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Abstract: The impact of epistasis on the evolution of multilocus traits depends on recombination. Population 
genetic theory has been largely developed for eukaryotes, many of which recombine so frequently that epistasis 
between polymorphisms has not been considered to play a large role in adaptation and has been compared to the 
fleeting influence of non-heritable effects. Many bacteria also recombine, some to the degree that their 
populations are described as ‘panmictic’ or ‘freely recombining’. However, whether this recombination is 
sufficient to limit the ability of selection to act on epistatic contributions to fitness is unknown. We create a 
sensitive method to quantify homologous recombination in five bacterial pathogens and use these parameter 
estimates in a multilocus model of bacterial evolution with additive and epistatic effects. We find that even for 
highly recombining species (e.g. Streptococcus pneumoniae or Helicobacter pylori), selection may act on the 
cumulative effects of weak (as well as strong) interactions between distant mutations since homologous 
recombination typically transfers only short segments. Furthermore, whether selection acts more efficiently on 
physically proximal loci depends on the average recombination tract length. Epistasis may thus play an 
important role in the adaptive evolution of bacteria and, unlike in eukaryotes, does not need to be strong, 
involve near loci, or require specific metapopulation dynamics.  
 
Main Text: 
Introduction 

Epistasis for fitness traits may arise from any nonlinearity in the multi-locus genotype-to-fitness map 
(1,2), which includes, but is not limited to, traits controlled by protein-protein interactions. The role of epistasis 
in adaptive evolution has been debated since the origin of population genetics (3–7). Fisher and other geneticists 
have argued that selection primarily acts on the additive effects of individual alleles (3,7,8), since crossover 
recombination in eukaryotes rapidly destroys allele combinations, thus opposing selection on epistatic effects 
between alleles. Exceptions to their view arise only when epistatic effects are exceedingly strong or interacting 
loci are tightly linked, preventing recombination (9). Alternatively, Wright and others have argued that species 
consist of metapopulations with dynamics that limit the ability of recombination to dominate microevolutionary 
processes, since only individuals within the same subpopulation may exchange alleles (5). Since evidence for 
these dynamics in nature is limited (7,10), epistasis has not been given a prominent role in adaptation theory. 

However, these debates have focused on sexual eukaryotes, and the majority of life on earth does not 
sexually reproduce. Bacteria, which have colonized almost every conceivable ecological niche, also recombine 
to varying degrees through multiple mechanisms, leading to a continuum of genealogical structures from clonal 
to “fully sexual” (11). For microbes that recombine in moderation (e.g. S. aureus), it is clear that selection can 
easily act on epistatic allele combinations: mutations will likely exist only in the genetic background on which 
they arose, such that any background-specific epistatic effects are heritable through time and may spread 
through populations via selection. However, we do not know whether highly recombining bacteria, such as 
those that have little genetic linkage and have been historically labeled as “fully sexual” or “freely 
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recombining” (11,12), decouple interacting mutations frequently enough to prevent selection on weak epistatic 
effects, and how strong epistasis must be to dominate the microevolutionary process and drive adaptation in 
these species. It also remains unknown if, as in eukaryotes, selection acts more efficiently on epistatic 
interactions that are physically close in the genome and likely inherited together.  

The most widely studied population genetic models, those for eukaryotes, have not been directly 
applicable to bacteria (or Archaea; 13), and consequently we know little about how epistasis affects adaptive 
processes and the evolution of multi-locus phenotypes such as antibiotic resistance, antigenic profile, or 
metabolic output, all of which likely involve epistatic interactions (14–16). Answering these questions, which 
are relevant for the entire bacterial and Archaeal kingdoms of life, requires multi-locus models with epistasis 
that account for the unique features of bacterial recombination that involves the transfer of smaller DNA 
segments, together with accurate estimates of genome-wide recombination parameters. 

We develop a multi-locus model of bacterial evolution to study how selection may act on standing 
genetic variation when both additive and epistatic effects contribute to fitness differences between individuals. 
In this model, we vary the magnitude and genetic basis of fitness differences but use biologically realistic levels 
of bacterial recombination by inferring these parameters from genomic data of five pathogens (Staphylococcus 
aureus, Campylobacter jejuni, Streptococcus pneumoniae, Neisseria gonorrhoeae, and Helicobacter pylori), 
using Approximate Bayesian Computation (ABC) and machine learning. The bacteria we chose exhibit 
strikingly different degrees of genome-wide LD and include some of the most highly recombining bacteria 
known. In contrast with eukaryotes, we find that in bacteria selection may act on the cumulative effects of very 
weak epistatic interactions (N|s| ≈ 1-10) regardless of their physical proximity on a circular chromosome and 
does not require specific metapopulation structures that have historically been invoked by Wright and others to 
limit the impact of recombination (5,6), even for highly recombining pathogens that have been previously 
labeled as freely recombining (12). Thus, while recombination is sufficiently strong in many bacteria to destroy 
phylogenetic signal in gene trees (17) and to prevent periodic selective sweeps from purging genome-wide 
variation (18,19), it is not capable of hindering selection on epistatic interactions between polymorphisms. 
 
Results 
 Recombination parameter estimates. In order to simulate bacterial evolution with selection and 
biologically realistic recombination rates, we first inferred recombination parameters using five genomic 
datasets from S. aureus, C. jejuni, S. pneumoniae, N. gonorrhoeae, and H. pylori. We inferred both the rate of 
DNA transfer and the mean tract lengths involved using a new approach that we developed (below), as opposed 
to using previously published estimates, because other popular recombination-detection programs have known 
biases towards detecting larger recombination events between more diverged sequences (20). While these 
programs may miss short recombination events or transfers between less diverged sequences, these events affect 
pairwise compatibility (PC) and linkage disequilibrium (LD) such that use of these summary statistics facilitates 
parameter inference in species that have less diversity (e.g. N. gonorrhoeae) or exchange short DNA tracts. 
Consequently, methods that use correlations between mutations to quantify recombination have been gaining 
popularity (21,22). Both the rate and mean lengths of DNA transfers have critical implications for how selection 
acts on epistatic interactions. 

For genomic datasets containing isolates collected across many years or large geographic areas, we 
selected a restricted subsample (Table S1) to avoid population structure that could confound estimates of 
recombination. Analysis of samples taken at very different time points may artificially elongate terminal 
branches of the genealogy, leading to underestimates of LD (and related statistics) and overestimates of 
recombination (23). On average, each dataset had over 1,000 core genes containing almost 1Mb of DNA (Table 
S2). We used fourfold degenerate sites in each sample to calculate Tajima’s D, which was typically near zero 
(Table S2), suggesting these samples came from populations that have not experienced nonequilibrium 
demography and are not strongly structured, both of which may affect estimates of recombination parameters. 
More information on data processing can be found in the Materials and Methods.  

Using Approximate Bayesian Computation (ABC) coupled with Bayesian Optimization (24), we fit 
customized coalescent models with gene conversion to summaries of genomic data in order to infer three 
parameters: the population mutation rate θ=2Nµ, the population recombination rate ρ=2Nr, and the mean of 
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DNA tract lengths transferred between donor and recipient (~Geometric(q), where 1/q is the mean tract length). 
To summarize the statistical associations between single-nucleotide polymorphisms (SNPs), we developed an 
approach that gave accurate estimates of ρ and q (Materials and Methods). Briefly, we used PC to quantify the 
amount of recombination that has taken place between two SNPs, which are compatible with a single phylogeny 
if fewer than four haplotypes are observed (25); either recurrent mutation or, more likely, recombination gives 
rise to four haplotypes (Figure S1). PC is equivalent to the four-gamete test (26) and quantifies historical 
recombination similar to measures of LD, such as D’ or r2 (27). We quantified PC within k genomic windows 
and compared these observed estimates to k simulated windows via a Kolmogorov-Smirnov statistic, which 
captures higher moments of the PC distribution (see Figure S2 for a diagram of our analysis). To infer θ we 
calculated the minimum number of mutations per site (28), a sufficient statistic for this parameter (29). With 
these summary statistics, input recombination parameters were accurately recovered from simulated datasets 
(Figure S3, S4).  

Recombination estimates for the 5 bacteria studied are summarized in Table 1, and simulations with 
these parameters largely fit observed data (Figure 1). While our parameter estimates for some species (S. 
pneumoniae and C. jejuni) are generally consistent with previous work, we observe some differences for other 
species that could be relevant to selection on epistatic interactions. For instance, parameter estimates for H. 
pylori revealed an extremely high value of ρ=472 per kb but short tract lengths around ~50 bp that are 
approximately an order of magnitude smaller than previous estimates of ~400 bp from genomic data (30,31), 
yet in agreement with short lengths reported in carefully designed in vitro experiments that used diverged donor 
and recipient strains (32). We also find that S. aureus frequently transfers (ρ=11.5 per kb) tracts around ~70 bp 
in length, which are also an order of magnitude smaller than previous estimates of ~650 bp (33). Nonetheless, S. 
aureus still exhibits high genome-wide linkage, since these small transfers affect few SNPs. For both species, 
these short tract lengths agree with PC decaying within 100bp (Figure 1), as the PC vs. distance distribution is 
expected to asymptote near the mean tract length because SNPs separated by larger distances are equally likely 
to be unlinked. Such short recombination events have important consequences for evolution (below). 

To our knowledge, this analysis is the first to infer both a recombination rate (ρ=8.6 per kb) and mean 
tract length in N. gonorrhoeae, which appears to transfer long segments  (~2.5 kb) since PC decays slowly with 
distance (Figure 1). The PC data is notably noisy (in particular the change that occurs among SNP pairs 
separated by ~500-700bp), which may be due to rearrangements that have occurred since the divergence of our 
sample and the reference sequence used to estimate inter-SNP distances. Results are similar when we use a 
different reference sequence (Figure S6A), suggesting the rearrangement may be a derived feature of our 
sample. While we do not know the exact effect this noise has on our parameter estimates, it may have led to a 
slight overestimate of recombination rates, as mean PC from simulations parameterized with MDE values listed 
in Table 1 is lower (~10%) than mean PC between randomly sampled SNP pairs, irrespective of distance 
(Figure S6B). 

We thus have within our dataset parameter estimates from a diverse set of bacteria that represent the 
many ways bacteria may transfer DNA, including very high or low rates of transfer with short or long tract 
lengths. A full description of the parameter inference results can be found in the Supplementary Text. 

Multi-locus simulations of evolution. We used simulations of bacterial evolution to study how epistasis 
may affect the short-term rate of adaptation, measuring evolutionary time via changes in diversity arising 
through selection and genetic drift. We model L loci arbitrarily located on a circular chromosome (following 
Fisher’s infinitesimal model). The recombination parameter estimates obtained above are coupled with 
previously published mutation rates (µ) to derive the physical recombination rates (r) with r=ρµ/θ (Table S3). 
We vary the total variance in fitness (σ2), which captures the magnitude of fitness differences between 
individuals, and the genetic basis of σ2, which is comprised of an additive component (VA) from individual locus 
effects and an epistatic component (VI) from pairwise interaction effects, with σ2=VA+VI. Our model uses sign 
epistasis, with effect sizes drawn from a normal distribution with mean zero (Materials and Methods). 
Populations were initiated with standing genetic variation (all L loci polymorphic) and evolved until diversity 
decayed by 20%, as measured by the average number of pairwise differences. At this point, we recorded 
patterns of LD and population fitness relative to an asexual control with the same epistatic effect sizes to 
directly compare our results to those expected under clonal evolution. For contrast, we also modeled a linear 
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eukaryotic chromosome with a relatively low crossover recombination rate equivalent to facultatively sexual 
yeast (Table S4).  

With 10 loci randomly distributed along a ~2Mb chromosome, simulations with eukaryotic 
recombination rates exhibited similar short-term responses to selection compared to an asexual control, when 
population variance in fitness was primarily due to additive effects (Figure 2A). However, if the same selective 
differences were due to epistasis, the response to selection diminished dramatically, showing that even low 
levels of crossover recombination may antagonize adaptation. Bacterial simulations, on the other hand, had 
faster rates of adaptation. Simulations with parameters from H. pylori behaved similar to eukaryotes for highly 
epistatic traits (VI /σ2 = 1) composed of very weak interactions (N|s| ≈ 0.1-0.4, front right) but these dynamics 
quickly changed once interactions became moderately strong (N|s| ≈ 4-10) (Figure 2B). Theory from single-
locus population genetics has shown selection efficiently acts on mutations only when N|s| >>1 (34). A hallmark 
of this clonal selection regime is increased LD measured as D’ between selected loci (Figure 2E; 35,36). 
Selection responses were also higher for H. pylori simulations when epistasis only contributed an intermediate 
amount to the variance in fitness (VI /σ2 ≥ 0.5) and selection was sufficiently strong (back rows in Figure 2B). S. 
pneumoniae’s response to selection was relatively insensitive to the degree of epistasis VI /σ2 for much of the 
parameter space explored here. 

The short-term selection responses for simulations with recombination parameters estimated for other 
bacterial species were similar when the same 10-locus trait was fully or partially epistatic (Figure 3A, B 
respectively), and all bacterial rates of adaptation were consistently higher than the eukaryotic model (colored 
lines vs. black lines). However, if these 10 loci were instead randomly distributed within 5kb, (such as might be 
the case for an operon) selection efficiently acted on epistatic effects in the eukaryote (Figure 3C,D; black line), 
as expected, since recombination breakpoints occur less frequently within smaller intervals. In bacteria, this 
distance-dependence in the effectiveness of selection depended on the mean tract length of DNA transferred 
between donor and recipient. For example, H. pylori transfers ~50bp fragments that are similarly unlikely to 
unlink SNPs separated by 1kb or 1Mb. Alternatively, N. gonorrhoeae has longer recombination tract lengths 
that more likely co-transfer SNPs within 2.5kb, the mean tract length. While these parameters allowed selection 
to more efficiently act on physically close loci, the effect was weaker than that observed in the eukaryotic 
model (Figure 3). Irrespective of tract lengths, these results show the overall sensitivity of bacterial evolution to 
epistasis between polymorphisms depended on the fraction of bases transferred each generation via homologous 
recombination (Table 2), which we refer to as Frec. 

Simple traits may be controlled by fewer loci (e.g. compensatory mutations that ameliorate the cost of 
antibiotic resistance), so we also modeled a trait with 3 loci using the same additive and epistatic selection 
coefficients as above (Figure 4). With fewer loci, σ2 decreases (fewer additive effects and interactions per 
individual), increasing the relative amount of recombination to selection (r/σ2).  Consequently, models of the 
most recombining bacteria (H. pylori and N. gonorrhoeae) exhibited diminished selection responses for highly 
epistatic traits with weak effects, although responses increased within the range N|s| ≈ 2-10, while the eukaryote 
responses changed little. Efficient selection on simple epistatic traits in these species may thus frequently 
involve larger interaction effect sizes (N|s| > 10), which is likely true for antibiotic resistance and compensatory 
mutations that often have very large effects (37). In contrast, simulations mimicking highly recombining S. 
pneumoniae still behaved in a largely clonal fashion (R/Rasex ≥ 0.6) for even weak effects. S. aureus and C. 
jejuni models did not appear to recombine frequently enough to compete with even weak selection and had 
similar responses to asexuals for any number of loci or effect sizes examined here (Figure 4). 
 Distributions of pairwise LD between synonymous SNPs. Our finding that even high rates of 
bacterial recombination permit epistatic alleles to contribute to adaptation raises the question of whether 
epistasis has shaped patterns of PC, which we used to quantify recombination under a neutral model. While we 
attempted to mitigate the affect of selection on parameter estimates by using synonymous SNPs, these 
polymorphisms could theoretically exhibit epistatic interactions or be partially linked to epistatic 
nonsynonymous SNP pairs, both of which may skew distributions of LD (and thus PC; 38) and lead to 
underestimates of population recombination rates if we assume these polymorphisms are neutral. However, 
whether or not epistasis affects genome-wide patterns of LD depends on the frequency and strength of epistatic 
interactions and whether selection is ongoing in the population (i.e. loci under selection have not fixed). 
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To assess whether epistasis has recently shaped the statistical associations between synonymous SNPs, 
we polarized mutations using an outgroup species (Table S6) and quantified LD using D = pij-pipj, where pi and 
pj are the derived allele frequencies at site i and j, and pij is the observed frequency in which both derived alleles 
occur on the same haplotype. The expected value of D is zero under neutrality, but epistasis or population 
structure can skew the distribution away from this expectation, even if epistatic fitness effects are equally likely 
to have positive or negative values (38). For most species examined here, observed distributions of D between 
synonymous SNP pairs largely resembled neutral distributions simulated with the MDE parameters inferred in 
Table 1 (Table S7). Observed distributions of D had slightly different means (all near zero) but similar 
variances compared to neutral simulations (Table S7), suggesting epistasis has not strongly shaped genome-
wide LD between synonymous SNPs. However, we cannot completely rule out selection having small effects 
on parameter estimation. Incorporating selection into simulation-based models for parameter inference requires 
knowledge of the distribution of epistatic effects, which we are currently exploring. 
 
Discussion 

Simple evolutionary models from population genetics shape our expectations and interpretations of 
nature and guide the development of future research (3,5,9). Interest in sexual eukaryotes has inspired the 
simplifying convention of gene-centered models that promote the importance of additive gene effects and 
ignore epistasis; multilocus genotypes in eukaryotes rarely persist longer than a single generation such that only 
anomalously strong interactions require consideration (39). This gene-centric view pervades discussions of 
evolution and adaptation (3–7), including those on bacteria, many of which recombine extensively and are 
commonly reduced to “core” and “accessory” genes, with niches providing selective advantages to specific 
genes (40,41). While this model is certainly inappropriate for largely clonal bacteria, we show, in the presence 
of epistasis, it also may not apply to highly recombining bacteria thought to be “effectively sexual” (11) from 
very low correlations between SNPs (r2, Figure S7), even if the epistasis is weak (N|s| ≈1-10) and loci are 
distantly spaced. Selection in many bacteria may thus act on epistatic interactions that would be virtually 
invisible to selection in eukaryotes, allowing bacteria to harness these effects to rapidly respond to novel 
pressures. Selection may act on even weaker epistatic effects for fitness traits controlled by more than 10 loci 
(the maximum explored here), since increasing the number of loci with fitness effects increases σ2 and thus 
decreases r/σ2 (36). The stark difference in the ability of epistatic alleles to contribute to adaptation in bacteria 
and eukaryotes is driven by differences in genome architecture. Crossover recombination in eukaryotes 
exchanges large genomic segments, breaking numerous allele pairings even under low rates of exchange. 
Homologous recombination, alternatively, involves the transfer of shorter DNA segments that can substantially 
reduce LD between nearly neutral polymorphisms over time (Figure S7) but less so over the shorter 
evolutionary timescales on which selection acts.  

These findings generate experimentally testable predictions relevant to exploring the distribution of 
epistatic effects between natural polymorphisms: 1.) effect sizes (in terms of Ns) will generally be stronger for 
species that recombine extensively, for instance compensatory mutations for antibiotic resistance may be 
stronger in species such as N. gonorrhoeae and H. pylori, or even less likely to exist; 2.) the distribution of 
observed epistatic effect sizes may differ between polygenic fitness traits controlled by fewer or more loci 
since, for a given amount of recombination, selection may act on weaker epistatic effects if there are more loci 
contributing to fitness differences; 3.) short range interactions between physically closer loci may be broken 
more frequently in highly recombining species that exchange short DNA tracts (e.g. H. pylori), which may alter 
the distribution of observed epistatic effects between loci within operons. Our results also have important 
implications for the genetic basis of adaptation and the maintenance of population structure, since epistatic 
alleles may be maintained even in the presence of high levels of homologous recombination. 

We have quantifed bacterial recombination parameters with a new method sensitive enough to detect 
small tract lengths and events between closely related strains. We summarize these recombination parameters as 
Frec (Table 2), which largely dictates the ability of selection to act on epistasis between distant polymorphisms 
(Figure 3A,B). For physically close pairwise interactions within 5kb, bacteria may decouple allele combinations 
faster than eukaryotes, particularly for species with higher recombination rates and shorter tract lengths (Figure 
3C,D). Consequently, the evolutionary benefit to physically clustering loci that epistatically interact may be 
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weaker in bacteria (close and distant loci are decoupled with similar frequencies) than eukaryotes, in which 
epistasis is thought to play a role in gene order (42).  

We use sign epistasis in our simulations (Materials and Methods), which was also used in historical 
arguments to challenge Fisher on the potential importance of gene interactions (5,10). While the specific type of 
epistasis will have important consequences for long-term evolution, we have focused on the short term to define 
the fundamental capacity of selection to act on allele combinations in bacteria. Ultimately, the importance of 
epistasis will also depend on the distribution of epistatic fitness effects, which may vary between traits, and the 
number of loci that contribute to multi-locus fitness traits. Recent work in S. pneumoniae revealed evidence of 
co-evolution across the genome, with numerous loci exhibiting elevated LD (43), some of which may be driven 
by selection on epistatic interactions as our results here show it is very plausible for selection to act even on 
weak epistasis in this species (Figures 2-3).  

While our dataset consists of opportunistic and obligate pathogens, our results likely extend to other 
microbes. For instance, a genomic study of Vibrio cyclitrophicus showed recombination is sufficiently strong to 
allow gene-specific selective sweeps, as opposed to the periodic selection model in which sweeps have genome-
wide effects (19). Like in H. pylori, LD decays rapidly within 50 bp in V. cyclitrophicus but asymptotes at a 
value well above zero, suggesting residual linkage genome-wide. Thus, while gene flow and recombination may 
homogenize ecotypes outside of genomic regions involved in local adaptation, recombination may not be strong 
enough to antagonize selection on epistatic interactions. However, exact estimates of recombination from LD 
data require knowledge of population size (via knowledge of the mutation rate). We also applied our method to 
a genomic dataset of thermophilic archaea Sulfolobus islandicus (44) but struggled to accurately infer the mean 
tract length due to low diversity and small sample size (11 isolates). Nevertheless, our best parameter estimates 
strongly suggest a low recombination rate that likely permits selection on weak epistatic interactions (Figure 
S8). Thus, epistasis between polymorphisms scattered across the genome may play a critical role in adaptive 
processes across a majority of the tree of life, and unlike eukaryotes, these interactions do not need to be strong 
or physically close, and do not require specific metapopulation dynamics to permit efficient selection. 
 
 
Materials and Methods: 
 Genomic data  
 We analyzed previously published genomic datasets (Table S1). Using an amino acid file from a 
reference genome (Table S2), we annotated de novo assemblies from each species with PROKKA (45) and 
identified core and accessory genes with ROARY (46). Only core genes -- present in all samples in a species – 
that were also present in the reference genome were used for downstream analyses. All position information 
between genes and polymorphic sites is derived from their relative positions in the reference genome used to 
annotate de novo assemblies, not from a reference-based DNA alignment (Figure S2). For analyses that required 
polarized mutations, we used Mauve (47) to align these reference genomes to an outgroup species (Table S6) to 
infer the derived and ancestral state of each polymorphism. 
 Sub-sample selection 
 For datasets with a wide geographic or temporal distribution, we partitioned samples by geography and 
collection date into smaller subsamples to minimize the effects of sampling and structure on population genetic 
parameter estimates. Subsamples consisted of isolates from a similar geographic region (to avoid genetic 
isolation by distance) and also had similar collection dates, since serial samples can skew genealogies to have 
longer terminal branches, potentially leading to substantial overestimates of linkage disequilibrium or related 
statistics (48). Subsamples that had the least evidence of substructure (near-zero estimates of Tajima’s D) were 
chosen for analysis (Table S2). 
 Estimation of population genetic parameters 
 Summary statistics. We used five summary statistics to fit coalescent models to observed genomic 
data: the minimum number of mutations per site (28) to estimate the population mutation rate θ=2Nµ, and four 
recombination-related statistics to estimate both the population recombination rate ρ=2Nr and the mean of the 
geometrically-distributed DNA tract lengths transferred between donor and recipient (1/q, where q is the 
geometric distribution parameter). We used pairwise compatibility (PC) to quantify the amount of 
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recombination that has taken place between two SNPs, which are compatible with an infinite-sites model of no 
recombination if less than four haplotypes are observed; either recurrent mutation or, more likely, 
recombination gives rise to four observed haplotypes (Figure S1). PC generally decreases as a function of the 
genomic distance between SNPs in recombining bacteria, and the shape of this decay contains information 
about both ρ and q. Consequently, for four different inter-SNP distance categories we calculated mean PC to 
capture both short- and long-range recombination dynamics (similar to (21)). We calculated mean PC only for 
synonymous, intermediate-frequency SNPs (10-90% frequency in sample), and the minimum number of 
mutations only for fourfold degenerate sites. 

Since we are interested in inferring parameters genome-wide, we compared observed summaries from k 
genomic windows with k simulated datasets, since our coalescent model could only simulate segments of 
maximal length roughly equal to 150 kb (below). To find the right set of summary statistics for inference of ρ 
and q, we simulated a k-window dataset with known parameter values and compared summaries calculated from 
this “true” dataset with those calculated from k-window datasets simulated across a grid of θ, ρ, and q values. 
Specifically, for each simulated dataset in the grid, we calculated a discrepancy between k simulated and “true” 
summary statistic values using a Kolmogorov-Smirnov statistic, one for each of 5 summaries (above). We 
summed these 5 Kolmogorov-Smirnov statistics for each point in the grid (Figure S3). When we measured PC 
at two short-range inter-SNP distances (with respect to the decay of PC vs. distance) and two long-range inter-
SNP distances, datasets simulated with parameter values close to “true” values had the smallest discrepancy. 
Thus, we chose different inter-SNP distances and window lengths for each species (Table S5) based on the 
decay of PC vs. distance and on the computational resources needed to simulate data within the parameter 
space, as high ρ required more memory or time, depending on the simulator used. We found that only 
comparing the mean values of PC summaries between simulated and observed data, as opposed to the full 
distribution of k values, resulted in a reduced ability to distinguish between datasets simulated with high ρ, large 
q (small tract lengths) and low ρ, small q (large tract lengths).  
 Coalescent simulations. Using CoaSim (49), we constructed a novel, finite-sites coalescent model to 
simulate genomic DNA, which was required to accurately model sequence alignments from highly diverse 
pathogens like H. pylori that frequently have multiple bases per site. A finite-sites model not only enables more 
accurate inference of θ=2Nµ but also more precise estimates of recombination parameters since back mutation 
mimics recombination by affecting PC, particularly for species with high transition:transversion ratios (Ti:Tv). 
Our coalescent model thus accounted for species-specific base compositions and Ti:Tv, which we estimated 
from a reference genome or fourfold degenerate sites, respectively (Table S5). For less diverse species, we used 
ms (50) to simulate longer DNA sequences, which yielded better estimates of recombination parameters as there 
were more SNP pairs with particular inter-SNP distances.  
 Parameter Estimation. We constructed a novel approach to estimate population genetic parameters in 
bacteria, based on the statistical framework of (24). Our method uses Bayesian Optimization with Gaussian 
Process regression (GPR) to model the discrepancy between simulated and observed datasets. We chose this 
machine-learning approach to prudently explore parameter space due to the computational requirements of the 
finite-sites coalescent simulator. For each set of parameters (θ, ρ, q) chosen by the method, we simulated k 
genomic windows, calculated 5 summary statistics (above) for each window, and used a Kolmogorov-Smirnov 
statistic to calculate 5 discrepancies between each set of k simulated and observed summaries. The final 
discrepancy was a sum of these 5 Kolmogorov-Smirnov statistics.  We ran the inference algorithm for 320 
iterations, simulating k windows each time (Figure S5). The results stabilized after 200 iterations when the GPR 
no longer changed with additional acquisitions (visual inspection). The GPR model of the discrepancy was then 
used in an approximate Bayesian computation (ABC) framework to approximate the intractable likelihood 
function that enabled us to compute the posterior distributions by standard sequential Monte Carlo sampling 
(24). Specifically, the likelihood function was approximated by the probability to draw discrepancy values from 
the GPR model that are less than a small threshold. Following common practice, the threshold was set to the 1% 
quantile of the discrepancy values of the simulated data. When given "observed" data that we generated with 
known parameter values, our approach accurately estimated the input parameter values (Figure S4). 
 Comparing k simulated DNA segments with k observed genomic windows implicitly assumes 
independence among windows, since each coalescent simulation is independent. To test whether this 
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assumption affects parameter estimation, we simulated a large 200kb DNA segment with a modest 
recombination rate and broke this segment up into 10 20kb windows. We then simulated a grid of θ, ρ, and q 
values around the “true” values used to simulate the large segment and calculated the discrepancy between 
simulated and “true” summaries, as above. Like before, datasets simulated with parameter values close to “true” 
values had the smallest discrepancy (Figure S3), showing that this independence assumption should not greatly 
affect our parameter estimates and conclusions, at least within the range of recombination rates studied here. 
 Epistasis simulations 
 Model. We created a forward-time simulation framework in C++ similar to that of Neher and Shraiman 
(36), which uses Fisher’s infinitesimal model to simulate a population of chromosomes with L loci represented 
as li = ±1, i =1, …  L. Each locus has an additive effect , where VA is the additive fitness variance, 

and each locus pair has an epistatic interaction effect , where VI is the epistatic fitness 

variance. Distributions of epistasis with zero mean have been observed in bacteria and other microbes (2). The 
fitness of each individual is calculated as: 

 

such that each locus or locus pair contributes a small, similar amount to the additive or epistatic component of 
fitness, respectively. However, we modified Neher and Shraiman’s framework in two important ways: (1) we 
modeled both homologous recombination in a circular chromosome and eukaryotic recombination on a linear 
chromosome and (2) we randomly distribute the L loci in a circular/linear segment of arbitrary size, allowing us 
to accommodate for different bacterial genome sizes but also simulate loci within smaller sub segments (e.g. 
5kb). While we simulate recombination genome-wide, only those events that overlap with any positions of the L 
loci affect the genotype, unless donor and recipient have the same alleles at those loci. Source code for this 
simulator is freely available (github.com/brian-arnold/BacteriaEpistasisSimulator). 

Analysis of simulations. We ran each simulation until genetic diversity (as measured by the average 
number of pairwise differences π (51)), decayed a specified amount in order to analyze simulations of different 
population sizes on the same evolutionary timescale. At this stopping point, we calculated the standardized 
response to selection 

 

or the difference between the mean population fitness before ( ) and after ( ) selection. 
We also ran an asexual “control” for each simulation, holding all parameter values constant (even pairwise-
epistatic selection coefficients, which are randomly drawn for each replicate of bacterial evolution) but setting 
the recombination rate to zero, and calculated the same response to selection (Rasex). We used these two 
quantities to calculate the relative speed of adaptation R/Rasex and study how clonal these pathogens behave in 
the presence of varying amounts of epistasis. For short-term evolution (e.g. π decays to 80% starting value), 
R/Rasex <= 1 if much of the variance in fitness is epistatic, since recombination will primarily break apart 
beneficial genotypes. For long-term evolution or if fitness effects are primarily additive, R/Rasex may be >= 1 
from greater exploration of the fitness landscape. 
 Rescaling simulations. We inferred both the population mutation rate θ=2Nµ and population 
recombination rate ρ=2Nr from genomic data, but in order to obtain estimates of the recombination rate (r) that 
we used in simulations with epistasis, we used previously published mutation rates (µ) to calculate r=ρµ/θ. 
However, these mutation rates come from serial samples and are scaled in units of months or years, not the 
standard generation timescale normally used in Wright-Fisher models. Consequently, by using these scaled 
estimates of N and r, we effectively simulate a rescaled population with N/λ, λr, and λs, where λ>1 represents 
the number of bacterial generations per time step (i.e. 1 month). While rescaling has been previously explored 
for simple scenarios of selection (52), we confirm that rescaling preserves the population genetic dynamics of 
more complex selection with epistasis and recombination as long as the ratio of r/s is conserved. For instance, 

f = VA / L

fij ~ Normal 0,
2VI

L(L −1)
"

#
$

%

&
'

Fitness = f li
i

L

∑ + fij
i< j
∑ lil j

R =WAS −WBS

σ BS

WBS WAS
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simulating a population size of N = 10,000 or N/λ = 1000 (λ=10) gives remarkably similar results on different 
evolutionary timescales  (different by a factor of λ), as long as r and s are changed accordingly such that Nr, Ns, 
and r/s are constant (Figure S9). 
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Figure 1. Observed pairwise compatibility vs. distance. (A) Patterns of PC (green) vary among the species 
included in this study. Since PC measures the compatibility of two SNPs with a single phylogeny, these data 
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indicate that SNPs more than ~1kb apart have distinct phylogenetic histories from recombination, with the 
exception of S. aureus which exhibits linkage. (B) Simulated patterns of PC vs. distance (brown) using 
parameter estimates from Table 1 fit observed data well. We note that the sensitivity of PC to sample size (n) 
makes these patterns not directly comparable across species and that the product of effective population size and 
recombination (or ρ=2Nr) affects PC. 
 
 

 
 
Figure 2. Bacterial recombination interferes with the response to selection, especially for highly epistatic 
traits under weak selection, but less than eukaryotic recombination.  Response to selection, relative to an 
asexual control (R/Rasex) for a eukaryote (A), H. pylori (B), and S. pneumoniae (C). The relative epistatic 
variance (VI /σ2) varies along the x-axis, and the variance in fitness (σ2) increases along the y-axis but is labeled 
according to the mean value of N|s| for each pairwise epistatic interaction when VI /σ2 = 1. (D-F) Linkage 
disequilibrium, as measured by D’, increases when selection outcompetes recombination and spreads particular 
genotypes through the population. The result for each parameter set is an average of 1000 simulations using 
L=10 loci under selection, randomly distributed throughout a genome. 
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Figure 3. Distance-dependence of selection on epistatic interactions. Short-term relative selection responses 
are shown for a trait controlled by L=10 loci randomly distributed throughout a genome (A,B) or 5kb segment 
(C,D) when the variance in fitness is purely or partially epistatic (VI /σ2=1 or 0.6, respectively). The epistatic 
effect per locus pair (N|sI|) and additive effect per locus (N|sA|) are shown along the x-axis. Colored lines 
correspond to different bacterial species. As in Figure 2, A and B show selection acts more efficiently on 
epistatic traits in bacteria than in the eukaryote (black line). While selection acts significantly more on 
physically close epistatic interactions for the eukaryote (B,D), this effect is not as strong for bacteria, 
particularly for species that transfer short tract lengths (H. pylori). Increasing the amount of additivity (B,D) 
makes all species have greater selection responses since fitness depends less on particular allele combinations 
and is not altered as much by recombination events. 
 
 
 
 
 
 
 

 
Figure 4. Selection responses for a less complex trait. As in Figure 3, short-term relative selection responses 
are shown for a trait controlled by L=3 loci randomly distributed throughout a genome (A,B) or 5 kb segment 
(C,D) when the variance in fitness is purely or partially epistatic (VI /σ2=1 or 0.6, respectively).  While the 
responses here are similar to the previous case of 10 loci (see Figure 3 for more details), the magnitude is 
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diminished because for a given set of additive and epistatic effect sizes (x-axis), σ2 decreases with the number of 
loci. Note that data are plotted only for N|sI| ≥ 1 as simulations with smaller σ2 were highly stochastic. 
 
 
 
 
 
Table 1. ABC Parameter estimates 

 
Note: MDE represents the minimum discrepancy estimate from the GPR, or the parameter value set with the smallest discrepancy 
between simulated and observed data. Estimates of θ and ρ are in units per kb, while 1/q is in bp. 
 
 
 
 
 
 
Table 2. Fraction of bases exchanged per generation via homologous recombination (Frec) 

 
 
 

Species
 Parameter
 MDE

Mean


 (Lower CI/Upper CI)

θ
 31.9
 32.0 (24.6/41.6)


S. aureus
 ρ
 11.5
 12.2 (6.9/22.2)

(n=30)
 1/q
 68
 63 (30/120)


θ
 10.6
 10.6 (7.6/14.4)

C. jejuni
 ρ
 0.6
 0.6 (0.3/1.0)

(n=23)
 1/q
 1429
 1429 (667/3333)


θ
 26.9
 26.7 (19.8/35.5)

S. pneumoniae
 ρ
 11.5
 11.3 (9.2/13.9)


(n=280)
 1/q
 588
 625 (455/833)


θ
 4.3
 4.9 (1.4/19.5)

N. gonorrhoeae
 ρ
 8.6
 8.2 (4.5/14.5)


(n=19)
 1/q
 2500
 3333 (1250/10000)


θ
 133.7
 129.0 (106.1/160.5)

H. pylori
 ρ
 471.7
 484.7 (378.8/652.7)


(n=21)
 1/q
 49
 49 (27/96)


Species
 ρ/q(Genome Size)*

S. aureus
 0.28*10-06


C. jejuni
 0.52*10-06


S. pneumoniae
 3.24*10-06


N. gonorrhoeae
 9.98*10-06


H. pylori
 13.9*10-06


*recombina+on,parameter,values,from,
MDEs,in,Table,1,,genome,sizes,from,Table,S5,,

ρ
q(Genome Size)Species


S. aureus
 0.28*10-06


C. jejuni
 0.52*10-06


S. pneumoniae
 3.24*10-06


N. gonorrhoeae
 9.98*10-06


H. pylori
 13.9*10-06


*recombina+on,parameter,values,from,
MDEs,in,Table,1,,genome,sizes,from,Table,S5,,
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