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Abstract12

Reproduction is a defining feature of living systems. Reproduction modes range from binary13

fission in bacteria to various modes of collective-level reproduction in multicellular organisms.14

However, the evolution of these modes and their adaptive significance is unclear. We develop15

a model in which groups arise from the division of single cells that do not separate, but stay16

together until the moment of group fragmentation. Fragmentation occurs via either complete or17

partial fission, resulting in a wide range of life cycles. By determining the relationship between life18

cycle and population growth rate, we define optimal fragmentation modes that have a surprisingly19

narrow class of solutions. Our model and results provide a framework for analysing the evolution20

of simple life cycles and for exploring the adaptive significance of different modes of reproduction.21

1 Introduction22

A requirement for evolution – and a defining feature of life – is reproduction [Godfrey-Smith, 2009,23

Libby and Rainey, 2013, Hammerschmidt et al., 2014]. Perhaps the simplest mode of reproduction is24
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binary fission in unicellular bacteria, whereby a single cell divides and produces two offspring cells.25

However, even a process as simple as this can underlie more complex modes of reproduction involving26

life cycles comprised of recurring collective phases, or collective phases alternating with single cell27

phases [Angert, 2005]. For example, in the bacterium Neisseria, a diplococcus, two daughter cells28

remain attached forming a two-celled group that separates into two groups of two cells only after29

a further round of cell division [Westling-Häggström et al., 1977]. Staphylococcus aureus, another30

coccoid bacterium, divides in three planes at right angles to one another to produce grape-like clusters31

of about 20 cells from which single cells separate to form new clusters [Koyama et al., 1977].32

These are just a few examples of a large number of diverse “unicellular” reproduction modes, but33

why should there be such a range of life cycles? Do these reproduction modes have adaptive signif-34

icance or are they simply the unintended consequences of particular cellular processes underpinning35

cell division? If adaptive, what selective forces shape their evolution? Do different life cycles provide36

different opportunities to maximise intrinsic cell growth rate, or are collectives themselves the focal37

units of selection?38

A starting point to answer these questions is to consider benefits and costs of group membership.39

Benefits may arise for various reasons. Cells within groups may be better able to withstand environ-40

mental stress [de la Fuente-Núñez et al., 2013], escape predation [Boraas et al., 1998], or occupy new41

niches [Bonner, 1982, Rainey and De Monte, 2014]. Also, via density dependent modes of gene reg-42

ulation, cells within groups may gain more of a limiting resource than they would if alone [Williams43

et al., 1992, Diggle et al., 2007]. On the other hand, cells within groups experience increased com-44

petition and must also contend with the build up of potentially toxic waste metabolites [Groebe and45

Mueller-Klieser, 1996, Stewart and Franklin, 2008]. Thus, it is reasonable to expect an optimal rela-46

tionship between group size and mode of reproduction that is environment and organism dependent47

[Tarnita et al., 2013, Rashidi et al., 2015, Kaveh et al., 2016].48

Here we formulate and study a matrix population model [Caswell, 2001] representing a popula-49

tion of groups of different size to consider all possible modes of group fragmentation. By determining50

the relationship between life cycle and population growth rate, we show that there is, overall, a nar-51

row class of optimal modes of fragmentation. When the process of fragmentation does not involve52

costs, optimal fragmentation modes are characterised by a deterministic schedule and binary splitting,53

whereby groups fragment into exactly two offspring groups. Contrastingly, when a cost is associated54
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with fragmentation, it can be optimal for a group to fragment into multiple propagules of equal size.55

Our results show that the range of life cycles observed in simple microbial populations are likely56

shaped by selection for intrinsic growth rate advantages inherent in different modes of group reproduc-57

tion. These findings also have relevance for understanding the emergence of life cycles underpinning58

the evolution of multicellular life.59

2 Methods60

2.1 Group formation and fragmentation61

We consider a population in which a single type of cell (or unit or individual) can form groups (or62

complexes or aggregates) of increasing size by cells staying together after reproduction [Tarnita et al.,63

2013]. We assume that the size of any group is smaller than n, and denote groups of size j by Xj .64

Groups die at rate dj and cells within groups divide at rate bj ; hence groups grow at rate jbj (Fig. 1.a).65

The vectors of birth rates b = (b1, . . . , bn−1) and of death rates d = (d1, . . . , bn−1) make the costs66

and benefits associated to the size of the groups explicit, thus defining the “fitness landscape” {b,d}67

of our model.68

Groups produce new complexes by fragmenting (or splitting), i.e., by dividing into smaller groups69

(Fig. 1.b). We further assume that fragmentation is triggered by the growth of individual cells within70

a given group. Consider a group of size j growing into a group of size j + 1. Such a group can either71

stay together or fragment. If it fragments, it can do so in one of several ways. For example, a group72

of size 4 can give rise to the following five “fragmentation patterns”: 4 (the group does not split but73

stays together), 3+1 (the group splits into two offspring groups: one of size 3, and one of size 1), 2+274

(the group splits into two groups of size 2), 2+1+1 (the group splits into one group of size 2 and two75

groups of size 1), and 1+1+1+1 (the group splits into four cells). Mathematically, such fragmentation76

patterns correspond to the five partitions of 4 (a partition of a positive integer j is a way of writing j as77

a sum of positive integers without regard to order; the summands are called parts [Andrews, 1998]).78

We use the notation κ ` ` to indicate that κ is a partition of `, for example 2 + 2 ` 4. The number of79

partitions of ` is given by ζ`, e.g., there are ζ4 = 5 partitions of 4.80

We consider a vast space of life cycles comprising all possible ways groups can grow and fragment81

into smaller groups. A “life cycle” (or “fragmentation mode”) assigns a probability qκ to each possible82
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b) fragmentation:

a) growth and death:
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1 +1 +1 +1

. . .
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κ ˫ 2

κ ˫ 3

κ ˫ 4

Figure 1: Demographic dynamics depend on the growth, death, and fragmentation of groups. (a) Groups

of size i die at rate di and cells within them divide at rate bi, hence groups grow at rate ibi. (b) Fragmentation

of groups occurs immediately after the reproduction of cells. Here we show all possible fragmentation patterns

of groups of size i = 2, 3, 4. Each fragmentation pattern (determining the number and size of offspring groups)

can be identified with a partition of i, i.e., a way of writing i as a sum of positive integers, that we denote by

κ ` i. The last fragmentation pattern is i itself, in this case there is no actual fragmentation and cells stay

together after individual reproduction.
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fragmentation pattern (or partition) κ ` 2, κ ` 3, ..., κ ` n. Such probabilities satisfy
∑

κ`j+1 qκ = 183

for j = 1, . . . , n− 1, i.e., when growing from size j to j+1 one of the partitions κ ` j+1 (including84

staying together without splitting, κ = (j+1)) will certainly occur. Additionally, we impose qn = 0 so85

that, when growing from size n− 1 to size n, a group can no longer stay together and will necessarily86

fragment. It follows that a given life cycle or fragmentation mode can be represented by a set of87

vectors of the form88

q =

(q2, q1+1︸ ︷︷ ︸
κ`2

), (q3, q2+1, q1+1+1︸ ︷︷ ︸
κ`3

), . . . , (qn, qn−1+1, qn−2+2, . . . , q1+1+...+1︸ ︷︷ ︸
κ`n

)

 . (1)

As an illustration, consider the subset of stochastic strategies so that (i) with probability q a two-cell89

group grows to size three and then fragments according to fragmentation pattern 2+1, and (ii) with90

probability 1 − q a two-cell group fragments according to fragmentation pattern 1+1. Such a set of91

strategies is represented by92

q = {(q2, q1+1), (q3, q2+1, q1+1+1)} = {(q, 1− q), (0, 1, 0)} . (2)

We consider both deterministic and stochastic life cycles. For deterministic life cycles, splitting prob-93

abilities qκ are either zero or one, so that only one fragmentation pattern with more than one offspring94

group occurs. This pattern can then be used to refer to the deterministic life cycle. For example,95

we represent the fragmentation mode {(1, 0), (0, 1, 0)} by 2+1. The total number of deterministic96

fragmentation modes is97

n−1∑
j=1

(ζj+1 − 1), (3)

which grows quickly with n: There are 128 deterministic fragmentation modes for n = 10, but98

1295920 for n = 50. The more general stochastic life cycles are characterised by some fragmentation99

pattern occuring with a probability between zero and one (Fig. 2).100

2.2 Biological reactions and demographic dynamics101

Together with the fitness landscape given by the vectors of birth rates b and death rates d, each102

fragmentation mode specifies a set of biological reactions. A number n− 1 of reactions, of the type103

Xi
di−→ 0 (4)
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Figure 2: Deterministic and stochastic life cycles. (a) A deterministic life cycle (or fragmentation mode)

given by q = {(1, 0), (1, 0, 0), (0, 0, 0, 1, 0)}, whereby groups grow to size 3 and then split according to the

fragmentation pattern 2+1+1. In a deterministic life cycle, fragmentation patterns are assigned a probability

equal to either zero or one, so that fragmentation occurs only at a given group size (here, 3). (b) A stochastic

life cycle given by q = {(0.9, 0.1), (0.5, 0.3, 0.2), (0, 0, 0, 1, 0)}. In a stochastic life cycle, the probability of at

least one fragmentation pattern is between zero and one.
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model the death of groups; these are independent of the fragmentation mode. An additional number104

of reactions, one per each non-zero element of the vector q, models the birth of units and the growth105

or fragmentation of groups. These reactions are of the type106

Xj
jbjqκ−−−→

j+1∑
`=1

π`(κ)X`, (5)

whereby a group of size j turns into a group of size j + 1 at rate jbj , and then instantly divides with107

probability qκ into offspring groups in a way described by fragmentation pattern κ ` j + 1, where108

parts equal to ` appear a number π`(κ) of times. These reactions depend on the life cycle, which109

specifies the probabilities of fragmentation patterns. For instance, the reaction110

X3
3b3q2+1+1−−−−−−→ X2 + 2X1,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will split with probability q2+1+1 into111

one group of size 2 and two groups of size 1. The growth of a group without fragmentation is also112

incorporated in the set of reactions given by (5). For instance, the reaction113

X3
3b3q4−−−→ X4,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will not split with probability q4.114

The sets of reactions (4) and (5) give rise to the system of differential equations115

ẋi =

n−1∑
j=1

∑
κ`j+1

qκπi(κ)jbjxj − ibixi − dixi, i = 1, 2, . . . , n− 1, (6)

where xi denotes the abundance of groups of size i. This is linear system can be represented in matrix116

form as117

ẋ = Ax, (7)

where x = (x1, x2, . . . , xn−1) is the vector of abundances of the groups of different size and118

A =



b1
∑
κ`2

qκπ1(κ)− b1 − d1 2b2
∑
κ`3

qκπ1(κ) · · · (n− 1)bn−1

∑
κ`n

qκπ1(κ)

b1
∑
κ`2

qκπ2(κ) 2b2
∑
κ`3

qκπ2(κ)− 2b2 − d2 · · · (n− 1)bn−1

∑
κ`n

qκπ2(κ)

0 2b2
∑
κ`3

qκπ3(κ) · · · (n− 1)bn−1

∑
κ`n

qκπ3(κ)

0 0 · · · (n− 1)bn−1

∑
κ`n

qκπ4(κ)

...
...

. . .
...

0 0 · · · (n− 1)bn−1

∑
κ`n

qκπn−1(κ)− (n− 1)bn−1 − dn−1


(8)
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is the projection matrix determining the demographic dynamics of the population.119

Note that the entries of the projection matrix A are functions of the life cycle q and the birth120

and death rates b and d. Since complexes can only split into complexes of equal or smaller size,121

πi(κ) = 0 for all κ ` j + 1 and i > j + 1. Hence, the projection matrix A has zero entries below the122

first subdiagonal. As an illustration, consider the subset of stochastic strategies represented by Eq. (2)123

and subject to the fitness landscape {b,d} = {(b1, b2), (d1, d2)}. In this simple case the projection124

matrix reduces to125

A =

b12(1− q)− b1 − d1 2b2

b1q −d2

 . (9)

2.3 Population growth rate126

For any life cycle q and any fitness landscape {b,d}, the projection matrix A is essentially non-127

negative, i.e., all the elements outside the main diagonal are non-negative [Cohen, 1981]. This implies128

that A has a real leading eigenvalue λ1 with associated non-negative left and right eigenvectors v and129

w. In the long term, the solution of Eq. (7) converges to that of an exponentially growing population130

with a stable distribution, i.e.,131

lim
t→∞

x(t) = eλ1tw.

The leading eigenvalue λ1 hence gives the total population growth rate in the long term, and its asso-132

ciated right eigenvector w = (w1, . . . , wn) gives the stable distribution of group sizes so that, in the133

long term, the fraction of complexesXi in the population is proportional towi. The leading eigenvalue134

λ1 is the largest solution of the characteristic equation det (A− λI) = 0. For example, the stochastic135

strategy represented by Eq. (2) and characterised by projection matrix (9) achieves a growth rate given136

by137

λ1 =
b1(1− 2q)− (d1 + d2) +

√
(d1 + d2 − (1− 2q)b1)2 + 4b1(2qb2 + (1− 2q)d2)

2
. (10)

In the particular case of a deterministic life cycle associated to fragmentation pattern κ ` m, the138

characteristic equation reduces to (Appendix A.1)139

Fm(λ)−
m−1∑
i=1

πi(κ)Fi(λ) = 0, (11)

where140

Fi(λ) =

i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (12)
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For instance, the growth rate of fragmentation mode 2+1+1 (illustrated in Fig. 2a) is given implicitly141

by the largest solution of F4(λ)−F2(λ)−2F1(λ) = 0. As Eq. (11) is a polynomial equation of degree142

m − 1, explicit formulas for the growth rate in terms of birth rates and death rates are only available143

for small m (m ≤ 5). For instance, the growth rate of fragmentation modes 1+1, 1+1+1, and 2+1 are144

respectively given by145

λ1+1
1 = b1 − d1, (13a)

λ2+1
1 =

−(b1 + d1 + d2) +
√

(b1 + d1 − d2)2 + 8b1b2

2
, (13b)

λ1+1+1
1 =

−(b1 + 2b2 + d1 + d2) +
√
b21 + 2b1(10b2 + d1 − d2) + (2b2 − d1 + d2)2

2
. (13c)

For larger values of m, we solve Eq. (11) numerically.146

2.4 Dominance and optimality147

For a given fitness landscape {b,d}, we can take the leading eigenvalue λ1(q;b,d) as a measure148

of fitness of life cycle q, and consider the competition between two different life cycles, q1 and q2.149

Indeed, under the assumption of no density limitation, the evolutionary dynamics are described by two150

uncoupled sets of differential equations of the form (7): one set for q1 and one set for q2. In the long151

term, q1 outcompetes q2 if λ1(q1;b,d) ≥ λ1(q2;b,d); we then say that life cycle q1 dominates life152

cycle q2 and write q1 ≥λ1 q2. We also say that strategy qi is optimal for given birth rates b and death153

rates d if it achieves the largest growth rate among all possible fragmentation modes, i.e., qi ≥λ1 qj154

for all qj in the set of life cycles.155

2.5 Two classes of fitness landscapes: fecundity landscapes and viability landscapes156

Fitness landscapes capture the many advantages or disadvantages associated with group living. These157

advantages may come either in the form of additional resources available to groups depending on their158

size or as an improved protection from external hazards. For the sake of simplicity, we consider two159

classes of fitness landscape, each representing only one of these factors. In the first class, that we call160

“fecundity fitness landscapes”, the group size affects only the birth rates of cells, while death rates161

remain independent of the group size; for convenience, we impose di = 0 for all i. In the second162

class, that we call “viability fitness landscapes”, the group size affects only death rates, while birth163
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rates remain independent of the group size; in this case, we assume bi = 1 for all i.164

3 Results165

3.1 Optimal life cycles are deterministic and characterised by binary fragmentation166

We find that stochastic life cycles are dominated by a deterministic life cycle, i.e. for a given stochas-167

tic life cycle and fitness landscape it is always possible to find at least one deterministic life cycle168

that achieves a larger growth rate. As an illustration, consider the two deterministic strategies 1+1169

and 2+1, and a stochastic strategy q mixing between these two deterministic modes so that with prob-170

ability q fragmentation is governed by 2+1 and with probability 1 − q it is governed by 1+1, i.e.,171

a stochastic strategy represented by Eq. (2). For any mixing probability q and any fitness land-172

scape {(b1, b2), (d1, d2)}, the growth rate λq1 of the corresponding stochastic strategy (given explicitly173

by Eq. (10)) is between the growth rates of the deterministic strategies, λ1+1
1 ≤ λq1 ≤ λ2+1

1 or174

λ2+1
1 ≤ λq1 ≤ λ1+1

1 holds. Hence, either the growth rate of 1+1 or the growth rate of 2+1 is larger175

than the growth rate of the stochastic strategy (Appendix A.2). Indeed, we are able to show a more176

general result: that for any fitness landscape and any maximum group size n, all stochastic strategies177

are dominated by at least one deterministic strategy. This allows us to conclude that the optimal life178

cycle is always a deterministic fragmentation mode (Appendix A.3).179

We also find that, within the set of deterministic life cycles, “binary fragmentation” strategies180

(whereby groups split into exactly two offspring groups) dominate “non-binary fragmentation” strate-181

gies (whereby groups split into more than two offspring groups). To illustrate this result, consider182

the simplest case of n = 3 and the three deterministic strategies 1+1 (binary), 2+1 (binary), 1+1+1183

(non-binary). By comparing the growth rates of the strategies, given by Eq. (13), we find that184

λ1+1
1 ≥ λ1+1+1

1 holds if b1− b2 ≥ d1− d2 and that λ2+1
1 ≥ λ1+1+1

1 holds if b1− b2 ≤ d1− d2. Thus,185

for any fitness landscape, 1+1+1 is dominated by either 2+1 or by 1+1. More generally, we can show186

that for any maximum group size n, any fitness landscape, and any non-binary fragmentation strategy,187

one can find a binary fragmentation strategy achieving a greater or equal growth rate (Appendix A.4).188

Hence, within the full space of strategies that we consider, only deterministic strategies characterised189

by binary fragmentation strategies are optimal.190

Taken together, our analytical results imply that the set of optimal strategies is countable and, even191
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for large n, relatively small. As the number of strategies increases rapidly with n, we consider the192

proportion of deterministic strategies that can be optimal. While this is relatively high for small n193

(e.g., 2/3 ≈ 0.67 for n = 3 or 4/7 ≈ 0.57 for n = 4), it decreases sharply with increasing n (e.g.,194

25/128 ≈ 0.20 for n = 10 and 625/1295920 ≈ 0.00048 for n = 50).195

Fig. 3 illustrates a numerical test of our findings for groups of maximum size n = 4 and a fecundity196

fitness landscape given by b = (1, b2, 1.4) and d = (0, 0, 0). In line with our analysis, and for all197

values of b2, the optimal life cycle is always characterised by deterministic binary fragmentation. In198

particular, for b2 = 2, the optimal life cycle is 2+2, whereby groups grow up to size 4 and then199

immediately split into two bi-cellular groups (Fig. 3.a). Other deterministic binary fragmentation200

strategies can also be optimal, depending on the value of b2 (Fig. 3.b). For small values (b2 . 0.45),201

the production of bi-cellular complexes is too disadvantageous, hence the optimal life cycle is 1+1202

(under which bi-cellular groups are not produced). For intermediary values (0.45 . b2 . 1.11), the203

reproduction efficiency of three-cellular groups mitigates the inefficiency of two-cellular groups, and204

the strategy 3+1 becomes optimal. For larger values (1.11 . b2 . 3.52), the optimal strategy is205

2+2, where no independent cells are produced. Finally, for very large values (b2 & 3.52), the optimal206

strategy is 2+1, which ensures that one offspring group remains at the most productive bi-cellular207

state.208

Fig. 4 shows the optimal life cycles for fecundity and viability landscapes and n = 4 (Ap-209

pendix A.5). Under fecundity fitness landscapes where unicells have the largest birth rates, the optimal210

life cycle is 1+1. In this case, unicells perform better than larger cell complexes, and the optimal life211

cycle leads to populations consisting only of unicells. Under fitness landscapes where the birth rates212

of bi- and three-cellular complexes are similar and much larger than those of unicells, the optimal213

life cycle is 2+2. In this case, unicells perform worse than larger cell groups, and the optimal life214

cycle ensures that the population does not contain unicells. Under fitness landscapes where two cells215

have much higher birth rates than one cell or three cells, the optimal strategy is 2+1. In this case, the216

optimal life cycle keeps one of the offspring groups at the most productive state. The same argument217

holds for fitness landscapes where three cells have much higher birth rates than single cells or two218

cells, but in this case the optimal life cycle is 3+1. Under viability fitness landscapes, the performance219

of complexes improves with the decrease of the death rate. Thus, the map of optimal life cycles under220

viability landscapes follows the same qualitative pattern as under fecundity fitness landscapes.221
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a) b)

Figure 3: Deterministic binary fragmentation is optimal.

a) Empirical distribution of population growth rate of stochastic life cycles for n = 4 (generated from a sample

of 107 randomly generated life cycles) subject to the fitness landscape {b,d} = {(1, 2, 1.4), (0, 0, 0)}. The

population growth rates of all seven deterministic life cycles for n = 4 are indicated by arrows. Here, the

deterministic life cycle 2+2 achieves the maximal possible growth rate among all possible life cycles. Random

stochastic life cycles are generated as follows: The probabilities for growth without fragmentation are uniformly

distributed. With the remaining probability, fragmentation occurs. The weight of each available fragmentation

pattern is exponentially distributed.

b) Population growth rate (λ1) for all seven deterministic life cycles for n = 4 subject to the fitness landscape

{b,d} = {(1, b2, 1.4), (0, 0, 0)} as a function of the birth rate of bi-cells, b2. Each of the four life cycles

characterised by binary fragmentation (1+1, 2+1, 2+2, and 3+1) can be optimal depending on the value of b2.

Contrastingly, the three life cycles where a group fragments into more than two groups (1+1+1, 1+1+1+1, and

2+1+1) are never optimal.
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a) b)

Figure 4: Optimal life cycles for fecundity and viability fitness landscapes. (a) Life cycles achieving the

maximum population growth rate for n = 4 under fecundity fitness landscapes (i.e., d1 = d2 = d3 = 0). In

this scenario, the strategy 2+2 is optimal for most fitness landscapes. (b) Life cycles achieving the maximum

population growth rate for n = 4 under viability fitness landscapes (i.e., b1 = b2 = b3 = 1). In this scenario, life

cycles emitting a unicellular propagule (1+1, 2+1, 3+1) are optimal for most parameter values. We use ratios of

birth rates and differences between death rates as axes because one can consider b1 = 1 and min(d) = 0 without

loss of generality (Appendix A.1). Shaded areas are obtained from the direct comparison of the numerical

solutions of characteristic equations in the form (11), lines are found analytically (Appendix A.5).
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3.2 Synergistic interactions between cells promotes the production of unicelular propag-222

ules, while discounting interactions promote equal fragmentation.223

Next, we focus on monotonic fitness landscapes for which either the birth rate of cells increases with224

group size (i.e., larger groups are more productive) or the death rate of groups decreases with group225

size (i.e., larger groups live longer). In particular, we consider fecundity fitness landscapes given by226

bi = 1 + Mgi and di = 0 or viability fitness landscapes given by bi = 1 and di = M(1 − gi),227

where gi = [(i − 1)/(n − 2)]α is the group size benefit [Fromhage and Kokko, 2011] and M > 0228

is the maximum benefit. The parameter α is the degree of complementarity between different units229

(Fig. 5.a), it measures how important the addition of another unit is in producing the maximum pos-230

sible benefit M [De Jaegher, 2017]. For α < 1 the sequence gi is strictly concave and the degree of231

complementarity is low: each additional unit in the group contributes less to the per capita benefit of232

group living [Hirshleifer, 1983], such that groups of all sizes achieve the same functionality as α tends233

to zero. For α = 1 the sequence gi is linear, and each additional unit contributes equally to the fitness234

of the group. Finally, for α > 1, the sequence gi is strictly convex and the degree of complementarity235

is high, with each additional unit improving the performance of the group more than the previous unit236

did. In the limit of large α, the advantages of group living materialise only when complexes achieve237

its maximum size n− 1 [Hirshleifer, 1983].238

We numerically compute the optimal fragmentation modes for n = 20 and the fitness landscapes239

described above with 0.01 ≤ α ≤ 100 and 0.02 ≤M ≤ 50. We find that, for each value of α and M ,240

the optimal life cycle is one where fragmentation occurs at the largest possible size (when the 20-th241

cell is born), i.e., a fragmentation mode belonging to the set S = {10 + 10, 11 + 9, . . . , 19 + 1}. This242

is because the maximum of the benefit sequence gi is at i = 19, so that groups of maximum size243

perform better, either by achieving the largest birth rate per unit (fecundity landscape) or the lowest244

death rate (viability landscape).245

For low degrees of complementarity, the optimal life cycle is always to split into equally sized246

offspring groups. The intuition behind this result is that for very low complementarity, all multicel-247

lular groups (i ≥ 2) have similar performance, while unicellular groups (i = 1) are at a significant248

disadvantage. Therefore, the optimal fragmentation mode is to ensure that both offspring groups are249

as large as possible, and hence of the same size. Contrastingly, for high degrees of complementarity,250

the optimal life cycle is always to fragment into one large group and one unicell. Here, the intuition is251
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a)

Unicellular propagule

Equal fragmentation

b)

Other binary fragmentations

c)

Unicellular propagule

Equal fragmentation

Other binary fragmentations

Figure 5: “Equal fragmentation” and “unicellular propagule” fragmentation modes are often optimal

under monotonic fitness landscapes. (a) Group size benefit gi = [(i−1)/(n−2)]α as a function of group size

for different values of the degree of complementarity α and n = 20. (b) Optimal life cycles under fecundity

fitness landscapes with bi = 1 +Mgi as a function of maximum benefit M and degree of complementarity α.

Equal fragmentation is optimal if the degree of complementarity α is not too large. Increasing the maximum

group size benefitsM also promotes the evolution of equal fragmentation. (c) Optimal life cycles under viability

fitness landscapes with di = M(1 − gi) as a function of M and α. Unicellular propagules are optimal if the

degree of complementarity α is sufficiently large. An increase in the magnitude of group size bonus M also

promotes the evolution of unicellular propagule.
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that only the largest group can reap the benefits of group living and so the optimal mode is to have at252

least one offspring of very large size.253

The optimal life cycle also depends on whether group size affects birth rate (fecundity landscapes)254

or death rate (viability landscapes). If a larger group size leads to an increase in the birth rate, then255

for low values of the maximum benefit M producing unicellular propagules is optimal only for high256

degrees of complementarity (α & 7). Larger values of M further rise the critical value of α above257

which the unicellular propagule is the optimal life cycle. Contrastingly, if a larger group size leads to258

a decrease in the death rate, then unicellular propagules can be optimal even if the degree of comple-259

mentarity is low (α . 1). In general, benefits on the birth rate make equal fragmentation optimal under260

more demographic scenarios. On the contrary, benefits on the death rate make unicellular propagule261

optimal under more demographic scenarios.262

3.3 Costly fragmentation allows splitting into multiple offspring groups to be optimal263

Up to this point, we have assumed that fragmentation is costless. However, fragmentation processes264

can be costly to the parental group undergoing division. Reproduction costs are apparent in the case of265

Volvox, where somatic cells constituting the outer layer of the group die upon releasing the offspring266

cells and are not passed to the next generation [Kirk, 2005]. Reproduction costs may also be less267

apparent. For instance, group division may cost resources that would otherwise be available for the268

growth of cells within a group.269

To investigate the effect of fragmentation costs on the set of optimal life cycles, we assume that270

exactly one cell is lost upon each fragmentation event, so that the total number of cells in offspring271

groups is one less than the number of cells in the parental group. Mathematically, this implies that,272

upon reaching size i+1, fragmentation patterns are described by partitions of i rather than by partitions273

of i+ 1 (Appendix A.6).274

For such kind of costly fragmentation, stochastic life cycles are still dominated by deterministic275

life cycles (a proof similar to the one given in Appendix A.3 for costless fragmentation still holds276

in this case). However, under costly fragmentation, the set of optimal life cycles can also comprise277

instances of non-binary fragmentation (i.e., division into more than two offspring groups). This can be278

readily illustrated for the case of n = 4 where the mode 1+1+1 is optimal for a wide range of fitness279

landscapes (Fig. 6).280
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a) b)

Figure 6: Optimal life cycles for fecundity and viability fitness landscapes under costly fragmentation.

Under costly fragmentation, each splitting event is associated with the loss of one cell. (a) Life cycles achieving

the maximum population growth rate for n = 4 under fecundity fitness landscapes (i.e., d1 = d2 = d3 = 0). (b)

Life cycle strategies achieving the maximum population growth rate for n = 4 under viability fitness landscapes

(i.e., b1 = b2 = b3 = 1). In both classes of fitness landscapes, the life cycle 1+1+1, whereby 4-unit complexes

produce 3 surviving independent units, is optimal under a wide range of fitness landscapes.
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Another notable effect provided by the scenario of costly fragmentation is that life cycles involving281

the emergence of large groups may be optimal even if groups do not grant any advantage to cells. If282

fragmentation is costless, as we assumed above, fitness landscapes for which groups have inferior283

performance in comparison with independent cells (that is, bi/b1 ≤ 1 for fecundity landscapes or284

di − d1 ≥ 0 for viability landscapes) lead to optimal life cycles where fragmentation occurs at the285

minimal possible group size i = 2, so that no multicellular groups emerge in the population (see286

Fig. 4). Contrastingly, in the case of costly fragmentation some of these fitness landscapes promote287

fragmentation modes in which groups split at the maximal available size n = 4. Thus, the population288

may contain multi-celled groups, even if these groups perform strictly worse than independent cells.289

Such a counterintuitive behavior can be evolutionarily optimal, because the burden of inevitable cell290

loss is indirectly shared among multiple offspring groups. Thus, the growth to a large size and then291

fragmentation into multiple offspring groups minimizes the cost of cell loss and might be therefore292

beneficial, even if the groups themselves are at a disadvantage.293

We also identified optimal life cycles under costly fragmentation for larger group sizes and mono-294

tonic fitness landscapes (Fig. 7). To obtain results comparable to the case of costless fragmentation,295

we increased the group size limit by one, i.e., we assumed n = 21, so that the sum of offspring sizes296

in both cases is equal to 20. Similarly to the case of costless fragmentation, all optimal life cycles are297

such that splitting occurs only at the maximal possible size n. However, under costly fragmentation, a298

new class of life cycle may be optimal: splitting into more than two offspring groups of similar size;299

we call a life cycle within this class a “multiple fragmentation mode”. The most prominent mode300

in this class is the fragmentation into multiple independent cells, i.e., 1+1+...+1. This fragmentation301

mode is promoted by fitness landscapes with low maximum benefit (M < 1). Under these fitness302

landscapes, the group size has a small impact on the group performance, so the fragmentation cost303

becomes the main factor determining the optimality of life cycles. The optimal mode to minimize304

the fragmentation cost is to produce the maximal number of offspring per fragmentation event, i.e., to305

fragment into independent cells.306
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a)

Unicellular
propagule

Other binary fragmentations

b)

Equal binary
fragmentation

Other multiple
fragmentations

Fragmentation
into multiple
single cells

c)

Unicellular propagule

Other binary
fragmentations

Equal binary
fragmentation

Other multiple
fragmentations

Fragmentation
into multiple
single cells

Figure 7: Multiple fragmentation into groups of similar size can be optimal under costly fragmentation

and monotonic fitness landscapes. (a) Group size benefit gi = [(i− 1)/(n− 2)]α as a function of group size

for different values of the degree of complementarity α and n = 21. (b) Optimal life cycles under fecundity

fitness landscapes with bi = 1 +Mgi as a function of maximum benefit M and degree of complementarity α.

The fragmentation into multiple single cells is described by the fragmentation pattern 1+1+...+1; other multiple

fragmentation strategies have patterns 2+2+...+2, 3+3+3+3+3+3+2, 4+4+3+3+3+3, 4+4+4+4+4, 5+5+5+5, and

7+7+6. They are all coloured together as a single light gray area. (c) Optimal life cycles under viability fitness

landscapes with di =M(1− gi) as a function of M and α.

4 Discussion307

Reproduction is such a fundamental feature of living systems that the idea that the mode of reproduc-308

tion may be shaped by natural selection is easily overlooked. Here, we analysed a matrix population309

model that captures the demographic dynamics of complexes that grow by staying together and repro-310

duce by fragmentation. The costs and benefits associated with group size determine whether or not311

a single cell fragments into two separate daughter cells upon cell division, or whether those daughter312

cells remain in close proximity, with fragmentation occurring only after subsequent rounds of division.313

We showed that for each stochastic fragmentation mode there is a deterministic fragmentation314

mode that leads to higher cellular growth rate. Such a deterministic mode involves a regular sched-315

ule of group development and fragmentation. We also showed that, for any fitness landscape where316

fragmentation occurs without cell loss, the optimal fragmentation mode always involves binary frag-317

mentation. It is important to note that this does not mean that, for a given fitness landscape, a given318

mode with binary fragmentation will necessarily outperform a non-binary fragmentation mode. In-319

stead, for any given fitness landscape the best possible mode of reproduction will be one that involves320
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binary fragmentation. For example, with reference to Fig. 3b and for low b2, a group of three cells321

that fragments into 1+1+1 outperforms three cells that undergo binary fragmentation producing 2+1.322

However, 1+1+1 is outperformed by the unicellular life cycle 1+1, and also by groups of four cells323

that fragment into 3+1.324

A particularly intriguing finding is that the optimal life cycle under monotonic fitness landscapes325

is generally of one of two types: “equal fragmentation”, which involves fission into two equal size326

groups, and “unicellular propagule”, which involves the production of two groups, one comprised of327

a single cell (Fig. 5). Equal fragmentation is favoured when there is a significant advantage associated328

with formation of even the smallest group, whereas unicellular propagule is favoured when the benefits329

associated with group size are not evident until groups become large. This makes intuitive sense:330

when advantages arise when groups are small, it pays for offspring to be groups (and not single cells).331

Conversely, when there is little gain until group size is large, it makes sense to maintain one group that332

reaps this advantage.333

Many multicellular organisms are characterised by a life cycle in which adult individuals develop334

from a single cell [Grosberg and Strathmann, 1998]. Although passing through a unicellular bottleneck335

is a requirement for sexual reproduction, life cycles with unicellular stages are also common in asexual336

organisms such as multicellular algae and ciliates [Herron et al., 2013]. If multicellularity evolved337

because of the benefits associated to group living, why do so many multicellular organisms begin their338

life cycles as solitary (and potentially vulnerable) cells? Explanatory hypotheses include the purge339

of deleterious mutations and the reduction of within-organism evolutionary conflict resulting from340

clonality [Maynard Smith and Szathmáry, 1995, Grosberg and Strathmann, 1998]. Our results make341

the case for an alternative (and perhaps more parsimonious) answer to this question: for relatively high342

degree of complementarity on the number of cells of an organism, a life cycle featuring a unicellular343

bottleneck is just the best way to guarantee that the “parent” group remains as large as possible to344

reap off the maximum fecundity and/or viability advantages of group living. Our theoretical results345

resonate with previous experimental work demonstrating that single-cell bottlenecks can be adaptive346

simply because they maximise growth rate [Ratcliff et al., 2013].347

Once cell loss upon fragmentation is incorporated as a factor in collective reproduction, a wider348

range of fragmentation patterns become optimal. Such optimal life cycles include those where splitting349

involves the production of multiple offspring (including multiple independent cells). These strategies350
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are optimal under conditions where there is negligible benefit associated with group size (Fig. 7).351

Intuitively, this is because the production of multiple offspring allows the cost of cell loss to be spread352

among many offspring.353

This distribution of costs among offspring may also explain the tendency for life cycles involving354

larger groups to outperform life cycles that fragment at smaller group size under fitness landscapes355

that penalize groups of increasing size (e.g., when b1 > b2 > b3). In the absence of a cost due to cell356

loss, such landscapes favour the unicellular life cycle (Fig. 4a). With costs associated with cell loss,357

not only is the unicellular life cycle excluded, but life cycles involving large groups can be favoured358

over those involving smaller groups. This is evident in Fig. 6: under the fitness landscape given by359

{b,d} = {(1, 0.9, 0.8), (0, 0, 0)}, groups that fragment at four cells outperform groups that fragment360

at three cells. This reflects the fact that groups growing up to four cells before fragmentation distribute361

the cost of cell loss among the three remaining cells, whereas a group that reaches three cells before362

fragmentation distributes the cost among just two offspring cells.363

Previous theoretical work has explored several questions related to the evolution of multicellular-364

ity using matrix population models similar to the one proposed in this paper. In a seminal contribution,365

Roze and Michod [2001] explored the evolution of propagule size in the face of deleterious and selfish366

mutations. In their model, multicellular groups first grow up to an adult size and then reproduce by367

splitting into equally sized groups, so that life cycle strategies can be indexed by the size of the propag-368

ule size. In our terminology, this refers to the class of (deterministic) “multiple fragmentation modes”.369

An important finding of Roze and Michod [2001] is that, even if large groups are advantageous, small370

propagules can be often selected because they are more efficient at eliminating detrimental mutations.371

Contrastingly, we did not study the effects of mutations, as cells in our model replicate faithfully.372

Instead, we allowed for general fitness landscapes and the whole space of fragmentation modes, in-373

cluding cases of asymmetric binary division (e.g. the “unicellular propagule” strategy) neglected by374

Roze and Michod [2001]. Our results indicate that reproduction modes involving unicells often lead375

to the maximum growth rate even when large group sizes confer fecundity or viability advantages376

making small propagule sizes to either divide less efficiently or die at a higher rate. In particular,377

we have shown that if fragmentation is costly, a strategy consisting of a multiple fragmentation mode378

with propagule size one (i.e., the small propagule strategy studied by Roze and Michod [2001]) can379

be adaptive for reasons different than the elimination of harmful mutations. Extending our model to380
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allow for mutations giving rise to heterogenous collectives characterised by within-organism conflict381

or division of labor is a possible avenue of future research that would complement recent theoretical382

efforts [Rashidi et al., 2015, Kaveh et al., 2016].383

Closer to our work, Tarnita et al. [2013] investigated the evolution of multicellular life cycles via384

two alternative routes: ”staying together” (whereby offspring cells remain attached to the parent) and385

”coming together” (whereby cells of different origins aggregate in a group). In particular, they studied386

the conditions under which a multicellular strategy that grow complexes via staying together can out-387

perform a solitary strategy whereby cells always separate after division. The way they model group388

formation and analyze the resulting population dynamics (by means of biological reactions and matrix389

models) is closely related to our approach; indeed, their solitary strategy is our binary strategy 1+1,390

while their staying together strategy corresponds to a particular kind of binary stochastic strategy. The391

questions we ask are however different. Tarnita et al. [2013] were concerned with the conditions under392

which (multicellular) strategies that form groups can invade and replace (unicellular) strategies that393

remain solitary; to do so they postulated specific reproductive modes and allowed for multicellular and394

unicellular strategies to experience different birth and death rates (fitness landscapes). Contrastingly,395

we aimed to understand what would be, for a common fitness landscape, the optimal reproduction396

mode out of the vast space of fragmentation strategies comprising all possible deterministic and prob-397

abilistic pathways by which complexes stay together and split apart. A key finding is that for any398

fitness landscape, stochastic modes of fragmentation such as the particular staying together strategy399

considered by Tarnita et al. [2013], will be outperformed by at least one deterministic fragmenta-400

tion mode. With all the apparent generality of probabilistic reproduction modes, our model predicts401

that life cycles shaped by natural selection will be characterised by a highly regulated developmental402

program.403

Other than diagnostic value, modes of fragmentation in bacteria have received little attention. The404

theoretical framework developed here could serve as a null hypothesis against which the adaptive sig-405

nificance of modes of fragmentation can be examined. It is of interest to note that two bacteria that406

form groups and are well studied from a clinical perspective, Neisseria gonorrhoeae and Staphylo-407

coccus aureus, both show evidence of deterministic fragmentation by binary fragmentation: Neisseria408

gonorrhoeae divide into groups of two equal sizes [Westling-Häggström et al., 1977]. Staphylococcus409

aureus divide into one large group plus a unicellular propagule [Koyama et al., 1977]. This leads to410
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questions concerning the nature of the fitness landscape occupied by these bacteria and the basis of411

any collective level benefit as assumed by our model.412

Although cell loss (apoptosis) is known in bacteria [Rice and Bayles, 2008], it is not usually, with413

the exception of cyanobateria [Rossetti et al., 2011], associated with fragmentation. However, cell loss414

upon fragmentation occurs in Volvox carteri, a member of the volvacine algae, where the outer (soma)415

cells, while contributing to collective viability, undergo senescence and die following the liberation of416

the germ line cells [Kochert, 1968, Kirk, 2005]. In our model, such a mode of reproduction is possible417

in instances where cell loss is associated with fragmentation. Within the volvacine algae, there are418

species, such as Gonium pectorale, that also fragment into multiple propagules in the absence of cell419

death. Although costs associated with cell loss are not evident, it is nonetheless likely that the process420

of fragmentation is costly, for example, arising from production of enzymes for the degradation of the421

cell matrix [Birkendal-Hansen, 1995, Basbaum and Zena, 1996].422

While the model developed here is conceptually simple, it is readily extended and applied to the423

study of more complex life cycles, including those involving specialized cell types, such as germ and424

soma cells as found in many multicellular organisms. Our model is also amenable to exploring the425

effects of developmental structure on the selective benefit of differing modes of reproduction.426

5 Acknowledgements427

Our work was supported by DAAD Short-Term Research Grant #57130097 (to Y.P.)428

References429

G.E. Andrews. The Theory of Partitions. Cambridge University Press, Cambridge, UK, 1998.430

E.R. Angert. Alternatives to binary fission in bacteria. Nature Reviews Microbiology, 3(3):214–224,431

2005.432

C.B. Basbaum and W. Zena. Focalized proteolysis: spatial and temporal regulation of extracellular433

matrix degradation at the cell surface. Current Opinion in Cell Biology, 8(5):731 – 738, 1996.434

H. Birkendal-Hansen. Proteolytic remodeling of extracellular matrix. Current Opinion in Cell Biology,435

7(5):728 – 735, 1995.436

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2017. ; https://doi.org/10.1101/120097doi: bioRxiv preprint 

https://doi.org/10.1101/120097
http://creativecommons.org/licenses/by/4.0/


J.T. Bonner. Evolutionary strategies and developmental constraints in the cellular slime molds. The437

American Naturalist, 119(4):530 – 552, 1982.438

M. E. Boraas, D. B. Seale, and J. E. Boxhorn. Phagotrophy by a flagellate selects for colonial prey: A439

possible origin of multicellularity. Evolutionary Ecology, 12(2):153–164, 1998.440

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge university press, 2004.441

H. Caswell. Matrix Population Models. Sinauer Associates, 2nd edition edition, 2001.442

J. E. Cohen. Convexity of the dominant eigenvalue of an essentially nonnegative matrix. Proceedings443

of the American Mathematical Society, 81(4):657–658, 1981.444

K. De Jaegher. Harsh environments and the evolution of multi-player cooperation. Theoretical Popu-445

lation Biology, 113:1 – 12, 2017.446
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A Appendix503

A.1 Characteristic equation of a deterministic fragmentation mode504

Consider a deterministic fragmentation mode in which a group of size m grows to size m + 1 and505

fragments according to fragmentation pattern κ ` m + 1. The corresponding projection matrix is an506

m×m matrix of the form507

A =



−b1 − d1 0 · · · 0 mbmπ1(κ)

b1 −2b2 − d2 0
... mbmπ2(κ)

0 2b2 −3b3 − d3 0 mbmπ3(κ)

0 0
. . . . . .

...

0 0 · · · (m− 1)bm−1 mbmπm(κ)−mbm − dm


.
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The population growth rate is given by the leading eigenvalue λ1 of A, i.e., the largest solution of the508

characteristic equation509

det (A− λI) = 0. (14)

By using a Laplace expansion along the last column of A − λI, we can rewrite the left hand side of510

the above expression (i.e., the characteristic polynomial of A) as511

det (A− λI) =
m−1∑
i=1

(−1)i+mmbmπi(κ)Mi,m + (−1)2m (mbmπm(κ)−mbm − dm − λ)Mm,m

=
m∑
i=1

(−1)i+mmbmπi(κ)Mi,m − (mbm + dm + λ)Mm,m (15)

where Mi,m is the (i,m) minor of A − λI. For all i = 1, . . . ,m, the minor Mi,m is the determi-512

nant of a block diagonal matrix, and hence equal to the product of the determinants of the diagonal513

blocks. Moreover, each diagonal block is either a lower triangular or an upper triangular matrix, whose514

determinant is given by the product of the elements in their main diagonals. We can then write515

Mi,m =

i−1∏
j=1

(−jbj − dj − λ)
m−1∏
j=i

jbj . (16)

Substituting Eq. (16) into Eq. (15) and simplifying, we obtain516

det (A− λI) = (−1)m−1
m∑
i=1

mbmπi(κ)
i−1∏
j=1

(jbj + dj + λ)

m−1∏
j=i

jbj

− (−1)m−1 (mbm + dm + λ)
m−1∏
j=1

(jbj + dj + λ)

= (−1)m−1
 m∏
j=1

jbj

 m∑
i=1

πi(κ)

i−1∏
j=1

(
1 +

dj + λ

jbj

)− m∏
j=1

(
1 +

dj + λ

jbj

) .

Replacing this expression into the characteristic equation (14), dividing both sides by (−1)m
∏m
j=1 jbj ,517

and simplifying, we finally obtain that the characteristic equation (14) can be written as518

Fm+1(λ)−
m∑
i=1

πi(κ)Fi(λ) = 0, (17)

where519

Fi(λ) =

i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (18)

Note that two transformations preserve the solution of Eq. (17)520

d→ d− r, λ→ λ+ r, r ≤ min(d),
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and521

d→ sd, b→ sb, λ→ sλ, s > 0.

These transformations allow us to set b1 = 1 and min(d) = 0 without loss of generality.522

A.2 Mixing between 1+1 and 2+1 is dominated523

To show that the life cycle mixing between fragmentation modes 1+1 and 2+1 with probability q and524

represented by Eq. (2) is dominated, consider its growth rate λq1 as a function of q, as given by Eq.525

(10). We have λq1(0) = λ1+1
1 and λq1(1) = λ2+1

1 . A sufficient condition for q to be dominated by either526

1+1 or 2+1 is then that λq1(q) is monotonic in q. To show that this is the case, note that the derivative527

of λq1 with respect to q is given by528

dλq1
dq

= b1

(
−1 + (2q − 1)b1 + 2b2 + d1 − d2√

((2q − 1)b1 + d1 + d2)2 + 4b1(2qb2 − (2q − 1)d2)− 4d1d2

)
,

and that such expression is equal to zero if and only if529

b1 − b2 = d1 − d2 (19)

which is independent of q. It follows that λq1 is either nonincreasing or nondecreasing in q, and hence530

that it attains its maximum at either q = 0, q = 1, or (when (19) is satisfied) at any q ∈ [0, 1]. Hence,531

q is dominated by either 1+1 or 2+1.532

A.3 Stochastic fragmentation modes are dominated533

For any fitness landscapes, stochastic fragmentation modes are dominated by at least one deterministic534

mode. In other words, the optimal life cycle is deterministic. To prove this, consider the set of535

partitions κ ` j for a given j, fix the probabilities of fragmentation patterns ν ` i 6= j to arbitrary536

values, and focus attention on the function537

λj1 : Sj → R,

mapping probability distributions in the ζj-simplex Sj ⊂ Rζj (specifying the probabilities of all538

partitions κ ` j) to the dominant eigenvalue λj1 of the associated projection matrix A. Our goal is to539

show that, for any j, λj1 is a quasiconvex function, i.e., that540

λj1(ηx1 + (1− η)x2) ≤ max
{
λj1(x1), λ

j
1(x2)

}
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holds for all x1,x2 ∈ Sj and η ∈ [0, 1]. Quasiconvexity of λj1 implies that λj1 achieves its maximum at541

an extreme point of Sj , i.e., at a probability distribution that puts all of its mass in a single fragmenta-542

tion pattern. Quasiconvexity of λj1 for all j then implies that the maximum growth rate λ1 is achieved543

by a deterministic fragmentation mode, and that stochastic fragmentation modes are dominated.544

To show that λj1 is quasiconvex, we restrict the function to an arbitrary line and check quasicon-545

vexity of the resulting scalar function [Boyd and Vandenberghe, 2004, p. 99]. More precisely, we aim546

to show that the function547

`(t) = λj1 (u+ tv) ,

is quasiconvex in t for any u ∈ Sj and v ∈ Rζj such that u+ tv ∈ Sj . We hence need to verify that548

`(τt1 + (1− τ)t2) ≤ max {`(t1), `(t2)} (20)

holds for τ ∈ [0, 1].549

To show this, note that the function `(t) = λj1(u+ tv) is given implicitly as the largest root of the550

characteristic polynomial551

p(λ) = det (A− λI) , (21)

where the probabilities of fragmentation specified by u + tv appear in the (j − 1)-th column of the552

projection matrix A (see Eq. (8)).553

The right hand side of Eq. (21) can be written using a Laplace expansion along the (j − 1)-th554

column of A− λI, i.e.,555

det(A− λI) =
n−1∑
i=0

(−1)i+j−1(ai,j−1 − δi,j−1λ)Mi,j−1, (22)

where δi,j−1 is the Kronecker delta and Mi,j−1 is the (i, j − 1) minor of A, i.e., the determinant of556

the submatrix obtained from A by deleting the i-th row and (j − 1)-th column. Each minor Mi,j−1557

is independent of t because the only entries of A that depend on t appear in the (j − 1)-th column.558

Moreover, each entry ai,j−1 is either zero or a linear function of t. Hence, p(λ) is a polynomial on λ559

with coefficients that are linear in t, i.e., of the form560

p(λ) =

n−1∑
k=0

(αk + βkt)λ
k, (23)

for some αk, βk. Moreover, since the leading coefficient must be (−1)n−1 (the matrix A is (n− 1)×561

(n− 1)), it follows that αn−1 = (−1)n−1 and βn−1 = 0.562
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Denote by pτ (λ), p1(λ), and p2(λ) the characteristic polynomials corresponding to, respectively,563

the probability distributions given by u+ [τt1 + (1− τ)t2]v, u+ t1v, and u+ t2v. From Eq. (23),564

these are given by565

pτ (λ) =
n−1∑
k=0

(αk + βk [τt1 + (1− τ)t2])λk =
n−1∑
k=0

αkλ
k + [τt1 + (1− τ)t2]

n−1∑
k=0

βkλ
k (24a)

p1(λ) =

n−1∑
k=0

(αk + βkt1)λ
k =

n−1∑
k=0

αkλ
k + t1

n−1∑
k=0

βkλ
k (24b)

p2(λ) =
n−1∑
k=0

(αk + βkt2)λ
k =

n−1∑
k=0

αkλ
k + t2

n−1∑
k=0

βkλ
k (24c)

Subtracting Eq. (24b) from Eq. (24a), and Eq. (24c) from Eq. (24a), we can write566

pτ (λ)− p1(λ) = (t2 − t1)(1− τ)
n−1∑
k=0

βkλ
k,

pτ (λ)− p2(λ) = (t1 − t2)τ
n−1∑
k=0

βkλ
k.

Note that the signs of these differences are always different, i.e., either (i) pτ (λ) − p1(λ) ≥ 0 and567

pτ (λ) − p2(λ) ≤ 0, or (ii) pτ (λ) − p1(λ) ≤ 0 and pτ (λ) − p2(λ) ≥ 0. In the first case, we have568

p1(λ) ≤ pτ (λ) ≤ p2(λ) and in the second we have p2(λ) ≤ pτ (λ) ≤ p1(λ), i.e., for each λ, pτ (λ)569

lies between p1(λ) and p2(λ), or, equivalently570

pτ (λ) ≤ max {p1(λ), p2(λ)} , (25)

for all λ. Since λj1 is the largest root of p(λ), and since pτ (λ), p1(λ), and p2(λ) all have the same571

sign in the limit when λ tends to infinity (their leading coefficients are all equal to αn−1 = (−1)n−1),572

condition (25) obviously implies condition (20), thus proving our claim. See Fig. 8 for an illustration.573

A.4 Non-binary fragmentation modes are dominated by binary fragmentation modes574

For any fitness landscape, binary group splitting achieves a larger growth rate than splitting into more575

than two offspring groups. To prove this, consider positive integers m, j, k such that m > j + k, an576

arbitrary partition τ ` m− (j + k), and the following three deterministic fragmentation modes:577

1. κ1 = j + k + τ ` m, whereby a complex of size m fragments into one complex of size j, one578

complex of size k and a number of offspring complexes given by partition τ .579
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Figure 8: Population growth rate λ1 is quasiconvex. Consider two fragmentation modes q1 and q2 which

differ only in the probabilities of fragmentation patterns at a single size j. Then, for any 0 ≤ τ ≤ 1 and

corresponding fragmentation mode qτ = τq1 + (1 − τ)q2, the polynomials p(λ) given by Eq. (21) satisfy

either p1(λ) ≤ pτ (λ) ≤ p2(λ) or p2(λ) ≤ pτ (λ) ≤ p1(λ). Thus, qτ leads to a lower growth rate than either

q1 or q2, i.e., either λτ1 ≤ λ11, or λτ1 ≤ λ21 holds. Here, j = 3, q1 =
{
(0.9, 0.1), (0.5, 0.5, 0), (0, 0, 0, 1, 0)

}
,

q2 =
{
(0.9, 0.1), (0.5, 0, 0.5), (0, 0, 0, 1, 0)

}
, and τ = 0.6. Note that the life cycle corresponding to qτ is

schematically illustrated in Fig. 2b. The fitness landscape is given by bi = 1/i, di = 0 for all i.
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2. κ2 = (j + k) + τ ` m, whereby a complex of size m fragments into one complex of size j + k580

and a number of offspring complexes given by partition τ .581

3. κ3 = j + k ` (j + k), a binary splitting fragmentation mode whereby a complex of size j + k582

fragments into two offspring complexes: one of size j and one of size k.583

Fragmentation mode κ1 leads to a number of offspring groups equal to584

n1 =

m−k−j∑
`=1

π`(τ) + 2,

fragmentation mode κ2 to a number of offspring groups equal to585

n2 =

m−k−j∑
`=1

π`(τ) + 1 = n1 − 1,

and fragmentation mode κ3 to a number of offspring groups equal to two. Denoting by λi1 the leading586

eigenvalue of the projection matrix induced by fragmentation mode κi, we can show that, for any587

fitness landscape, either λ11 ≤ λ21 or λ11 ≤ λ31 holds. This means that a fragmentation mode with more588

than two parts is dominated by either a fragmentation mode with one part less or by a fragmentation589

mode with exactly two parts. By induction, this implies that, for any fitness landscape, the optimal590

fragmentation mode is always one within the class of binary splitting strategies.591

To prove the statement above, let us define the polynomial pi(λ) as the left hand side of Eq. (17)592

with κ = κi, so that λi1 is the largest root of pi(λ). We obtain593

p1(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj(λ)− Fk(λ) (26a)

p2(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj+k(λ) (26b)

p3(λ) = Fj+k(λ)− Fj(λ)− Fk(λ). (26c)

These polynomials satisfy the following two properties. First,594

lim
λ→∞

pi(λ) =∞, (27)

as the leading coefficient of the left hand side of Eq. (17) is given by 1/(n!b1 . . . bn), which is always595

positive. Second,596

p1(λ) = p2(λ) + p3(λ). (28)
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Figure 9: The population growth rate induced by a fragmentation mode with more than two offspring

groups is weakly dominated. Consider the characteristic polynomials pi(λ1) for partitions κ1 = 2 + 1 + 1,

κ2 = 3 + 1 and κ3 = 2 + 1. Left: Fitness landscape b = (1, 1, 1.4), d = (0, 0, 0). Since p2(λ11) < 0,

κ1 is dominated by κ2 (λ11 < λ21 holds). Center: Fitness landscape b = (1, 2.6 −
√
1.3, 1.4), d = (0, 0, 0).

Since p1(λ11) = p1(λ
2
1) = p1(λ

3
1), κ1 is weakly dominated by κ2 (λ11 ≤ λ21 holds). Right: Fitness landscape

b = (1, 1.9, 1.4), d = (0, 0, 0). Since p3(λ11) < 0, κ1 is dominated by κ3 (λ11 < λ31 holds).

Evaluating Eq. (28) at λ11, and since p1(λ11) = 0, it then follows that597

p2(λ
1
1) = −p3(λ11).

Hence, only one of the following three scenarios is satisfied: (i) p2(λ11) < 0 < p3(λ
1
1), (ii) p2(λ11) =598

p3(λ
1
1) = 0, or (iii) p2(λ11) > 0 > p3(λ

1
1). If p2(λ11) < 0 < p3(λ

1
1), and by Eq. (27) and Bolzano’s599

theorem, λ11 ≤ λ21 holds. Likewise, if p2(λ11) > 0 > p3(λ
1
1), then λ11 ≤ λ31 holds. Finally, if600

p2(λ
1
1) = p3(λ

1
1) = 0, then both λ11 ≤ λ21 and λ11 ≤ λ31 hold. We conclude that either λ11 ≤ λ21 or601

λ11 ≤ λ31 must hold. See Fig. 9 for an illustration.602

A.5 Optimality maps for n = 4603

For n = 4 there are four deterministic fragmentation modes, denoted by their fragmentation patterns604

1+1, 2+1, 2+2, and 3+1. From Eq. (11), their characteristic polynomials are given by605

1 + 1 : p1+1(λ) = F2(λ)− 2F1(λ), (29a)

2 + 1 : p2+1(λ) = F3(λ)− F2(λ)− F1(λ), (29b)

2 + 2 : p2+2(λ) = F4(λ)− 2F2(λ), (29c)

3 + 1 : p3+1(λ) = F4(λ)− F3(λ)− F1(λ). (29d)
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The optimality maps shown in Fig. 4 were obtained by computing numerically the largest root606

of the characteristic polynomials and comparing such different values for birth rates (fecundity land-607

scapes) or death rates (viability landscapes). For fecundity landscapes, we tested fitness landscapes of608

the form {b,d} = {(1, b2, b3), (0, 0, 0)} and values b2 and b3 taken from a rectangular grid of size609

300 by 300 with b2 ∈ [0, 5] and b3 ∈ [0, 5]. For viability landscapes, we tested fitness landscapes of610

the form {b,d} = {(1, 1, 1), (5, d2, d3)} and values d2 and d3 taken from a rectangular grid of size611

300 by 300 with d2 ∈ [0, 10] and d3 ∈ [0, 10].612

A.6 Costly fragmentation613

For costly fragmentation, one cell is lost upon the fragmentation event. In this case the biological614

reactions are still given by Eqs. (4) and (5). However, under costly fragmentation the sum of sizes615

of offspring groups is one less than the size of parent group. Therefore, in the reaction describing616

the group splitting, κ is a partition of j (and not of j + 1 as it was under the costless fragmentation).617

Note, that in the reaction describing group growth, κ is still a trivial partition of j+1. Thus, for costly618

fragmentation the set of available outcomes of growth of a group of size j is given by all partitions of619

j having at least two parts and the trivial partition of j + 1. For instance, the reactions modeling the620

birth of units and the growing and fragmentation of groups of size 3 are:621

X3
3b3q1+1+1−−−−−−→ 3X1 1 + 1 + 1 ` 3

X3
3b3q2+1−−−−−→ X2 +X1 2 + 1 ` 3

X3
3b3q4−−−→ X4 4 ` 4.

The combined probability of all outcomes of aggregate growth must be equal to one. In the case622

of costless fragmentation, this condition has been given by
∑

κ`j+1 qκ = 1 for j = 1, . . . , n − 1.623

For costly fragmentation this condition changes to
∑

κ`j′ qκ = 1 for j = 1, . . . , n − 1, where j′ =624

j\j ∪ (j +1) denotes the set of partitions of j with at least two parts together with the trivial partition625

(j + 1). The analogs of Eqs. (6) and (8) are changed accordingly.626

Finally, note that for deterministic fragmentation mode, the characteristic equation is still the one627

derived in Appendix A.1 with the sole exception that, in Eq. (17), κ ` m (rather than κ ` m+ 1 as it628

was the case for costless fragmentation).629

34
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