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Abstract

Transcription factors (TFs) often work cooperatively, where the binding of one TF to DNA enhances the
binding affinity of a second TF to a nearby location. Such cooperative binding is important for activating gene
expression from promoters and enhancers in both prokaryotic and eukaryotic cells. Existing methods to detect
cooperative binding of a TF pair rely on analyzing the sequence that is bound. We propose a method that uses,
instead, only ChIP-Seq peak intensities and an expectation maximisation (CPI-EM) algorithm. We validate our
method using ChIP-seq data from cells where one of a pair of TFs under consideration has been genetically knocked
out. Our algorithm relies on our observation that cooperative TF-TF binding is correlated with weak binding of
one of the TFs, which we demonstrate in a variety of cell types, including E. coli, S. cerevisiae, M. musculus, as
well as human cancer and stem cell lines. We show that this method performs significantly better than a predictor
based only on the ChIP-seq peak distance of the TFs under consideration. By explicitly avoiding the use of
sequence information, our method may help uncover new sequence patterns of cooperative binding that sequence
based methods could build upon. The CPI-EM algorithm is available at https://github.com/vishakad/cpi-em.

1 Introduction

Transcription factors (TFs) regulate the transcription of a set of genes by binding specific regulatory regions of DNA.
The magnitude of the change in transcription caused by a TF depends in part on its affinity to the DNA sequence
bound. It is possible a second TF binding a nearby sequence changes the first TF’s binding affinity. In this case, the
two TFs are said to bind DNA cooperatively or combinatorially [1].

Multiple TFs cooperatively binding enhancers and promoters are known to non-additively drive gene expression
[2, 3, 4], and the presence of cooperativity has been used to explain the rapid rate of evolution of TF binding sites in
multicellular organisms [5]. Several theoretical methods have been proposed to detect cooperative binding between
a pair of TFs in the genome [6, 7, 8, 9, 10, 11, 12, 13, 1]. These methods typically rely on locating frequently
co-occurring binding sites of TF pairs across the genome, or within genomic sequences known to be bound by a TF
pair. However, co-occurring binding site pairs do not always imply cooperative binding [1]. One of the reasons is
because many TF pairs can cooperatively bind DNA even if the spacing between their binding sites, or the sequence
in between them, is changed [14, 15]. Here, we propose a sequence-independent algorithm, based on ChIP-seq data,
for detecting cooperatively bound sites that complement these sequence-based methods.

Genome-wide TF-DNA binding has been extensively studied using ChIP-seq (chromatin immuno-precipitation
and sequencing) [16]. ChIP-seq provides a list of locations bound by a TF across a genome in vivo, which are referred
to as peaks, along with peak intensities whose values are proportional to the TF’s affinity for the sequence bound at
these locations [16]. Some ChIP-seq experiments, designed to detect pair-wise TF interactions across the genome,
have been carried out in E. coli, S. cerevisiae, M. musculus and human genomes [17, 1, 18, 19]. In these experiments,
three sets of ChIP-seq are performed to determine locations where a pair of TFs, A and B, are cooperatively bound.
First, two ChIP-seq experiments are performed to determine binding locations of A and B in cells. A third ChIP-seq
is performed to find binding locations of A, after B is genetically knocked out. In this ChIP-seq, locations where A
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no longer binds DNA, or has a lower binding affinity towards DNA, are considered to be instances of cooperative
binding. We refer to such a set of three experiments as A-B, and refer to A as the primary TF and B as the partner
TF. Instead of knocking out B, if a ChIP-seq is performed to find binding locations of B after A is knocked out, we
can infer locations where B is cooperatively bound by A. This data set is labelled B-A, with B and A as primary
and partner TFs, respectively.

We propose the ChIP-seq Peak Intensity - Expectation Maximization (CPI-EM) algorithm as a computational
method to detect genomic locations locations cooperatively bound by a TF pair, based on their ChIP-seq peak
intensities. CPI-EM can do this without the need for ChIP-seq to be performed on one of the TFs after the other is
knocked out. At each location where ChIP-seq peaks of two TFs overlap each other, CPI-EM computes a probability
that the location is cooperatively bound by both TFs. The highlight of this algorithm is that it utilizes only peak
intensities to detect cooperative binding, and does not rely on binding site searches within ChIP-seq peak regions.
CPI-EM only relies on the observation that a primary TF tended to be more weakly bound when it cooperatively
bound DNA with a partner TF, in comparison to regions where it did not cooperatively bind DNA. We observed
this to be the case in ChIP-seq data sets we analyzed from E. coli, S. cerevisiae, M. musculus and human genomes.

We compared the set of locations predicted by CPI-EM to be cooperatively bound, with the locations obtained
from the knockout-based ChIP-seq experiments. We also compared CPI-EM with an algorithm that detects coop-
erative binding based on the distance between ChIP-seq peaks. We found that peak distance by itself was not a
reliable predictor of cooperative binding. In contrast, we found that peak intensities are a more reliable criterion to
detect cooperative interactions in all the ChIP-seq data sets we analyzed.

2 Methods

2.1 ChIP-seq processing pipeline

A single ChIP-seq peak call consists of the genomic coordinates of the location being bound, along with a peak
intensity. Peak intensity is a measure of binding affinity, and in terms of the narrowPeak and broadPeak output
format of most ChIP-seq peak callers, this could be the signal value (7−th column), − log10(p-value) (8−th column),
or the − log10(q-value) (9− th column) of each line in the peak call file. The signal value is typically computed from
the number of sequence reads that originate from a bound genomic location. The p-value is computed from the
signal value, which is a measure of statistical significance of the peak call. The q-value of each peak call is computed
by adjusting the p-value to control the false discovery rate of the peak call set [20], which is a correction for multiple
hypothesis testing. A peak call with a larger signal value has a smaller p- and q-value, which indicates that it is
more likely to reflect an actual protein-DNA binding event. Thus, a larger signal value will translate to a larger
− log10(p-value) and − log10(q-value).

We determined ChIP-seq peak locations of different transcription factors from multiple genomes, namely, E. coli
(GSE92255), S. cerevisiae [1], cells from primary M. musculus liver tissue [17], and three human cell lines – the
Caco-2 intestinal stem cell line [18], the T-47D breast cancer cell line and the ECC-1 endometrial cancer cell line
[19]. We used our own ChIP-seq pipeline to process raw sequence reads and call peaks from M. musculus and S.
cerevisiae data, and utilized pre-computed peak calls with the remaining data sets. This ensured that our validation
sets were not biased by procedures employed in our pipeline. The ChIP-seq data processing pipeline we followed is
described below.

2.1.1 ChIP-seq of FOXA1, HNF4A and CEBPA from M. musculus liver:

We aligned the raw sequence reads (ArrayExpress, accession number: E-MTAB-1414) from the experiment to the
2007 UCSC mm9 release of the C57/BL6 strain of the mouse genome, using the BWA (v0.7.12) aligner with default
settings [21]. We ran MACS2 (v2.1.0) [22], with its default settings, to call peaks on each of these alignments. Peaks
were called with a liberal p-value threshold of 10−3. Since the wild-type ChIP-seq data consisted of two biological
replicates, we pooled these aligned reads into a single file and called peaks using MACS2. We ran MACS2 with
default settings, which discards aligned reads that are PCR duplicates before calling peaks.. In this data set, we
used the signal values of FOXA1, HNF4A and CEBPA peak calls as peak intensities.
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We then followed a second step to filter peak calls. The use of a relatively liberal p-value threshold of 10−3

while calling peaks, and the pooling of aligned reads before calling peaks, was necessary in order to compute the
irreproducible discovery rate (IDR) [23, 24] of each peak. We computed the IDR of each peak with the idr script
(v2.0) [23], and retained peaks whose IDR was less than 1%. We then ranked peaks according to their MACS2 signal
values, with the top ranked peak having the largest signal value. We divided these ranks by the total number of
peaks in the ChIP-seq profile to obtain a normalized rank for each peak, which is equivalent to the quantile of that
peak intensity within the profile. Significant changes in these peak ranks were used to detect cooperative binding
events while comparing peak calls between wild-type and knockout ChIP-seq data.

Because the ChIP-seq of FOXA1 in ∆HNF4A and ∆CEBPA cells, HNF4A in ∆CEBPA cells, and CEBPA in
∆HNF4A cells were not performed in replicates, we could not use the IDR criterion to filter peaks. Instead, for
these, we filtered peak calls using the q-value of each peak call as computed by MACS2. We retained only those
peaks whose q-values were less than 0.01 for further analysis. These peak calls were finally used to detect cooperative
binding in FOXA1-HNF4A, FOXA1-CEBPA, HNF4A-CEBPA and CEBPA-HNF4A pairs (see next section).

2.1.2 ChIP-seq of GCN4, RTG3 in S. cerevisiae:

We aligned raw sequence reads from the ChIP-seq libraries of GCN4, RTG3 (accession Number GSE60281) to the
S288C reference genome of S. cerevisiae, available at the Saccharomyces Genome Database [25].

We followed the same procedure as with the M. musculus data, with some changes. ChIP-seq reads from GCN4
and RTG3 were available in three replicates. In these data sets, we chose the two replicates that had the largest
number of peaks and merged their sequence read alignments. MACS2 was run with additional --nomodel --extsize

147 options, as the number of sequence reads were insufficient for MACS2 to build its own tag shifting model. We
called peaks on this merged set using MACS2, with a p-value threshold of 0.1, and retained peaks whose q-values
were less than 0.1. We did not filter peak calls based on IDR because we found it to be too stringent a criterion; it
typically gave us a very small number of peaks (< 100) for these TFs. We finally used the q-values of GCN4 and
RTG3 peak calls as peak intensities.

2.1.3 ChIP-seq of ERα, FOXA1, CDX2 and HNF4A from Caco-2, T-47D and ECC-1 cell lines:

For each of these TFs, we utilized the pre-computed peak calls of ERα and FOXA1 from T-47D and ECC-1 cell
lines that were publicly available on the GEO database with accession number GSE32465 [19]. We also utilized
pre-computed peak calls of CDX2 and HNF4A from Caco-2 cell lines that were publicly available (accession number
GSE23436) [18].

We retained those peaks in the pre-computed ERα and FOXA1 peak calls whose q-values were less than 0.05. In
the CDX2 and HNF4A peak call set, we chose peak calls whose q-values were less than 0.01. In both data sets, we
used signal values of peak calls as peak intensities. However, these signal values were scaled. In the ERα-FOXA1
data set, we divided all signal values by 35, and in the CDX2-HNF4A data set, we divided all signal values by a
factor of 2. This was done to speed up the running time of the CPI-EM algorithm. The scaling of signal values did
not affect the detection performance of the CPI-EM algorithm.

2.1.4 ChIP-seq of FIS and CRP in E. coli from early exponential (EE) and mid-exponential (ME)
phase cultures:

For FIS and CRP ChIP-seq data sets, we utilized pre-computed peak calls that were available on the GEO database
with accession number GSE92255. Though the ChIP-seq experiments were carried out in replicates, these peaks
were called by running MACS2 on merged alignments of sequence reads from both replicates. The peak calls in this
set were filtered such that all peaks had a q-value less than 0.05. We use the q-values of FIS and CRP peak calls as
peak intensities for CPI-EM.

2.2 Using ChIP-seq data from a genetic knockout to infer cooperative binding

From ChIP-seq profiles of a pair of TFs, A and B, we classified genomic regions containing overlapping ChIP-seq
peaks of A and B as cooperative or non-cooperative, based on the change in peak rank of A in response to a genetic
deletion of B. The ranks are assigned such that the highest rank peak,i.e., the peak ranked 1 has the highest peak
intensity. In our analysis, we consider a genomic region to be doubly bound by A and B if their peak regions overlap
by at least a single base pair. We used pybedtools v0.6.9 [26] to find these overlapping peak regions.

At each doubly bound genomic location, we classify A as being cooperatively bound by B if (a) the peak rank of
A in the presence of B is significantly higher than the peak rank of A measured after the deletion of B, or (b) if A’s
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peak is absent after the deletion of B. On the other hand, if the peak rank of A in the presence of B is significantly
lower than the peak rank of A after the deletion of B, or if it stays the same, we classify this as competitive or
independent binding, respectively. We refer to both these classes as non-cooperative binding.

To determine if a peak rank change is significant, we construct a null distribution, which captures the mag-

nitude of rank changes of A expected due to variability in the ChIP-seq protocol. Suppose r
(1)
1 , r

(1)
2 , . . . , r

(1)
n and

r
(2)
1 , r

(2)
2 , . . . , r

(2)
n represent the normalized ranks, whose values are between 0 and 1, of n overlapping peaks in biologi-

cal replicates 1 and 2 of the ChIP-seq of A (in the presence of B). We then divide the interval [0, 1] into 10 equally sized
bins (we verified that changing the number of bins did not drastically change the results), and compute the null rank

change probability density gknull(x) of the kth bin from the samples Sk = {|r
(1)
1 − r

(2)
1 |, |r

(1)
2 − r

(2)
2 |, . . . , |r

(1)
l − r

(2)
l |},

where r
(1)
i falls in the kth bin. A Gaussian kernel density estimator implemented in the Scipy library was used to

compute gknull(x) for each bin. This represents the probability of observing a rank change purely due to inter-replicate
variation, conditioned on the bin to which the peak’s rank in replicate 1 belongs. The process of computing rank
changes separately within each bin better captured the skew expected in rank changes arising from replicate varia-
tion. For instance, a peak of A, whose rank in replicate 1 is low, is far more likely to have a higher rank in replicate
2, than a peak with a high rank in replicate 1.

We then proceed to compute the significance of rank changes observed in peaks of A after B has been knocked

out. For this, we computed the ranks r
(m)
1 , r

(m)
2 , . . . , r

(m)
q from peaks of A that have been called from merging

the read alignments of replicates 1 and 2. The average change in peak rank due to the merging of alignments

was close to zero, i.e., the ranks r
(m)
1 , r

(m)
2 , . . . , r

(m)
p , did not change on average compared to r

(1)
1 , r

(1)
2 , . . . , r

(1)
p and

r
(2)
1 , r

(2)
2 , . . . , r

(2)
p (data not shown), where p is the number of peaks common between peak calls in the replicates

and merged alignments. We also compute the ranks r∆1 , r∆2 , . . . , r∆q of peak calls from the ChIP-seq of A after B

is knocked out. We then construct the set of rank changes {|r
(m)
1 − r∆1 |, (|r

(m)
2 − r∆2 |), . . . , |r

(m)
q − r∆q |}. For each

rank change, we calculate pi = gknull(|r
(m)
i − r∆i |), where k is the bin into which r

(m)
i falls. This is the probability of

observing a rank change of magnitude |r
(m)
i − r∆i | purely due to inter-replicate variation, given that r

(m)
i belongs to

the kth bin. We finally obtain a sequence of probabilities p1, p2, . . . , pq corresponding to each rank change observed
upon knocking out B.

We then conduct q one-sided hypothesis tests, each of which test the null hypothesis Hi : |r
(m)
i − r∆i | = 0. We

carry out the hypothesis tests by checking if each pi < α, where α is chosen according to the Benjamini-Hochberg
multiple hypothesis testing procedure [20] that sets the false discovery rate at 0.01.

In the ERα-FOXA1, CDX2-HNF4A, CRP-FIS, and FIS-CRP data sets, peak calls from individual replicates were
not available. Since the null rank change distributions described above cannot be computed without peak calls from
multiple replicates, we used only peak losses to find cooperatively bound locations in these data sets.

2.3 The ChIP-seq Peak Intensity - Expectation Maximization (CPI-EM) algorithm

The input to the CPI-EM algorithm consists of ChIP-seq peak intensities of two TFs, X and Y, from their binding
locations across the genome. The goal of the CPI-EM algorithm is to predict, from this data, the locations at which
the two TFs bind cooperatively. The algorithm consists of the following steps, which are numbered according to the
steps shown in Figure 1.

1. List ChIP-seq peak calls {(xi, yi)}
N
i=1 from TFs X and Y, where the peak of one TF overlaps the

peak of the second TF.

We took peak call files of X and Y, and used pybedtools (v0.6.9) [26] to find all peak regions that overlap each
other by at least a single base pair. In instances where a single peak region of X overlaps multiple peaks of Y,
or vice versa, we consider each overlapping pair as a distinct pair.

2. Determine the parameters of a mixture model that best fits the joint distribution of peak intensi-
ties across these overlapping pairs. We assume the joint density of peak intensities from all doubly bound
regions, fXY (x, y), is a mixture (i.e., a sum) of two densities representing cooperative and non-cooperative
peak intensity distributions:

fXY (x, y) = π0f
X
0 (x;θX

0 )fY
0 (y;θY

0 )

+ π1f
X
1 (x;θX

1 )fY
1 (y;θY

1 ),
(1)

where, fi are the marginal densities of peak intensities of non-cooperative and cooperative peak pairs across
the genome. We chose f1 to be either a Log-normal, Gamma or Gaussian density function (see Supplementary
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Section 2 for their definitions). π0 and π1 represent the fractions of these peak pairs, and thus, π0 + π1 = 1.
f0, the non-cooperative density component, captures both independent and competitive binding (see section
“Outline of the ChIP-seq Peak Intensity - Expectation Maximization Algorithm” in Results for an explanation
of the assumptions underlying this model). Each of θX

0 ,θX
1 ,θY

0 ,θ
Y
1 consist of two parameters, irrespective of

whether f1 is a Log-normal, Gamma or Gaussian density function. Along with π0, there are thus a total of 9
parameters that we estimate from {(xi, yi)}

N
i=1 using the expectation-maximization (EM) algorithm [27, 28].

The output of the EM algorithm is a single set of parameters Θ = (π0,θ
X
0 ,θY

0 ,θ
X
1 ,θY

1 ) that maximizes the log-
likelihood logP (D,L|Θ), where D represents the peak intensity pairs {(xi, yi)}

N
i=1, and L = (L1, L2, . . . , LN )

are labels assigned to each of the N locations, with Li = 1 representing cooperative binding and Li = 0
representing non-cooperative binding.

Our implementation of the expectation-maximization algorithm is described in the next section.

3. For each overlapping peak pair, compute the probability that it cooperatively binds DNA. Given
the output of the EM algorithm, which is a set of parameters Θi = (π0,θ

X
0 ,θY

0 ,θ
X
1 ,θY

1 ), the probability that
the TF pair X-Y cooperatively binds the ith location can be computed using Bayes’ rule —

P (Li = 1|Xi = xi, Yi = yi)

=
P (Li = 1)P (Xi = xi, Yi = yi|Li = 1)
1

∑

j=0

P (Li = j)P (Xi = xi, Yi = yi|Li = j)

=
π1f1(xi;θ

X
1 )f1(yi;θ

Y
1 )

π0f0(xi;θ
X
0 )f0(yi;θ

Y
0 ) + π1f1(xi;θ

X
1 )f1(yi;θ

Y
1 )

. (2)

4. Predict cooperative interactions. To assign a label Li of 0 or 1 to the i − th location, we compare
P (Li = 1|Xi = xi, Yi = yi) to a threshold probability α. If the probability exceeds α, we set Li = 1 and
declare the i− th location to be cooperatively bound. The parameter α controls the number of false positives
and false negatives of the prediction: both quantities are increasing functions of α, and both tend to zero as α
approaches one.

2.4 The Expectation-Maximization (EM) Algorithm

The input to the CPI-EM algorithm consists of peak intensity pairs D = {(xi, yi)}
N
i=1. To label the observation

(xi, yi) as cooperatively bound (Li = 1) using equation (2), we need to simultaneously estimate L = {L1, L2, . . . , Ln}
and Θ such that the log-likelihood logP (D,L|Θ) is maximized with respect to Θ and L.

The expectation-maximization algorithm [27, 28] does this by computing a function Q(Θ,Θ′), which is the
expected value of the log-likelihood logP (D,L|Θ), given an earlier estimate of Θ = Θ′ [29]:

Q(Θ,Θ′) =
∑

L∈S

log
(

P (D,L|Θ)
)

P (L|D,Θ′), (3)

where S represents the set of all possible values of L. The EM algorithm starts with an initial guess Θ(0), and com-
putes a value Θ(1) such that Q(Θ,Θ(0)) is maximized with respect to Θ, while Θ(0) is fixed. EM then computes Θ(2)

in the next iteration to maximize Q(Θ,Θ(1)) with respect toΘ, whileΘ(1) is fixed. EM generates a sequence of values

Θ(0),Θ(1),Θ(2), . . . ,Θ(n) which can be proven [27] to satisfy Q(Θ(1),Θ(0)) ≤ Q(Θ(2),Θ(1)) ≤ . . . Q(Θ(n),Θ(n−1)).
EM terminates, say, at the n−th iteration, when Q converges to a local maximum. This local maximum is guaranteed
to be a local maximum of logP (D,L|Θ) [29]. Θ(n) is then substituted in equation (2) to compute the probability of
each peak intensity pair being labelled cooperative.

In our implementation of the EM algorithm, we used Powell’s optimization method, as implemented in Scipy [30],

to compute the value Θ(k), at the k − th iteration, to maximize Q(Θ,Θ(k−1)), where Θ(k−1) is fixed. We terminate
the EM algorithm after n iterations if

|Q(Θ(n),Θ(n−1))−Q(Θ(n−1),Θ(n−2))|

|Q(Θ(n−1),Θ(n−2))|
< 10−6.

The set S of all possible labels L in equation (3) consists of 2N elements, since each element of L takes on values
of either 0 or 1. This is a very large number of terms that need to be added to evaluate Q. However, Q simplifies
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to a sum over N terms for our model of cooperative binding. For the final analytical expression of the Q function
employed in our algorithm, see Supplementary Section 6.

We choose the initial value Θ(0) as follows. From the data {(xi, yi)}
N
i=1, we separate the peak intensities of X and

Y as DX = {xi}
N
i=1 and DY = {yi}

N
i=1. We then compute the value θX

mle that maximizes the likelihood
∏N

i=1 f(xi;θ),

where f is a Log-normal, Gamma or Gaussian density function. Similarly, we also compute the value of θY
mle that

maximizes the likelihood
∏N

i=1 f(yi;θ). These maximum likelihood estimates θ
X
mle and θ

Y
mle are computed using

the fit function provided by the Python Scipy stats library, which can provide maximum likelihood estimates

when f0 and f1 are either Log-normal, Gamma or Gaussian density functions. We choose π
(0)
0 from a Uniform[0, 1]

distribution. We finally set our initial parameter vector Θ(0) to (π
(0)
0 , θXmle, θ

Y
mle, θ

X
mle, θ

Y
mle). We verified that EM

converged to the same local maximum when Θ(0) was perturbed by up to 30% around this choice (data not shown).

2.5 Peak Distance Detector

For each peak intensity pair in {(xi, yi)}
N
i=1, the peak distance detector calculates the distance between the summits

of X and Y peak regions. The detector declares doubly bound regions as cooperatively bound if the distance between
peaks of X and Y is lesser than a threshold distance d. We ran this detection algorithm on all the data sets on which
CPI-EM was employed to detect cooperative binding. Our goal in using this algorithm was to determine whether
the distance between peaks is a reliable criterion to discriminate between cooperative and non-cooperative binding.

3 Results

3.1 Peak intensities of cooperatively bound TFs are weaker than non-cooperatively
bound TFs

We inferred cooperative and non-cooperative binding from ChIP-seq datasets of FIS-CRP and CRP-FIS pairs in E.
coli in early exponential and mid exponential growth phases (accession number GSE92255), GCN4-RTG3 and RTG3-
GCN4 in S. cerevisiae [1], FOXA1-HNF4A, FOXA1-CEBPA and HNF4A-CEBPA in the mouse (M. musculus) liver
[17], CDX2-HNF4A in differentiated human intestinal stem cell lines (Caco-2) [18], and ERα-FOXA1 in the T-47D
breast cancer cell line [19]. A summary of the data is shown in Supplementary Table 1.

Figure 2A-C summarize trends in cooperative and non-cooperative TF-DNA binding seen in these data sets.
Cooperatively and non-cooperatively bound locations were determined using ChIP-seq data from genetic knockouts
as discussed in Methods. Cooperatively bound primary TF peak intensities were significantly lower than those of
non-cooperatively bound primary TF peaks across each of the TF-TF pairs (Wilcoxon rank-sum test, p ≪ 0.001).
In contrast, there was no consistent trend in the intensities of the partner TF in each of these pairs. This meant that
a primary TF could be cooperatively bound to DNA irrespective of the peak intensity of the partner TF. In Figure
2B, kernel density estimates of the marginal distributions of cooperative and non-cooperative FOXA1 and HNF4A
peaks are shown. These distributions tended to be better approximated by a Log-normal distribution, which was
evident from the higher log-likelihood value associated with a Log-normal fit, compared to a Gaussian or Gamma
distribution (Supplementary Table 2).

Since the primary TF intensity distributions from cooperatively bound regions significantly differed from those of
non-cooperatively bound regions, it should be possible to accurately label a pair of overlapping peaks as cooperative
or non-cooperative, based solely on their peak intensities. For instance, in the FOXA1-HNF4A data set, a FOXA1
peak that has an intensity value of 5 is ∼3.45 times more likely to be cooperatively bound with HNF4A than to
be non-cooperatively bound with it. In clear cut cases such as these, knowledge of the underlying sequence that is
bound is not necessary to detect a cooperative interaction.

3.2 Outline of the ChIP-seq Peak Intensity - Expectation Maximization algorithm

The ChIP-seq Peak Intensity - Expectation Maximization (CPI-EM) algorithm works as illustrated in Figure 1 (with
a detailed explanation in the Methods).

Briefly, ChIP-seq data of a TF pair X-Y that co-occupy N locations across the genome provides a set of peak
intensity pairs {(xi, yi)}

N
i=1. In general, the joint distribution fXY of these peak intensities can be written as a

mixture (or sum) of densities, f0 and f1, that represent intensities from non-cooperatively and cooperatively bound
regions, respectively —

fXY (xi, yi) = π0f0(xi, yi;θ0) + π1f1(xi, yi;θ1). (4)
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π0 and π1 are the fractions of non-cooperative and cooperative peak pairs in the data, and sum to 1. θ0 and
θ1 represent parameters of both these distributions whose values have to be estimated from the intensity pairs
{(xi, yi)}

N
i=1. We estimate these parameters using the expectation-maximization algorithm [28, 29] (see the section

“The Expectation-Maximization Algorithm” in Methods) . Once these parameters are estimated, the probability
that each location is cooperatively bound can be computed using equation (2) in Methods.

We make three assumptions –
(1) We assume that the peak intensity distributions of X and Y are statistically independent irrespective of whether

they bind DNA in a cooperative or non-cooperative fashion. This means that f0(xi, yi;θ0) = fX
0 (xi;θ

X
0 )fY

0 (yi;θ
Y
0 )

and f1(xi, yi;θ1) = fX
1 (xi;θ

X
1 )fY

1 (yi;θ
Y
1 ), which reduces equation (4) to equation (1).

We found this to be a reasonable assumption across all our data sets, when we calculated the mutual information
(MI) [31] between peak intensities of cooperatively and non-cooperatively bound peak pairs, as determined by partner
TF knockouts, across all our data sets. Mutual information, measured in bits, is a robust measure of statistical
dependence between two random variables, whose value is zero if the variables are independent [32]. We found the
MI between primary and partner TF peak intensities, at both cooperatively and non-cooperatively bound regions,
to be close to zero across all data sets (Supplementary Table 3).

(2) We approximate fX
0 ,fY

0 ,fX
1 and fY

1 by a Log-normal distribution, as shown in Figure 2B. Data obtained from
high-throughput experiments, which tend to be positively skewed, are known to be well approximated by Gamma
and Log-normal distributions [33]. We found that the Log-normal distribution fit peak intensity distributions with
a higher log-likelihood score than a Gaussian or Gamma distribution (Supplementary Table 2).

(3) We assume that the mean of fX
1 (xi;θ

X
1 ) is always less than fX

0 (xi;θ
X
0 ), i.e., that cooperatively bound primary

TFs are always, on average, more weakly bound than non-cooperatively bound primary TFs. This was the case in
each of the data sets we analyzed (Figure 2).

A histogram of the cooperative binding probabilities (p ≡ P (Li = 1|(xi, yi))) of FOXA1-HNF4A peak intensity
pairs, computed at each doubly bound location across the genome, is shown in Figure 3A. The fraction of peak
intensity pairs in each probability bin in Figure 3A that are actually cooperatively bound (true positives, based on
knockout data, as explained in Methods) is shown in Figure 3B. Peak intensity pairs with a higher value of p are
more likely to be cooperatively bound. The choice of α finally used to conclusively label a peak intensity pair as
cooperatively bound influences the fraction of erroneous inferences. The receiver operating characteristic (ROC)
curve in Figure 3C shows the false positive rates and true positive rates of CPI-EM at different values of α. The
false positive rate (FPR) is the fraction of non-cooperatively bound regions declared as cooperatively bound, while
the true positive rate (TPR) is the fraction of cooperatively bound regions that are detected. Both these quantities
are functions of α, and are estimated as

FPR(α) =
NFP (α)

Nnc

, TPR(α) =
NTP (α)

Nc

,

where NFP (α) is the number of non-cooperatively bound regions mistakenly declared as cooperatively bound at a
threshold α, while NTP (α) is the number of cooperatively bound regions correctly declared as cooperatively bound
with the threshold α. Nc and Nnc represent the total number of cooperatively bound and non-cooperatively bound
regions, respectively.

In Figure 3C, a large value of α, say 0.73, gives a lower FPR than α = 0.17. However, a larger value of α also
results in a smaller TPR value (Figure 3C). The area under ROC (auROC) is a measure of the average true positive
rate of the CPI-EM algorithm, with a higher value representing better detection. Consequently, auROC also provides
a way of comparing two different detection algorithms.

3.3 Performance of the CPI-EM algorithm

We computed the auROC of three variants of the CPI-EM algorithm on the data sets shown in Figure 2. These
variants fit either Log-normal, Gamma, or Gaussian distributions to cooperative and non-cooperative peak intensity
distributions. We compared the auROC of these variants to those from a “naive” peak distance detector, and
a detector based purely on chance. The peak distance algorithm computes the distances between the peaks of
overlapping ChIP-seq peaks, and declares those overlapping peak pairs whose peaks are within a threshold distance
d to be cooperatively bound. The chance detector is based on using tosses from a biased coin, whose probability of
showing heads is α, to detect cooperative interactions. The area under the ROC of this detector will be 0.5 for any
data set (see Supplementary Section 5). An auROC of 0.5 represents the minimum level of detection performance
that an algorithm should obtain to be considered a useful detector in practice. We plotted the ROC curves of each
of the CPI-EM and peak distance algorithms (Supplementary Figure 1) for the data sets shown in Figure 2. The
auROC of these four detectors is shown in Figure 4, along with a dotted line at an auROC of 0.5 that represents
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the chance detector. The Gamma and Log-normal CPI-EM variants have an auROC of at least 0.5, and thus can
consistently detect cooperative interactions across all data sets. The Log-normal CPI-EM variant fares well on all
data sets, except for the mid-exponential phase CRP-FIS data set, where its performance is at the level of a chance
detector. The Gaussian CPI-EM variant performs poorly on the early-exponential phase FIS-CRP and CRP-FIS
data sets, and has an auROC less than that of a chance detector in the former. This indicates that the Gaussian
CPI-EM variant is not as reliable as the Gamma and Log-normal variants in detecting cooperative interactions.

There is considerable variation in the auROC of the peak distance based algorithm. The auROC is less than 0.5
in early-exponential phase CRP-FIS and RTG3-GCN4 data sets, but is higher than 0.5 in the remaining data sets.
The fact that this algorithm can perform worse than a chance detector shows that peak distance, by itself, is an
unreliable criterion for detecting cooperative binding. This is in contrast to the reliable (auROC > 0.5) performance
obtained with the Log-normal and Gamma CPI-EM algorithms.

3.4 Detection of cooperative interactions in cell-type specific binding of transcription
factors

Cooperative binding could be inferred through a knockout of one of the TFs in each of the data sets shown in Figures
2 and 4. We now consider two ChIP-seq data sets from cell lines, where a ChIP-seq of the primary TF from the
knockout of the partner TF is not available. Instead, a ChIP-seq of the primary TF is carried out in a different
cell line, where the concentration of the partner TF is low. We ran CPI-EM on ChIP-seq data sets of ERα-FOXA1
from T-47D breast cancer and ECC-1 endometrial cancer cell lines [19], and CDX2-HNF4A in proliferating and
differentiated Caco-2 human intestinal stem cell lines [18].

In the ERα-FOXA1 data set, we compared ERα binding between T-47D and ECC-1 cell lines. T-47D cells
express FOXA1 at a ∼50.1 fold higher concentration than ECC-1 cell lines, with this difference in concentration
correlated with differences in ERα occupancy [19]. Given such a large difference in FOXA1 concentration between
these two cell types, we treated the ChIP-seq of ERα in ECC-1 cell lines as being equivalent to a knockout of
FOXA1 from T-47D cells. Similarly, in the CDX2-HNF4A data set, differentiated Caco-2 cells express HNF4A at
a much higher concentration than proliferating Caco-2 cells [18]. Thus, a comparison of CDX2 binding between
differentiated and proliferating Caco-2 cells is akin to analyzing changes in CDX2 binding after HNF4A is knocked
out from differentiated Caco-2 cells. Further, CDX2 has been shown to cooperatively bind DNA with HNF4A through
an independent biochemical assay [18]. However, the loss of binding in one cell type compared to the other is not
solely due to cooperative binding with FOXA1 or HNF4A—differences in nucleosomal occupancy and modifications
between cell types are known to influence cell-type specific binding in both data sets [19, 18]. Nevertheless, we
wanted to see if CPI-EM could still detect cell-type specific binding in both these data sets.

The box plots in Figure 5A compare the distribution of intensities of ERα peaks present only in T-47D cells
with that of ERα peaks present in both cell types. Although other factors determine cell-type specific binding of
ERα, we found that ERα peaks present only in T-47D cells were of lower intensity than peaks present in both cell
types (Wilcoxon rank-sum test, p ≪ 0.001). The same trend was seen in CDX2-HNF4A, where regions occupied
by CDX2 only in differentiated Caco-2 cells were more weakly bound than regions occupied by CDX2 in both cell
types (Wilcoxon rank-sum test, p ≪ 0.001). In contrast, the trends in the intensities of the partner TFs FOXA1 and
HNF4A in both these data sets are different. FOXA1 peaks in ERα cell-type specific bound regions are actually more
strongly bound than FOXA1 peaks in shared ERα bound regions, while HNF4A peaks in CDX2 cell-type specific
bound regions are more weakly bound than in shared CDX2 bound regions.

Since these patterns in peak intensities of cell-type specific binding were similar to those of cooperative binding
seen in Figure 2, we ran all three variants of the CPI-EM algorithm on ERα-FOXA1 and CDX2-HNF4A data sets
(Figure 5B). In line with trends in Figure 4, the Log-normal CPI-EM variant was better at detecting cell-type specific
binding across data sets compared to the Gamma and Gaussian variants. The peak distance detector could not be
tested on ERα-FOXA1 data since peak locations were not available in the peak calls. In the CDX2-HNF4A data set,
however, the peak distance algorithm has an auROC only marginally higher than 0.5. Once again, the peak distance
criterion is poor at detecting cooperative binding in this data set. This is in contrast to the CPI-EM algorithm,
which has an auROC greater than 0.5 in both data sets, with the Gamma and Log-normal CPI-EM variants giving
an auROC of 0.71 in the CDX2-HNF4A data set.

4 Discussion

Cooperative binding is known to play a role in transcription factor binding site evolution and enhancer detection
[34]. Cooperativity is also known to influence cis-regulatory variation between individuals of a species [35], which

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120113doi: bioRxiv preprint 

https://doi.org/10.1101/120113
http://creativecommons.org/licenses/by-nc/4.0/


could potentially capture disease-causing mutations that are known to occur in regulatory regions of the genome
[36]. CPI-EM is suited to study these phenomena, since it can detect instances of cooperative binding between a pair
of transcription factors that may occur anywhere in the genome. While sequence-based approaches to cooperative
binding detection have been proposed [6, 7, 8, 9, 10, 11, 12, 13, 1], none use ChIP-seq peak intensities as a criterion to
detect cooperativity. Our goal was to demonstrate that peak intensities, by themselves, contain valuable information
to detect cooperative binding. Our results suggest that methods for detecting cooperative binding based on ChIP-seq
peak intensities can usefully complement sequence-based detection algorithms.

4.1 Assumptions in the CPI-EM algorithm

The assumption that cooperatively bound primary TFs are more weakly bound, on average, than non-cooperatively
bound primary TFs is the key assumption in the CPI-EM algorithm. While this assumption was true across TF
pairs we analyzed in E. coli, S. cerevisiae, M. musculus and human genomes (which included cancer and stem cell
lines), its consequence is that CPI-EM is unlikely to detect regions where the primary TF is cooperatively bound to
DNA, but with a high peak intensity.

Our observation that cooperatively bound TFs were more weakly bound than non-cooperatively bound TFs is
likely a signature of short-range pair-wise interactions. For instance, GCN4-RTG3 and CDX2-HNF4A interactions
were discovered in the data sets upon which we ran CPI-EM, and these interactions have been independently verified
[1, 18]. A similar pattern of weakly but cooperatively bound TFs is seen in animal development. The binding of
Ultrabithorax (Ubx) and Extradenticle (Exd) at the shavenbaby enhancer in Drosophila melanogaster embryos [37]
occurs in closely spaced low affinity binding sites to help coordinate tissue patterning. Mutations that increased Ubx
binding affinity led to the expression of proteins outside their naturally occurring tissue boundaries [37]. Similarly,
low affinity binding sites that cooperatively bind Cubitus interruptus (Ci) at the dpp enhancer, which plays a crucial
role in wing patterning in Drosophila melanogaster, are evolutionary conserved across twelve Drosophila species [38].

4.2 Challenges to cooperativity detection using ChIP-seq peak intensities

There are two principal challenges to detecting cooperative interactions using ChIP-seq peak intensities — its low
spatial resolution, and the use of PCR amplification. ChIP-seq cannot resolve binding events that occur within 100
base pairs of each other [39], while DNA-mediated cooperative binding often occurs between two TFs bound within
25 base pairs of each other [40, 14]. Thus, a single ChIP-seq peak intensity can represent the average of multiple
cooperative and non-cooperative binding events. This low resolution may also explain why peak peak distance was
not a reliable criterion to detect cooperative binding. Protocols such as ChIP-exo [39] and ChIP-nexus [41] can resolve
two binding events that are a single base pair apart [42]. These methods likely provide more accurate measurements
of distances between binding events, which means that ChIP-exo or ChIP-nexus peak distances may supplement
peak intensities in detecting cooperative interactions.

Peak intensities are also affected by PCR amplification, which is a necessary step in ChIP-seq protocols. While
the use of more PCR amplification cycles helps detect weaker binding events, the variance in the number of fragments
obtained at the end of the PCR process increases with the number of cycles employed [43, 44]. If peak intensities
can instead be calculated based on the number of un-amplified DNA fragments, they would be less noisy measures
of binding affinity. This is possible with protocols such as ChIP-nexus [41], that use molecular bar-coding techniques
in DNA library preparation [45].

The additional variance introduced by PCR amplification might also explain the low MI values we measured
between peak intensities of cooperatively bound TFs. Thus, protocols such as ChIP-nexus and ChIP-exo might
be sensitive enough to detect the difference in MI between cooperatively and non-cooperatively bound TFs [46].
In such a case, our method can be modified to no longer be dependent on the assumption of cooperatively bound
primary TFs being more weakly bound than non-cooperatively bound primary TFs. In this modified algorithm,
while f0(xi, y;θ0) would still be equal to f0(xi;θ

X
0 )f0(yi;θ

Y
0 ), f1(xi, yi;θ1) 6= f1(xi;θ

X
1 )f1(yi;θ

Y
1 ) in equation (4).

Instead, f1(xi, yi;θ1) would contain an additional term that is an increasing function of MI. The precise form of such
a function is not obvious, but would increase the probability that a high MI peak intensity pair would be labelled as
cooperative, despite having a strongly bound primary TF.

Ultimately, our method is a way of detecting cooperatively bound locations without making any direct assumptions
about the genomic sequence of that location. Therefore, it provides a useful way of finding binding sequence patterns
that allow for cooperative binding to occur in vivo, but lie outside the range of existing sequence based algorithms.
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Figure 1: A schematic of the CPI-EM algorithm Steps shown in the figure correspond to those in the section
“The ChIP-seq Peak Intensity - Expectation Maximization (CPI-EM) algorithm” in Methods. (1) The ChIP-seq of
a TF provides a list of genomic locations bound by that TF, along with a peak intensity at each location that is a
noisy measurement of the TF’s binding affinity there. The input to the CPI-EM algorithm consists of a set of N peak
intensity pairs {(xi, yi)} from the ChIP-seq of TFs X and Y (2) CPI-EM considers the data {(xi, yi)}

N
i=1 to come from

the probability mixture model shown, where f0 and f1 represent the probability density of peak intensity pairs from
non-cooperatively and cooperatively bound regions, respectively. The expectation-maximization (EM) algorithm
is employed to compute the mixture model parameters Θ = (π0,θ0,θ1). (3) Given the estimates of the mixture
model parameters, the probability pi that the i − th genomic location is cooperatively bound can be computed.
This probability is computed across each of the N genomic locations bound by both X and Y. (4) Each of the
probabilities p1,p2,. . . pn is compared to a threshold α. Those locations where the probability of being cooperatively
bound exceeds α are declared cooperatively bound. These locations are compared to a separate list of cooperatively
bound locations, which is obtained from ChIP-seq experiments carried out on cells where Y is genetically knocked
out (as described in Methods).
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Figure 2: (A) Cooperatively bound primary TFs are significantly more weakly bound than non-
cooperatively bound primary TFs. Box-plots of peak intensity distributions of cooperatively (orange) and
non-cooperatively (gray) bound TF pairs, with primary TFs on the left and partner TFs on the right. ****, *** and
** indicate p-values of < 10−4, 10−3 and 10−2 from a Wilcoxon rank sum test. The whiskers of the box plot are the
5− th and 95− th percentiles of the distributions shown.
(B) ChIP-seq peak intensity distributions can be approximated by a Log-normal distribution. Marginal
peak intensity distributions of FOXA1 and HNF4A peaks (in filled black and orange circles), with fitted Log-normal
distributions (solid black and orange lines), along side a scatter plot of (FOXA1,HNF4A) peak intensity pairs from
cooperatively and non-cooperatively bound regions. The scatter points are colored according to the empirical joint
density of points in that region, with darker shades indicating a higher density. All empirical densities were computed
using the Gaussian kernel density estimation procedure available in the Python Scipy library.
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Figure 3: (A) Histogram of the probabilities of genomic locations cooperatively bound by a FOXA1-
HNF4A pair. Those locations where this probability exceeds a threshold α are labelled as cooperatively bound.
(B) The percentage of true positives in each histogram bin. This is the fraction of locations in each bin
that are actually cooperatively bound by FOXA1-HNF4A, as determined from HNF4A knockout data. (C) A
receiver operating characteristic (ROC) curve to evaluate the performance of the CPI-EM algorithm
in detecting cooperatively bound FOXA1-HNF4A locations. The curve is generated by calculating, for each
value of α between 0 and 1, the true and false positive rate of the algorithm. The true positive rate (TPR(α)) is
the ratio of the number of cooperatively bound regions detected to the total number of cooperatively bound regions
at that value of α. The false positive rate (FPR(α)) is the ratio of the number of non-cooperatively bound regions
mistakenly detected as cooperatively bound to the total number of non-cooperatively bound regions at that value of
α. Small values of α give a higher TPR, but at the cost of a higher FPR. The area under the ROC (auROC) is a
measure of detection performance, whose value cannot exceed 1, which corresponds to a perfect detector. Given the
auROC of two different algorithms, the one with a higher auROC is better at detecting cooperative binding.
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Figure 4: The CPI-EM variant that fits lognormal distributions to peak intensity pairs consistently
performs well across all data sets The area under the ROC curve (auROC) of the CPI-EM algorithm applied to
each of the data sets shown in Figure 2. CPI-EM variants that fit Log-normal, Gamma and Gaussian distributions
are represented in orange, black and gray, respectively. The auROC of the peak distance based detector is shown in
blue. For both the CPI-EM and peak distance algorithms, we calculated the ROC curve by picking thresholds that
corresponded to false positive rates between 0.1 and 1 in steps of 0.1. The true positive rate at each of these thresholds
was then computed, following wihch the area under the ROC was calculated using the trapezoidal integration rule
implemented in the numpy v1.11.2 Python library.
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Figure 5: (A) Regions bound by ERα only in T-47D cells are more weakly bound than regions bound
by ERα in both T-47D and ECC-1 cells. The same trend in peak intensities holds between regions bound by
CDX2 only in differentiated Caco-2 cells and those bound by CDX2 in both differentiated and proliferating Caco-2
cells. However, cell-type specific binding in these cell types is also determined by factors other than cooperativity.
Distributions of cooperatively and non-cooperatively bound regions are shown in orange and gray, respectively. The
whiskers of the box plot are the 5 − th and 95 − th percentiles of the distributions shown. (B) The Log-normal
CPI-EM variant consistently detects cell-type specific binding events of ERα and CDX2. ROC curves
of Log-normal (orange), Gamma (black) and Gaussian (gray) variants of CPI-EM, and the peak distance detector
(blue), on ERα-FOXA1 and CDX2-HNF4A data sets.The area under the ROC of each detector is indicated in the
legend. The peak distance detector was not run on ERα-FOXA1 data since peak locations were not available in the
peak calls. The ROC was generated using the same procedure as in Figure 4.
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