures (see Discussion Section).  
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De novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions 

We found that de novo genes are significantly enriched in opposing orientation with respect to their 

direct 5’ neighboring gene (Fig. 4A). Similar enrichment was already observed for mouse-specific genes 

(Neme and Tautz 2013). This suggests that de novo genes would benefit from the divergent transcription 

initiated from bidirectional promoters. By contrast, tandemly duplicated genes are significantly enriched 

in co-orientation with respect to their 5’neighbour (69% and 74% in Saccharomyces and Lachancea, 

respectively (not shown)). Therefore, the bias towards opposing orientations strongly suggests that the de 

novo gene candidates do not actually correspond to tandemly duplicated genes that would have diverged 

beyond recognition. In addition, the bias towards divergent orientation is the strongest for the reliable de 

novo genes which correspond to the most recently emerged genes (see above), suggesting that divergent 

transcription from bidirectional promoters is critical in the early stages of origination.   

Recent and reliable de novo genes in Saccharomyces and recent ones in Lachancea have 

significantly higher GC content than conserved genes, which are themselves more GC-rich than 

intergenic regions (Fig. 4B, Fig. S6B and S6C). Moreover, de novo genes in opposing orientation with 

respect to their 5’ gene neighbor are also more GC-rich than co-oriented ones (Fig. 4A right). Finally, we 

found that the orthologous noncoding regions of de novo genes in sister genomes have a GC content 

significantly higher than that of the other intergenic regions (Fig. 4B right, Figure S6A, Table S5). 

Therefore we propose that de novo genes tend to emerge in particularly high GC-rich regions, where the 

frequency of AT-rich stop codons is the lowest and the probability of finding a fortuitous and transcribed 

ORF is therefore the highest (Figure S6A). 

De novo genes are significantly enriched at recombination hotspots  

In multiple eukaryotic taxa, including yeasts and humans, heteroduplexes formed during meiotic 

recombination are repaired by gene conversion biased towards GC-alleles, thus increasing the GC-content 

of recombination hotspots (RHS) (Lamb 1984; Jeffreys and Neumann 2002; Mancera et al. 2008; Duret 

and Galtier 2009). Furthermore, it provides a nucleosome-free region (Berchowitz et al. 2009; Pan et al. 

2011) that promotes transcriptional activity. It follows then that RHS could be favorable locations for the 

emergence of de novo genes in yeasts. We tested enrichment of de novo genes overlapping with RHS in S. 

cerevisiae, S. mikatae and S. kudriavzevii, the species for which recombination maps are exploitable for 

this study [(Lam and Keeney 2015a), see Methods] (Fig 5A). The enrichment was tested against i) de 

novo genes overlapping with a set of randomly shuffled hotspot-equivalent regions and ii) a set of 

conserved genes (with the same GC content, length and chromosome distributions as de novo genes) 

overlapping with the real RHS (P-value<0.001 calculated from 1000 simulations for all tests, except for S. 

kudriavzevii in the sampled-conserved test, P-value = 0.012). More than a third of de novo genes overlap 
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with RHS (44%, 42% and 39% S. cerevisiae, S. mikatae and S. kudriavzevii, respectively), which 

represents a more than 3-fold enrichment (Fig. 5A). The de novo genes associated with RHS include 3 

validated de novo genes in S. kudriavzevii and 3 in S. mikatae. The length coverage of the de novo genes 

by RHS is on average 65% (204 nt), 66% (192 nt) and 42% (178 nt) in S. cerevisiae, S. mikatae and S. 

kudriavzevii, respectively. Such a strong association suggests that gene conversion biased towards GC-

alleles during meiotic recombination would be a major driving force of de novo gene emergence in yeasts. 

The strength of purifying selection acting on de novo genes increases with age. 

In Lachancea species for which several strains are available, the inferred pN/pS (non-synonymous 

to synonymous polymorphism rates) ratio is on average significantly lower for de novo candidates (Fig. 

S7). The same trend is observed when comparing species instead of strains (Fig. S8). However, the 

correlation between pN/pS and CS values is lower than for dN/dS and CS values (Fig. S7 and S8) 

suggesting that most of the species-specific de novo candidates (the most recent ones) are under weak 

purifying selection, as already observed in yeasts, primates and flies (Cai and Petrov 2010; Carvunis et al. 

2012; Palmieri et al. 2014; Zhao et al. 2014; Li et al. 2016).  

In Saccharomyces, the dN/dS ratio (non-synonymous to synonymous substitution rates) of the most 

recent de novo genes is close to 1 and gradually decreases down to the level of the conserved genes for 

the most ancient ones (Fig. 5B). This indicates that the strength of purifying selection increases with gene 

age (data are insufficient in Lachancea, see Methods).  

Discussion 

To our knowledge, our work represents a unique attempt to tackle the three main issues affecting 

de novo gene identification, namely exhaustive similarity searches, estimation of sequence divergence 

beyond recognition and erroneous gene annotations. In addition, we inferred the mutations enabling the 

transition from non-coding to coding sequences for 30 Saccharomyces de novo genes and showed that 

these reliable candidates share the same properties as the rest of the dataset. We also found that de novo 

gene candidates were on average smaller than conserved genes and smaller than all documented 

horizontally transferred genes (Table S5) (Rolland et al. 2009; Marcet-Houben and Gabaldón 2010; 

Vakirlis et al. 2016). In addition, horizontally transferred genes are predominantly found in co-orientation 

with respect to their 5’ gene neighbor while candidate de novo genes are predominantly found in opposing 

orientation. Altogether these results show that the set of de novo gene candidates identified in this study is 

mostly devoid of highly divergent homologs, genes horizontally acquired from unknown genomes or neo-

functionalized duplicates.  

The role of de novo emergence as a potent gene birth mechanism has been much debated during 

the past decade. In this study, we identified a significant number of 701 de novo genes candidates (30 of 
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which have unambiguously emerged from ancestral, non-coding sequence) across an unprecedented 

number of 15 yeasts genomes. Although de novo origination occurs at a slow pace, it is sufficiently 

widespread for de novo genes to be present in all genomes studied. In total, the 85 validated de novo 

genes, which have translation evidence, represent 0.1% of the proteome in yeasts, a much higher 

proportion than what was estimated in other lineages, with 0.01% in Drosophila, 0.03% in primates, and 

0.06% in the sole Plasmodium vivax genome (Chen et al. 2010; Yang and Huang 2011; Guerzoni and 

McLysaght 2016). On the contrary, there is a significantly higher proportion (2.8%) of validated de novo 

genes specific to the Arabidopsis thaliana genome (Li et al. 2016), revealing contrasting dynamics in 

different eukaryotic lineages. It is also possible that we underestimated the number of validated 

candidates in yeasts because additional ORFs could actually be expressed in yet untested conditions. 

The higher genomic GC content in Lachancea – from 41% to 43% - than in Saccharomyces – from 

38%to40% - could explain the higher proportion of disordered regions of recent de novo candidates in 

Lachancea than in Saccharomyces, while different evolutionary pressures between the two genera could 

explain why ancient de novo genes, but in Lachancea only, have higher proportion of disorder than 

conserved genes, although they have a similar GC content. These results are in agreement with the recent 

analysis of Basile and colleagues (Basile et al. 2017) showing that in recent de novo genes, the level of 

disorder is strongly dependent on the genomic GC content and that this dependency decreases during 

evolution. In another recent article, Wilson and colleagues (Wilson et al. 2017) showed that the 

correlation between age and disorder observed in 871 S. cerevisiae de novo genes disappears when 

considering only the 35 ancient de novo genes presenting the highest probability to encode a functional 

protein product. When considering only our 60 validated de novo genes from S. cerevisiae, we observed 

the same phenomenon. 

Finally, our results suggest a reasonable mechanistic model for the early stages of de novo 

evolution in yeasts: de novo emergence of ORFs occurs in GC-rich non-coding regions, where the 

probability of finding a fortuitous ORF is the highest and preferentially where de novo ORF can be 

transcribed from the divergent promoter of its 5’ neighboring gene (Fig 6). Recombination hotspots are 

good candidate regions for de novo emergence because they have a high GC content (Mancera et al. 

2008) and they preferentially localize at promoters in yeasts, but also in dogs, birds, and Arabidopsis 

(Auton et al. 2013; Choi et al. 2013; Lam and Keeney 2015; Singhal et al. 2015). As the stability of an 

mRNA molecule increases with its GC content (Kudla et al. 2006; Neymotin et al. 2016), the de novo 

GC-rich transcript will be stable, and could thus be efficiently translated. Consequently, whether the 

protein product will be beneficial l or harmful to the cell, the de novo gene will be either fixed or rapidly 

lost from the population.  

We established a new approach to rigorously identify de novo gene candidates in a set of closely 
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related species. Interestingly, our study supports a role for meiotic GC biased gene conversion as a driver 

of gene origination in yeasts. More generally, the role of recombination hostpsots in de novo gene 

emergence in other eukaryotes should prove most interesting to explore in the future. 

 

Materials and Methods 

Data collection 

We investigated de novo gene emergence in 10 Lachancea and 5 Saccharomyces genomes (L. 

kluyveri, L. fermentati, L. cidri, L. mirantina, L. waltii, L. thermotolerans, L. dasiensis, L. nothofagi, "L. 

fantastica" nomen nudum and L. meyersii, S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. 

bayanus var. uvarum), see Table S1. For the Saccharomyces, the genome of S. arboricola was not 

analysed because it contains ca. half of the number of annotated genes than the others. It was only used 

for the reconstruction of the ancestral sequences of de novo genes. The genome of S. eubayanus was not 

analysed either because it was not annotated with the same pipeline. It was used for the reconstruction of 

the ancestral sequences of de novo genes and for the simulation of the protein families’ evolution. For 

outgroup species references, the genomes Kluyveromyces marxianus, K. lactis, and K. dobzhanskii were 

used for the Lachancea and the genomes of Candida castellii and Nakaseomyces bacillisporus were used 

for the Saccharomyces. The sources for genome sequences and associated annotations are summarized 

Table S1. Annotated CDS longer than 150 nucleotides were considered.  

The high raw coverages of the assembled genomes in the two genera minimized erroneous base calls 

and make sequencing errors and subsequent erroneous de novo assignment very unlikely (N50 values 

range from 801 to 905 kb for Saccharomyces (Scannell et al. 2011) and form 1275 and 2184 kb in 

Lachancea). The combined 454 libraries and Illumina single-reads for the Lachancea project (Vakirlis et 

al. 2016) further allowed the correction of sequencing errors in homopolymer blocks that generated 

erroneous frameshifts in genes.  

Pipeline for TRG detection 

Initially, the protein sequences of all considered species (focal proteome) are compared against each 

other using BLASTP (Altschul et al. 1990) (version 2.2.28+, with the options -use_sw_tback -

comp_based_stats and an E-value cut-off of 0.001) then clustered into protein families by TribeMCL 

(Enright et al. 2002) (version 12-068, I=6.5) based on sequence similarity, as previously reported for the 

Lachancea genomes (Vakirlis et al. 2016). For each family, a multiple alignment of the translated 

products is generated (see General procedures section) and profiles (HMM and PSSM) are built from it. 

These first steps are also performed for the proteome of the outgroup species.  
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A similarity search for homologs outside of the focal species is then performed against the NCBI nr 

database with BLASTP for singletons and with PSI-BLAST version 2.2.28+ for families with their own 

PSSM profiles. Hits are considered significant if they have an E-value lower than 0.001 for both BLASTP 

and PSI-BLAST. A family (or singleton) is considered as taxonomically restricted if it has no significant 

hit in nr. This work was already done for the Lachancea in (Vakirlis et al. 2016). TRGs whose 

coordinates overlapped conserved genes on the same strand were removed. 

Next, TRG families are searched against each other using HMM profile-profile comparisons with 

the HHSUITE programs version 2.0.16 (Söding 2005). HMM profiles were built with hhmake, and 

database searches were performed with hhsearch. A hit is considered significant if it has a probability 

higher than 0.8 and an E-value lower than 1, values previously defined as optimal (Lobb et al. 2015).  

Families sharing significant similarity are merged. This new set of TRG families is used to search for 

similarity in 4 databases: an HMM profile database built from the alignments of the genus’ conserved 

families, the profile database of the outgroup species, the PDB70 profile database, version of 03-10-2016 

(Söding et al. 2005), and the PFAM profile database, version 27.0 (Finn et al. 2014). Singleton TRGs 

were compared by sequence-profile searches using hmmscan of the HMMER3 package version 3.1b2 

(Mistry et al. 2013) (E-value cut-off 10-5) in all the above databases, except PDB70. The final curated 

TRG families are those for which no significant match is found in any searched database. Finally, the 

branch of origin of each TRG family is inferred as the branch leading to the most recent common ancestor 

of the species in which a member of the family is present. The reference species phylogeny is given in 

Fig. S1. 

Simulations of protein family evolution and removal of false positive TRGs 

We simulated the evolution of gene families created before the divergence of the genus along the 

Saccharomyces and Lachancea phylogenies. The real orthologous gene families were defined as families 

of syntenic homologues with only one member per species as in Vakirlis et al. (Vakirlis et al. 2016). We 

defined 3668 such families across the 10 Lachancea and their 3 outgroup species, as well as 3946 families 

across the 6 Saccharomyces species and their 2 outgroup species. We followed the simulation protocol 

used by Moyers et al. (Moyers and Zhang 2014; Moyers and Zhang 2016) but we inferred protein 

evolutionary rates for each individual gene tree (branch lengths representing substitutions per 100 sites), 

instead of calculating the mean evolutionary rate of a protein by the number of substitutions per site per 

million years between a couple of yeast species, and we did so using the ROSE program version 1.3 

(Stoye et al. 1998) with the PAM matrix. We believe that using a model of protein evolution to detect 

false positive TRG is reasonable, given that false positive TRG are actually conserved genes that arose 
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before the divergence of the species and thus evolved as protein coding genes for a longer time than de 

novo genes.  

We performed simulations under two scenarios. In the first scenario (normal case), the amount of 

divergence within each simulated protein family mirrors the one within real orthologous families. In the 

second scenario (worst case), the divergence is 30% higher than the one estimated among the real 

orthologous families (every simulated branch is 30% longer than its real equivalent), and additionally, for 

each branch, a random amount of extra divergence ranging from 0 to 100% of the branch’s length is 

added (Fig. S2). At the end of each simulation, we reconstructed the simulated protein families and 

estimated their branch of origin with our pipeline for TRG detection (see above). Each simulated family 

that is not assigned to the branch root of the focal genus tree is a false positive simulated TRG family 

whose age has been underestimated because homologs are highly diverged. All real TRG families whose 

phylogenetic distances exceed the branch-specific threshold (under which a maximum of 5% false 

positives are expected) of the normal case scenario are excluded. Note that even compared to the worse 

case scenario, false positives cannot explain the total percentages of the observed TRGs (Fig. S3). 

Sequence properties 

Codon usage and Codon Adaptation Index (CAI) values for protein coding sequences were 

calculated with the CAIJAVA program version 1.0 (Carbone et al. 2003) (which does not require any set 

of reference sequences) with 15 iterations. CAI for the intergenic sequences was calculated with codonW 

version 1.3 (http://codonw.sourceforge.net/) afterwards, based on codon usage of genes with CAI > 0.7 

(previously estimated with CAIJava), so as to avoid any bias that may be present within intergenic 

regions. 

The expected number of amino acids in a transmembrane region were calculated with the TMHMM 

program (Krogh et al. 2001). Disordered regions were defined as protein segments not in a globular 

domain and were predicted with IUPRED version 1.0 (Dosztányi et al. 2005). 

Low complexity regions were detected with segmasker version 1.0.0 from the BLAST+ suite. 

Biosynthesis costs were calculated using the Akashi and Gojobori scores (Akashi and Gojobori 2002; 

Barton et al. 2010). GRAnd AVerage of Hydropathy (GRAVY) and aromaticity scores of each protein 

sequence were calculated with codonW version 1.3. Predictions of helices and sheets in protein sequences 

were obtained by PSIPRED version 3.5 (McGuffin et al. 2000) in single sequence mode. TANGO version 

2.3 (Fernandez-Escamilla et al. 2004) was used to predict the mean aggregation propensity per residue for 

all proteins with the settings provided in the tutorial examples. 
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Calculation of Coding Score 

We built a binomial logistic regression classifier on a Coding class and a Non-coding class.  The 

Coding sequences are genes conserved inside and outside of the focal genus. The Non-coding sequences 

corresponding to the +1 reading frame of intergenic regions in which in-frame stop codons were removed. 

All non-annotated regions were considered in the Lachancea genomes, while orthologous intergenic 

regions available at www.SaccharomycesSensuStricto.org where considered in the Saccharomyces 

genomes. Both classes have equal sizes (6000 sequences each), which are sampled to have approximately 

the same length distribution. The Coding Score (CS) is the model’s fitted probability for the Coding class. 

The classifier was trained on the following sequence feature data: frequencies of 61 codons, CAI, 

biosynthesis cost, percentage of residues in i) transmembrane regions ii) disordered regions ii) low 

complexity regions iv) helices v) beta sheets, hydrophobicity scores, aromaticity scores, mean 

aggregation propensity per residue and the GC.GC3 term: 

GC.GC3 = abs(GC – GC3) / abs(GC - 0.5), where GC is the percentage of Guanine-Cytosine bases 

and GC3 is the percentage of Guanine-Cytosine bases at the 3rd codon position.  

Each feature value was normalized by subtracting the mean and dividing by the standard deviation. 

The binomial logistic regression classifier was constructed with the GLMNET R package version 2.0-2 

(Friedman et al. 2010), with an optimized alpha value (0.3 and 0.4 for the Lachancea and for the 

Saccharomyces, respectively) estimated by testing on a separate validation set of coding and  non-coding 

sequences, and keeping the value that minimized the class prediction error. The function cv.glmnet with 

the optimal alpha value was used on the training set to perform 10-fold cross-validation to select and fit 

the model that minimizes the class prediction error for a binomial distribution. Validation of the 

performance of the coding score is given in Fig. S4.  

Orientation analysis 

Relative orientation of the 5’ transcribed element was considered for a given gene that was tagged 

either in opposing orientation (<– –>) if its 5’ neighbor is transcribed on the opposite strand or co-

oriented (–> –>) if its 5’ neighbor is transcribed on the same strand. Only genes that do not overlap other 

elements on the opposite strand at their 5’ extremity (non-null intergenic spacer) were considered. 

Relative 5’ orientations were determined for de novo genes, conserved genes and tandemly duplicated 

genes. There are 925 and 580 tandemly duplicated genes in Saccharomyces and Lachancea, respectively 

are defined as paralogs that are contiguous on the chromosome. Among tandemly duplicated genes, 638 

and 428 are co-oriented in Saccharomyces and Lachancea, respectively. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/119768doi: bioRxiv preprint 

https://doi.org/10.1101/119768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Similarity searches in intergenic regions 

For each chromosome, low complexity regions were first masked with segmasker version 1.0.0 and 

annotated regions were subsequently masked by maskfeat from the EMBOSS package version 6.4.0.0 

(Rice et al. 2000). Similarity searches between all 6 frame translations of the masked chromosome 

sequences and the TRG protein sequences allowing for frameshifts were performed with the fasty36 

(Pearson et al. 1997) binary from the FASTA suite of tools version 36.3.6 with the following parameters: 

BP62 scoring matrix, a penalty of 30 for frame-shifts and filtering of low complexity residues. Significant 

hits in at least two genomes (30% identity, 50% target coverage and an E-value lower than 10-5) within 

intergenic regions that are syntenic to a de novo gene were selected and their corresponding DNA regions 

were extracted. A multiple alignment was then performed and in-frame stop codons where searched in the 

phase whose translation is similar to the de novo gene product. All gaps that were not a multiple of three 

were considered as indels. In 16 cases, the enabling mutations from the ancestral non-coding sequence 

can be precisely traced forward based on the multiple alignment, as in Knowles and Mclysaght (Knowles 

and McLysaght 2009). 

Evolutionary analyses 

For each TRG family with members in at least two different species, rates of synonymous 

substitutions (dS) and rates of non-synonymous substitutions (dN) were estimated from protein guided 

nucleotide alignments with the codeml program from the PAML package version 4.7 (Yang 2007). 

Pairwise analyses were done using the Yang and Nielsen model (Yang and Nielsen 2000). The relative 

rates dN/dS values were considered only if the standard error of dN and the standard error of dS were 

lower than dN/2 and dS/2 respectively and dS was lower than 1.5. Ancestral sequences were calculated 

with baseml from the PAML package version 4.7 using the REV model. 

Relative divergence estimates 

Timetrees for both Lachancea and Saccharomyces were generated using the RelTime method 

(Tamura et al. 2012). For each genera, we selected 100 families of syntenic homologs present in every 

genome (in the 10 Lachancea or in the 5 Saccharomyces) for which the inferred tree has the same 

topology as the reference species tree (Scannell et al. 2011; Vakirlis et al. 2016). The concatenation of the 

protein-guided cDNA alignments of the family were given as input. As outgroup species, we used S. 

cerevisiae for the Lachancea and Candida castellii for the Saccharomyces. Divergence times for all 

branching points in the topology were calculated using the Maximum Likelihood method based on the 

Tamura-Nei model (Tamura and Nei 1993). 3rd codon positions were considered. All positions containing 

gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA7 (Kumar et al. 

2016).  
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Recombination hotspots analysis 

Recombination maps were retrieved from (Lam and Keeney 2015). The strains used to determine 

the recombination maps are those also used in this study (Scannell et al. 2011), so the same assembly has 

been used to map the Spo11 oligos for the recombination map and to detect de novo genes. This is not the 

case for S. paradoxus, because the recombination map is constructed for the YPS138 strain, which is 

quite divergent from the S. paradoxus strain CBS432 used to detect de novo genes, and for which only a 

low quality assembly is available.  

General procedures 

All alignments were done with the MAFFT linsi executable (version 7.130b) (Katoh and Standley 

2013). All statistical analyses were done in R version 3.1 (R Core Team 2014) with standard library 

functions unless otherwise noted. Phylogenetic distances from protein family alignments were calculated 

using fprotdist from the EMBOSS version 6.4.0.0 with the PAM matrix and uniform rate for all sites (-

ncategories 1). The PAM matrix was chosen for consistency. 

Translation evidence 

De novo genes in S. cerevisiae for which positive proteomic data are available are tagged as “with 

translation evidence”. This designation corresponds to protein products identified i) in MS-based 

proteome characterization studies, ii) as prey proteins in MS-based affinity capture studies, iii) in two-

hybrid experiments, iv) as localized by fluorescent fusion protein constructs, v) as a substrate in 

phosphorylation assays, vi) identified in ribosome profiling experiments and/or vii) in protein-fragment 

complementation assays. 

In S. cerevisiae, 13 out of the 302 CDS that we classified as spurious TRG show evidence of 

translation. Based on these S. cerevisiae data, the negative predictive value of the CS is 0.95 (13/302), i.e. 

there is a 95% probability that a spurious TRG, with a CS below our threshold is actually not a de novo 

gene.  

Mass spectrometry protocol 

Single colonies of each species were inoculated in 3 mL YP + 2% Glucose and grown at 30_C. 

After 2 days growth, the liquid cultures were inoculated into 12mL of YP + 2% Glucose at 30_C and 

were grown until they reached an optical density of 1.0. Cultures were centrifuged at 4,000 RPM for 2 

minutes and the supernatant was removed. The cells were washed in 1ml of 1M Sorbitol and centrifuged 

for 2 minutes at 15,000 RPM. The supernatant was removed and the cells were stored at -80 °C. 

For each strain three biological replicates were analysed. Cells were resuspended in 100 µL 6 M 

GnHCl, followed by addition of 900 µL MeOH. Samples were centrifuged at 15,000 g for 5 min. 
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Supernatant was discarded and pellets were allowed to dry for ~5 min. Pellets were resuspended in 200 

µL 8 M urea, 100 mM Tris pH 8.0, 10 mM TCEP, and 40 mM chloroacetamide, then diluted to 1.5 M 

urea in 50 mM Tris pH 8(Carvunis et al. 2012). Trypsin was added at 50:1 ratio, and samples were 

incubated overnight at ambient temperature. Each sample was desalted over a PS-DVB solid phase 

extraction cartridge and dried down. Peptide mass was assayed with the peptide colorimetric assay 

(Thermo, Rockford).   

For each analysis, 2 µg of peptides were loaded onto a 75 µm i.d. 30 cm long capillary with an 

imbedded electrospray emitter and packed with 1.7 µm C18 BEH stationary phase. Peptides were eluted 

with in increasing gradient of acetonitrile over 100 min (Hebert et al. 2014).  

Eluting peptides were analysed with an Orbitrap Fusion Lumos. Survey scans were performed at R 

= 60,000 with wide isolation 300-1,350 mz. Data dependent top speed (2 seconds) MS/MS sampling of 

peptide precursors was enabled with dynamic exclusion set to 15 seconds on precursors with charge states 

2 to 6. MS/MS sampling was performed with 1.6 Da quadrupole isolation, fragmentation by HCD with 

NCE of 30, analysis in the Orbitrap with R = 15,000, with a max inject time of 22 msec, and AGC target 

set to 2 x 105.  

Raw files were analysed using MaxQuant 1.5.2.8 (Cox and Mann 2008). Spectra were searched 

using the Andromeda search engine against a target decoy databases provided for each strain 

independently. Default parameters were used for all searches. Peptides were grouped into subsumable 

protein groups and filtered to 1% FDR, based on target decoy approach (Cox and Mann 2008). For each 

strain, the sequence coverage and spectral count (MS/MS count) was reported for each protein and each 

replicate, as well as the spectral count sum of all replicates.  

The de novo genes that are translated are homogeneously distributed across the 10 Lachancea 

species (P=0.6, X2 test). The proportion of de novo genes detected (25/288, 8.7%) is significantly lower 

than that of conserved genes of similar length (66%), which by definition appeared before the most 

ancient de novo genes. This depletion could be due to de novo genes only being expressed under 

particular conditions or stresses that were not tested in our experiments. Conversely, MS/MS did not 

detect TRG eliminated as spurious by our procedure.  

 

Statistical Analysis 

2-sided Wilcoxon rank-sum tests were performed to compare pairs of distributions of GC content 

and pairs of distributions of percentages of residues in disordered regions, at a P-value threshold of 0.05. 

Chi-square tests of association were used to compare gene orientations. Pearson’s correlation was used 

for the association of gene age - dN/dS and number of de novo origination events – substitutions per site 
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Figure legends 

Figure 1. Results of de novo gene identification in 2 model yeast genera. (A) Distributions of 
Coding Scores (CS) of TRGs in the 2 genera. Dashed lines represent thresholds (0.47 in 
Lachancea, 0.3 in Saccharomyces) that limit false positives to 5% based on our validation 
procedure (Figure S1 and Methods). Black bars: ancient TRG, grey bars: recent TRG (B) De 
novo gene origination along the phylogenies of the 2 genera. Branch lengths correspond to 
molecular clock estimations of relative species divergence (relative number of substitutions per 
site) within each genus. Thus, the bottom scale bar expresses species relative number of 
substitutions per site to the origin of the genus. Recent and ancient events are shown in red and 
green, respectively. (C) Numbers of de novo creation events as a function of the relative number 
of substitutions per site to the origine of the genus, as shown in B. 
 
Figure 2. Alignment of the de novo gene Sbay_13.30 in S. uvarum and its orthologous 
intergenic sequences in all other Saccharomyces genomes. Four enabling mutations that 
occurred along the S. uvarum branch are indicated with an arrow. Ancestral states for the critical 
positions are shown under the alignment (positions were the same at the root of the 
Saccharomyces and the common ancestor of S. uvarum and S. eubayanus). At least 3 stop codons 
were removed by base substitution and a frameshift occurred due to the deletion of one base 
leading to the formation of the ORF in S. uvarum. 

Figure 3. Distributions of percentages of residues in disordered regions for various 
sequence classes in the 2 yeast genera. Rel.: reliable de novo genes for which the ancestral 
sequence is inferred as non-coding. Val.: validated de novo genes with experimental translation 
evidence.  

Figure 4. De novo genes are enriched at divergent promoters in GC-rich regions. (A) Left 
and middle: Distributions of the transcriptional orientations of various gene classes relative to 
their 5’ neighbours (see text). Only genes with a non-null 5’ intergenic spacer (> 0 nt) are 
considered. Right: GC% distributions of de novo genes in opposing and co-orientation 
configurations in the 2 genera. Grey: opposing orientation, black: co-orientation. (B) 
Distributions of Guanine-Cytosine percentage (GC%) in various sequence classes. Notches 
represent the limits of statistical significance. De novo ortho. intergenes: intergenic regions 
orthologous to de novo genes. Rel: reliable, Val.: validated. 

Figure 5. De novo genes are enriched at recombination hotspots and are under increasing 
purifying selection with age. (A) Proportion of de novo genes overlapping recombination 
hotspots as identified in (Lam and Keeney 2015) (outliers are not shown). The 2 null models 
consist in i) randomly shuffling the hotspots on each chromosome and ii) sampling a set of 
conserved genes with the same GC composition and chromosome distribution as de novo genes. 
Both models were repeated 1000 times. Red dots: real de novo genes, dark   (B) Distribution of 
pairwise dN/dS value for various sequence classes in Saccharomyces. S2 to S5 refer to the 
branches of emergence of de novo genes (see Fig. S3).  
 
Figure 6. Model of de novo gene evolution. Blue arrow: conserved gene. Grey bar: 
bidirectional promoter. Red bar: stop codon. Green bars: transcription.  
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