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Abstract

Transcription factors (TFs) often work cooperatively, where the binding of one TF to DNA enhances the
binding affinity of a second TF to a nearby location. Such cooperative binding is important for activating gene
expression from promoters and enhancers in both prokaryotic and eukaryotic cells. Existing methods to detect
cooperative binding of a TF pair rely on analyzing the sequence that is bound. We propose a method that uses,
instead, only ChIP-Seq peak intensities and an expectation maximization (CPI-EM) algorithm. We validate our
method using ChIP-seq data from cells where one of a pair of TFs under consideration has been genetically knocked
out. Our algorithm relies on our observation that cooperative TF-TF binding is correlated with weak binding of
one of the TFs, which we demonstrate in a variety of cell types, including E. coli, S. cerevisiae, M. musculus, as
well as human cancer and stem cell lines. We show that this method performs significantly better than a predictor
based only on the ChIP-seq peak distance of the TFs under consideration. By explicitly avoiding the use of
sequence information, our method may help uncover new sequence patterns of cooperative binding that sequence-
based methods could build upon. The CPI-EM algorithm is available at https://github.com/vishakad/cpi-em.

1 Introduction

Transcription factors (TFs) regulate the transcription of a set of genes by binding specific regulatory regions of
DNA. The magnitude of the change in transcription caused by a TF depends in part on its affinity to the DNA
sequence bound. It is possible that a second TF binding a nearby sequence increases the first TF’s binding affinity.
In this case, the two TFs are said to cooperatively or combinatorially bind DNA [1]. The cooperative binding of
transcription factors at enhancers and promoters is known to strongly increase gene expression [2, 3, 4, 5]. The
presence of cooperativity has been used to explain the rapid rate of evolution of TF binding sites in multicellular
organisms [6].

The role of cooperative binding in protein complex assembly has been extensively studied and computational
methods have been proposed to detect such interactions within genomes [7, 8, 9]. In these studies, cooperativity
typically involves protein oligomerization. However, two TFs can also cooperatively bind DNA without dimerizing
prior to binding [10, 11]. Several theoretical methods have been proposed to detect cooperative binding between a
pair of TFs in the genome [12, 13, 14, 15, 16, 17, 18, 19, 1]. These methods typically rely on locating frequently
co-occurring binding sites of TF pairs across the genome, or within genomic sequences known to be bound by a TF
pair. However, co-occurring binding site pairs do not always imply cooperative binding [1]. Conversely, many TF
pairs can cooperatively bind DNA even if the spacing between their binding sites, or the sequence between them, is
changed [20, 21]. Thus, a pair of TFs that cooperatively bind DNA at one genomic region may not bind cooperatively
at a different genomic region.
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Here, we propose a sequence-independent algorithm, based on ChIP-seq (chromatin immuno-precipitation and
sequencing) data, for detecting cooperatively bound sites that complement these sequence-based methods.

Genome-wide TF-DNA binding has been extensively studied using ChIP-seq [22]. ChIP-seq provides a list of
locations bound by a TF across a genome in vivo, which are referred to as peaks, along with peak intensities

whose values are proportional to the TF’s affinity for the sequence bound at these locations [22]. Some ChIP-seq
experiments, designed to detect pair-wise TF interactions across the genome, have been carried out in E. coli, S.
cerevisiae, M. musculus, and human genomes [23, 1, 24, 25]. In these experiments, three sets of ChIP-seq are
performed to determine locations where a pair of TFs, A and B, are cooperatively bound. First, two ChIP-seq
experiments are performed to determine binding locations of A and B in cells. A third ChIP-seq is performed to find
binding locations of A after B is genetically knocked out. In this ChIP-seq, locations where A no longer binds DNA
or has a lower binding affinity towards DNA are considered to be instances of cooperative binding. We refer to such
a set of three experiments as A-B, and refer to A as the primary TF and B as the partner TF. Instead of knocking
out B, if a ChIP-seq is performed to find binding locations of B after A is knocked out, we can infer locations where
B is cooperatively bound by A. This dataset is labeled B-A, with B and A as primary and partner TFs, respectively.

We propose the ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm as a computational
method to detect genomic locations cooperatively bound by a TF pair, based on their ChIP-seq peak intensities.
CPI-EM can do this without the need for ChIP-seq to be performed on one of the TFs after the other is knocked
out. At each location where ChIP-seq peaks of two TFs overlap each other, CPI-EM computes a probability that the
location is cooperatively bound by both TFs. The highlight of this algorithm is that it utilizes only peak intensities
to detect cooperative binding, and does not rely on binding site searches within ChIP-seq peak regions. CPI-EM
relies on the observation that a primary TF tended to be more weakly bound when it cooperatively bound DNA
with a partner TF, in comparison to regions where it did not cooperatively bind DNA. We observed this to be the
case in ChIP-seq datasets we analyzed from E. coli, S. cerevisiae, M. musculus and human genomes.

We compared the set of locations predicted by CPI-EM to be cooperatively bound, with the locations obtained
from the knockout-based ChIP-seq experiments. We also compared CPI-EM with an algorithm that detects coop-
erative binding based on the distance between ChIP-seq peaks. We found that peak distance by itself was not a
reliable predictor of cooperative binding. In contrast, we found that peak intensities are a more reliable criterion to
detect cooperative interactions in all the ChIP-seq datasets we analyzed.

2 Methods

2.1 ChIP-seq processing pipeline

A single ChIP-seq “peak call” consists of the genomic coordinates of the location being bound, along with a peak

intensity. We determined ChIP-seq peak locations of different transcription factors from multiple genomes, namely,
E. coli (GSE92255), S. cerevisiae [1], cells from primary M. musculus liver tissue [23], and three human cell lines
– the Caco-2 intestinal stem cell line [24], the T-47D breast cancer cell line and the ECC-1 endometrial cancer cell
line [25]. We used our own ChIP-seq pipeline to process raw sequence reads and call peaks from M. musculus and S.

cerevisiae data, and utilized pre-computed peak calls with the remaining datasets. This ensured that our validation
sets were not biased by procedures employed in our pipeline. See Supplementary Section 1 for details of our ChIP-seq
pipeline for processing these datasets.

2.2 Using ChIP-seq data from a genetic knockout to infer cooperative binding

From ChIP-seq profiles of a pair of TFs, X and Y, we classified genomic regions containing overlapping ChIP-seq
peaks of X and Y as cooperative or non-cooperative, based on the change in peak rank of X in response to a genetic
deletion of Y. The ranks are assigned such that the peak with rank 1 has the highest peak intensity. In our analysis,
we consider a genomic region to be doubly bound by X and Y if their peak regions overlap by at least a single base
pair. We used pybedtools v0.6.9 [26] to find these overlapping peak regions.

At each doubly bound genomic location, we classify X as being cooperatively bound by Y if (a) the peak rank
of X in the presence of Y is significantly higher (i.e., closer to rank 1) than the peak rank of X measured after the
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deletion of Y, or (b) if X’s peak is absent after the deletion of Y.
On the other hand, if the peak rank of X in the presence of Y is significantly lower (i.e., further from rank 1)

than the peak rank of X after the deletion of Y, or if it stays the same, we classify this as competitive or independent
binding, respectively. We refer to both these classes as non-cooperative binding. See Supplement Section 3 for
details on the statistical tests we performed to detect significant changes in peak ranks of X upon the knockout of
Y. These tests require ChIP-seq data from multiple replicates. In the ERα-FOXA1, CDX2-HNF4A, CRP-FIS, and
FIS-CRP datasets, peak calls from individual replicates were not available, therefore we used only peak losses to find
cooperatively bound locations in these datasets.

2.3 The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm

We describe the working of the CPI-EM algorithm in step-wise fashion below, where each of the steps is numbered
according to Figure 1. In Figure 1 and in the description below, we assume that cooperative binding between TFs
X and Y is being studied, where X is the primary TF and Y is the partner TF.

Step 1: From the ChIP-seq of X and Y, find all pairs of peaks where X and Y overlap by at least one base pair.
With these overlapping pairs, make a list of peak intensities (x1, y1), (x2, y2)...(xn, yn), where xi and yi are the peak
intensities of the i − th peak of X and Y, respectively. This list of peak intensity pairs is the input data for the
CPI-EM algorithm.

Step 2: To this input data, fit a model of the joint probability p(x, y) of observing the peak intensity x and y from
TFs X and Y, respectively, at a given location. Our model consists of a sum of two probability functions, which are
the probability of observing intensities x and y if they were (a) cooperatively bound, or (b) non-cooperatively bound.
We assume that both probability functions that are fitted have a Lognormal shape. This shape is characterized
by four parameters — a mean and a variance of the X and the Y axes (we also examine other shapes such as the
Gamma or Gaussian functions — see Supplementary Section 4). A final ninth parameter sets the relative weight of
the two probability functions, which determines the fraction of overlapping pairs that are cooperatively bound. We
find the best fit for these nine parameters using a procedure called expectation maximization (described in detail in
Supplementary Section 4.1).

We make two other assumptions in this step, each of which is discussed further in Supplementary Section 4.

• The peak intensities of X and Y at a location are statistically independent, irrespective of whether X and Y
are cooperatively or non-cooperatively bound. We found this to be a reasonable assumption after we measured
the mutual information between peak intensities of X and Y from cooperatively and non-cooperatively bound
locations. Mutual information is known to be a robust measure of statistical dependence [27].

• A primary TF that is cooperatively bound to DNA is, on average, bound weaker than a non-cooperatively
bound primary TF. We found this assumption to hold across all the datasets on which we ran CPI-EM (see
section “Peak intensities of cooperatively bound primary TFs are weaker than non-cooperatively bound primary
TFs” in Results, and Figure 2).

Step 3: Given the best-fit parameters, use Bayes’ formula to calculate the probability for each overlapping pair
of ChIP-seq peaks to be a site of cooperative binding (see Supplementary Section 4).

Step 4: Choose a threshold probability α and label an overlapping pair as cooperatively bound if the probability
calculated in step 3 is greater than α, and as being non-cooperatively bound otherwise. Validate with a list of known
cooperative binding sites, e.g., derived from the ChIP-seq of X after Y is knocked out (as described in the previous
section).

2.4 Peak Distance Detector

For each peak intensity pair in the input data, the peak distance detector calculates the distance between the summits

of X and Y peak regions. The summit is a location within each peak region that has the highest number of sequence
reads that overlap it, and is typically the most likely site at which the TF is physically attached to DNA. The peak
distance detector declares doubly bound regions as cooperatively bound if the distance between peaks of X and Y
is lesser than a threshold distance d. We ran this detection algorithm on all the datasets on which CPI-EM was
employed to detect cooperative binding. Our goal in using this algorithm was to determine whether the distance
between peaks is a reliable criterion to discriminate between cooperative and non-cooperative binding.
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3 Results

3.1 Peak intensities of cooperatively bound primary TFs are weaker than non-cooperatively
bound primary TFs

We inferred cooperative and non-cooperative binding from ChIP-seq datasets of FIS-CRP and CRP-FIS pairs in
E. coli in early-exponential and mid-exponential growth phases (accession number GSE92255), GCN4-RTG3 and
RTG3-GCN4 in S. cerevisiae [1], FOXA1-HNF4A, FOXA1-CEBPA and HNF4A-CEBPA in the mouse (M. musculus)
liver [23], CDX2-HNF4A in differentiated human intestinal stem cell lines (Caco-2) [24], and ERα-FOXA1 in the
T-47D breast cancer cell line [25]. A summary of the data is shown in Supplementary Table 1.

Figure 2A-C summarize trends in cooperative and non-cooperative TF-DNA binding seen in these datasets.
Cooperatively and non-cooperatively bound locations were determined using ChIP-seq data from genetic knockouts
as discussed in Methods. Cooperatively bound primary TF peak intensities were significantly lower than those of
non-cooperatively bound primary TF peaks across each of the TF-TF pairs (Wilcoxon rank-sum test, p ≪ 0.001).
In contrast, there was no consistent trend in the intensities of the partner TF in each of these pairs. This meant
that a primary TF could be cooperatively bound to DNA irrespective of the peak intensity of the partner TF. In
Figure 2B, estimates of the marginal distributions of cooperative and non-cooperative FOXA1 and HNF4A peaks are
shown. These, and similar distributions for the other TF pairs, tended to be better approximated by a Lognormal
distribution, which was evident from the higher log-likelihood value associated with a Lognormal fit, compared to a
Gaussian or Gamma distribution (Supplementary Table 2).

Since the primary TF intensity distributions from cooperatively bound regions significantly differed from those of
non-cooperatively bound regions, it should be possible to accurately label a pair of overlapping peaks as cooperative
or non-cooperative, based solely on their peak intensities. For instance, in the FOXA1-HNF4A dataset, a FOXA1
peak that has an intensity value of 5 is ≈3.4 times more likely to be cooperatively bound with HNF4A than to
be non-cooperatively bound with it. In clear-cut cases such as these, knowledge of the underlying sequence that is
bound is not necessary to detect a cooperative interaction.

3.2 CPI-EM applied to ChIP-seq datasets from M. musculus, S. cerevisiae and E.

coli

The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm works as illustrated in Figure 1 (with
a detailed explanation in the Methods).

Figure 3 shows the result of the CPI-EM algorithm when used to predict genomic regions that are coopera-
tively bound by FOXA1-HNF4A, RTG3-GCN4 and FIS-CRP in M. musculus, S. cerevisiae and early-exponential
phase cultures of E. coli, respectively. The top row shows histograms of the cooperative binding probabilities
(pcoop

1
, p

coop
2

, . . . , p
coop

N ), which are computed by CPI-EM, for all peak intensity pairs from each of the three datasets.
The height of each bar is the fraction of peak intensity pairs in each probability bin that are actually cooperatively
bound (termed true positives, which are calculated based on knockout data as explained in Methods). True positives
are distributed differently between the bins across different datasets. Over 50% of cooperatively bound RTG3-GCN4
pairs are assigned a value of pcoop > 0.8 by CPI-EM, with over 90% of cooperative bound pairs having a value of
pcoop > 0.5. In contrast, only about 30% of cooperative FOXA1-HNF4A pairs have a pcoop > 0.8.

The distribution of cooperative pairs into each of these bins determines the number of errors made when all peak
pairs with pcoop > α are declared as cooperatively bound. The false positive rate (FPR) of the CPI-EM algorithm is
the fraction of non-cooperatively bound regions erroneously declared as cooperatively bound, while the true positive
rate (TPR) is the fraction of cooperatively bound regions that are detected. Both these quantities are functions of
α, and are estimated as

FPR(α) =
NFP (α)

Nnc

, TPR(α) =
NTP (α)

Nc

,

where NFP (α) is the number of non-cooperatively bound regions mistakenly declared as cooperatively bound at a
threshold α, while NTP (α) is the number of cooperatively bound regions correctly declared as cooperatively bound
with the threshold α. Nc and Nnc represent the total number of cooperatively bound and non-cooperatively bound
regions, respectively. The receiver operating characteristic (ROC) curves at the bottom row of Figure 3 shows the
trade-off between false positive rates and true positive rates of CPI-EM at different values of α. A larger value of α
results in fewer false positives in the final prediction set but also results in fewer true positives being detected. For
instance, in the CRP-FIS dataset, α = 0.81 allows nearly 50% of all cooperative interactions to be detected. If α is
lowered to 0.375, more than 75% of cooperative peak pairs can be detected, but there will be more false positives in
this prediction set since the FPR at this value of α is three times higher than that at α = 0.81. A way of quantifying
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the detection performance of an algorithm like CPI-EM is to calculate the area under the ROC curve (auROC).
This is a measure of the average true positive rate of the CPI-EM algorithm, with a higher value representing better
detection. Consequently, auROC also provides a way of comparing two different detection algorithms.

3.3 Performance of different variants of the CPI-EM algorithm

When CPI-EM was run to compute cooperative binding probabilities in Figure 3, Lognormal shapes were fitted to
the joint probability function of observing cooperative and non-cooperatively bound peak intensity pairs (step 2 of
the CPI-EM algorithm). In Figure 4, we compare the detection performance of this version of the CPI-EM algorithm
with two other variants that fit Gamma and Gaussian shapes instead of a Lognormal shape. Figure 4 shows the
auROC of these three variants of the CPI-EM algorithm after they were run on all the datasets shown in Figure
2. We also compared the auROC of these CPI-EM variants to the auROC of a “naive” peak distance detector
and a detector based purely on chance. The peak distance algorithm computes the distances between the peaks of
overlapping ChIP-seq peaks and declares those overlapping peak pairs whose peaks are within a threshold distance
d to be cooperatively bound. The chance detector is based on using tosses from a biased coin, whose probability of
showing heads is α, to detect cooperative interactions. The area under the ROC of this detector will be 0.5 for any
dataset (see Supplementary Section 5). An auROC of 0.5 thus represents the minimum level of detection performance
that an algorithm should obtain to be considered a useful detector in practice. The complete ROC curves of each of
the CPI-EM and peak distance algorithms for the datasets in Figure 2 are shown in Supplementary Figure 1.

In Figure 4, it can be seen that the Gamma and Lognormal CPI-EM variants have an auROC of at least 0.5, and
thus can consistently detect cooperative interactions across all datasets. The Lognormal CPI-EM variant fares well
on all datasets, except for the mid-exponential phase CRP-FIS dataset, where its performance is at the level of a
chance detector. The Gaussian CPI-EM variant performs poorly on the early-exponential phase FIS-CRP and CRP-
FIS datasets and has an auROC less than that of a chance detector in the former. This indicates that the Gaussian
CPI-EM variant is not as reliable as the Gamma and Lognormal variants in detecting cooperative interactions.

There is considerable variation in the auROC of the peak distance based algorithm: less than 0.5 in early-
exponential phase CRP-FIS and RTG3-GCN4 datasets, but higher than 0.5 in the remaining datasets. The fact
that this algorithm can perform worse than a chance detector shows that peak distance, by itself, is an unreliable
criterion for detecting cooperative binding. This is in contrast to the reliable (auROC > 0.7 across most datasets)
performance obtained with the Lognormal and Gamma CPI-EM algorithms.

3.4 Application of CPI-EM to detect cell-type specific binding of transcription factors

We now demonstrate an application of CPI-EM in detecting the cell-type specific binding of a TF in two ChIP-
seq data sets from cell lines. Many studies of cell-type specific binding are targeted at understanding cellular
reprogramming and stem cell differentiation that gives rise to various organs in animal development [10]. One of the
reasons the same TF can bind different genomic regions in two cell types is because it cooperatively binds DNA with
the lineage-determining transcription factor of that cell type [10]. Thus, the lineage-determining transcription factor
effectively functions as a partner TF, whose concentration is low in one cell type but high in a second one.

We ran CPI-EM on ChIP-seq datasets of ERα-FOXA1 from T-47D breast cancer and ECC-1 endometrial cancer
cell lines [25], and CDX2-HNF4A in proliferating and differentiated Caco-2 human intestinal stem cell lines [24].
In the ERα-FOXA1 dataset, we compared ERα binding between T-47D and ECC-1 cell lines. T-47D cells express
FOXA1 at a ≈50 fold higher concentration than ECC-1 cell lines, with this difference in concentration correlated
with differences in ERα occupancy [25]. Given such a large difference in FOXA1 concentration between these two
cell types, we treated the ChIP-seq of ERα in ECC-1 cell lines as being equivalent to a knockout of FOXA1 from
T-47D cells. Similarly, in the CDX2-HNF4A dataset, differentiated Caco-2 cells express HNF4A at a much higher
concentration than proliferating Caco-2 cells [24]. Thus, a comparison of CDX2 binding between differentiated
and proliferating Caco-2 cells is akin to analyzing changes in CDX2 binding after HNF4A is knocked out from
differentiated Caco-2 cells. Further, CDX2 has been shown to cooperatively bind DNA with HNF4A through an
independent biochemical assay [24]. However, the loss of binding in one cell type compared to the other is not
solely due to cooperative binding with FOXA1 or HNF4A—differences in nucleosomal occupancy and modifications
between cell types are known to influence cell-type specific binding in both datasets [25, 24]. Nevertheless, we wanted
to see if CPI-EM could still detect cell-type specific binding in both these datasets.

The box plots in Figure 5A compare the distribution of intensities of ERα peaks present only in T-47D cells
with that of ERα peaks present in both cell types. Although other factors determine cell-type specific binding of
ERα, we found that ERα peaks present only in T-47D cells were of lower intensity than peaks present in both cell
types (Wilcoxon rank-sum test, p ≪ 0.001). The same trend was seen in CDX2-HNF4A, where regions occupied
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by CDX2 only in differentiated Caco-2 cells were more weakly bound than regions occupied by CDX2 in both cell
types (Wilcoxon rank-sum test, p ≪ 0.001). In contrast, the trends in the intensities of the partner TFs FOXA1 and
HNF4A in both these datasets are different. FOXA1 peaks in ERα cell-type specific bound regions are actually more
strongly bound than FOXA1 peaks in shared ERα bound regions, while HNF4A peaks in CDX2 cell-type specific
bound regions are more weakly bound than in shared CDX2 bound regions.

Since these patterns in peak intensities of cell-type specific binding were similar to those of cooperative binding
seen in Figure 2, we ran all three variants of the CPI-EM algorithm on ERα-FOXA1 and CDX2-HNF4A data sets
(Figure 5B). The differences in performance between the Gamma and Lognormal CPI-EM variants are marginal but
they are both better than the Gaussian variant at detecting cell-type specific binding in these two datasets. The
peak distance detector could not be tested on ERα-FOXA1 data since peak locations were not available in the peak
calls. In the CDX2-HNF4A dataset, however, the peak distance algorithm has an auROC only marginally higher
than 0.5. Once again, the peak distance criterion is poor at detecting cooperative binding in this dataset. This is in
contrast to the CPI-EM algorithm, which has an auROC greater than 0.5 in both datasets, with the Gamma and
Lognormal CPI-EM variants giving an auROC of 0.71 in the CDX2-HNF4A dataset.

4 Discussion

Cooperative binding is known to play a role in transcription factor binding site evolution and enhancer detection
[28]. Cooperativity is also known to influence cis-regulatory variation between individuals of a species [29], which
could potentially capture disease-causing mutations that are known to occur in regulatory regions of the genome
[30]. CPI-EM is suited to study these phenomena since it can detect instances of cooperative binding between a pair
of transcription factors that may occur anywhere in the genome. While sequence-based approaches to cooperative
binding detection have been proposed [12, 13, 14, 15, 16, 17, 18, 19, 1], none use ChIP-seq peak intensities as a
criterion to detect cooperativity. Our goal was to demonstrate that peak intensities, by themselves, contain valuable
information to detect cooperative binding. Our results suggest that methods for detecting cooperative binding based
on ChIP-seq peak intensities can usefully complement sequence-based detection algorithms.

4.1 Assumptions in the CPI-EM algorithm

The assumption that cooperatively bound primary TFs are more weakly bound, on average, than non-cooperatively
bound primary TFs is the key assumption in the CPI-EM algorithm. This assumption was true across TF pairs we
analyzed in E. coli, S. cerevisiae, M. musculus, and human genomes (which included cancer and stem cell lines).
However, the consequence of this assumption is that CPI-EM is unlikely to detect regions where the primary TF is
cooperatively bound to DNA, but with a high peak intensity.

Our observation that cooperatively bound TFs were more weakly bound than non-cooperatively bound TFs is
likely a signature of short-range pair-wise interactions. For instance, GCN4-RTG3 and CDX2-HNF4A interactions
were discovered in the datasets upon which we ran CPI-EM, and these interactions have been independently verified
[1, 24]. A similar pattern of weakly but cooperatively bound TFs is seen in animal development. The binding of
Ultrabithorax (Ubx) and Extradenticle at the shavenbaby enhancer in Drosophila melanogaster embryos [31] occurs
in closely spaced low-affinity binding sites to help coordinate tissue patterning. Mutations that increased Ubx binding
affinity led to the expression of proteins outside their naturally occurring tissue boundaries [31]. Similarly, low-affinity
binding sites that cooperatively bind Cubitus interruptus at the dpp enhancer (which plays a crucial role in wing
patterning in Drosophila melanogaster) are evolutionary conserved across twelve Drosophila species [32].

4.2 Challenges to cooperativity detection using ChIP-seq peak intensities

There are two principal challenges to detecting cooperative interactions using ChIP-seq peak intensities — its low
spatial resolution, and the use of PCR amplification. ChIP-seq cannot resolve binding events that occur within 100
base pairs of each other [33], while DNA-mediated cooperative binding often occurs between two TFs bound within
25 base pairs of each other [11, 20]. Thus, a single ChIP-seq peak intensity can represent the average of multiple
cooperative and non-cooperative binding events. This low resolution may also explain why peak distance was not a
reliable criterion to detect cooperative binding. Protocols such as ChIP-exo [33] and ChIP-nexus [34] can resolve two
binding events that are a single base pair apart [35]. These methods likely provide more accurate measurements of
distances between binding events, which means that ChIP-exo or ChIP-nexus peak distances may supplement peak
intensities in detecting cooperative interactions.

Peak intensities are also affected by PCR amplification, which is a necessary step in ChIP-seq protocols. While
the use of more PCR amplification cycles helps detect weaker binding events, the variance in the number of fragments
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obtained at the end of the PCR process increases with the number of cycles employed [36, 37]. If peak intensities
can instead be calculated based on the number of un-amplified DNA fragments, they would be less noisy measures
of binding affinity. This is possible with protocols such as ChIP-nexus [34], that use molecular bar-coding techniques
in DNA library preparation [38].

The additional variance introduced by PCR amplification might also explain the low mutual information values
we measured between peak intensities of cooperatively bound TFs (see Supplementary Table 2). Thus, protocols
such as ChIP-nexus and ChIP-exo might be sensitive enough to detect the difference in MI between cooperatively
and non-cooperatively bound TFs [39]. In such a case, our method can be modified to no longer be dependent on the
assumption of cooperatively bound primary TFs being more weakly bound than non-cooperatively bound primary
TFs. In this modified algorithm, a tenth parameter in the joint probability model fit to peak intensity data (in step
2 of the CPI-EM algorithm) will take into account this mutual information resulting from cooperative binding. The
precise form of such a modified joint probability model is not obvious, but it would increase the probability that a
high MI peak intensity pair would be labeled as cooperative, despite having a strongly bound primary TF.

Ultimately, our method is a way of detecting cooperatively bound locations without making any direct assumptions
about the genomic sequence of that location. Therefore, it provides a useful way of finding binding sequence patterns
that allow for cooperative binding to occur in vivo but lie outside the range of existing sequence-based algorithms.
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Figure 1: A schematic of the use of the CPI-EM algorithm and ChIP-seq from knockout data to
separately identify cooperative bound transcription factor pairs. ChIP-seq experiments carried out on two
TFs, X and Y, yield a list of locations that are bound by both TFs, along with peak intensities at each location.
From this data, there are two ways in which we find genomic locations that are cooperatively bound by X and Y.
(A) A method for inferring these locations from a ChIP-seq of X carried out after Y is genetically deleted. Locations
where a peak of X either disappears altogether, or is reduced in intensity after knocking out Y are labelled as
cooperatively bound. In contrast, locations where a peak of X either remains unchanged or increases in intensity are
labelled as non-cooperatively bound (see section “Using ChIP-seq data from a genetic knockout to infer cooperative
binding” in Methods).
(B) Steps in predicting cooperatively bound locations are shown, where the numbers correspond to those in the
section “The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm” in Methods. (1) The input
to CPI-EM consists of a list of genomic locations where a peak of X overlaps a peak of Y by at least a single base pair.
(2) Each of these overlapping intensity pairs is fit to a model that consists of a sum of two probability functions.
These functions specify the probabilities of observing a particular peak intensity pair given that it comes from a
cooperatively or non-cooperatively bound region. These probabilities are computed by fitting the model to the input
data using the expectation-maximization algorithm (see Supplementary Section 4.1). (3) Bayes’ formula is applied
to the probabilities computed in step (2) to find the probability of each peak intensity pair being cooperatively
bound. (4) Each cooperative binding probability computed in step (3) that is greater than a threshold α is declared
as cooperatively bound. We compare this list of predicted locations with the list of cooperatively bound locations
inferred from knockout data in order to compute the number of correct and incorrect inferences made by CPI-EM.
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Figure 2: (A) Cooperatively bound primary TFs are significantly more weakly bound than non-
cooperatively bound primary TFs. Box-plots of peak intensity distributions of cooperatively (orange) and
non-cooperatively (gray) bound TF pairs, with primary TFs on the left and partner TFs on the right. ****, *** and
** indicate p-values of < 10−4, 10−3 and 10−2 from a Wilcoxon rank sum test. The whiskers of the box plot are the
5− th and 95− th percentiles of the distributions shown.
(B) ChIP-seq peak intensity distributions can be approximated by a Lognormal distribution. Marginal
peak intensity distributions of FOXA1 and HNF4A peaks (in filled black and orange circles), with fitted Lognormal
distributions (solid black and orange lines), along side a scatter plot of (FOXA1,HNF4A) peak intensity pairs from
cooperatively and non-cooperatively bound regions. The scatter points are colored according to the density of points
in that region, with darker shades indicating a higher density. The density of points in the scatter were computed
using the Gaussian kernel density estimation procedure in the Python Scipy library.
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Figure 3: CPI-EM applied to ChIP-seq datasets from M. musculus (FOXA1-HNF4A), S. cerevisiae

(RTG3-GCN4) and early-exponential phase cultures of E. coli (CRP-FIS). For each dataset, CPI-EM
computes a list of cooperative binding probabilities at all the locations bound by the TF pair under consideration.
Top row: The fraction of cooperatively bound pairs, as determined from knockout data, that fall into each coopera-
tive binding probability bin. T he bins are equally spaced with a width of 0.1 and the heights of the bars within each
histogram add up to 1. Bottom row: Receiver operating characteristic (ROC) curves that evaluate the
performance of CPI-EM in detecting cooperatively bound pairs. The curve is generated by calculating, for
each value of α between 0 and 1, the true and false positive rate of the algorithm. The true positive rate (TPR(α)) is
the ratio of the number of cooperatively bound regions detected to the total number of cooperatively bound regions
at that value of α. The false positive rate (FPR(α)) is the ratio of the number of non-cooperatively bound regions
mistakenly detected as cooperatively bound to the total number of non-cooperatively bound regions at that value
of α. Small values of α give a higher TPR, but at the cost of a higher FPR. The area under the ROC (auROC) is
a measure of detection performance, whose value cannot exceed 1, which corresponds to a perfect detector. Given
the auROC of two different algorithms, the one with a higher auROC is better, on average, at detecting cooperative
binding.
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each of the datasets shown in Figure 2. CPI-EM variants that fit Lognormal, Gamma and Gaussian distributions
are represented in orange, black and gray, respectively. The auROC of the peak distance based detector is shown
in blue. See Supplementary Section 5 for the calculation of the ROC curve for both the CPI-EM and peak distance
algorithms.

CDX2 HNF4A
0

15

30

45

60

****

****
**** **

ERα FOXA1
0

20

40

60

80 T47D

Pe
ak

 in
te

ns
ity

CPI-EM(Gamma) CPI-EM(Gaussian)
CPI-EM(Log-normal) Summit distance

Bound in T-47D only
Bound in T-47D and ECC-1

Bound in diff. Caco-2 only
Bound in diff. and prol. Caco-2

A B

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
CDX2-HNF4AERα-FOXA1

0.71
0.65
0.71
0.51

0.57
0.56
0.54

Figure 5: (A) Regions bound by ERα only in T-47D cells are more weakly bound than regions bound
by ERα in both T-47D and ECC-1 cells. The same trend in peak intensities holds between regions bound by
CDX2 only in differentiated Caco-2 cells and those bound by CDX2 in both differentiated and proliferating Caco-2
cells. However, cell-type specific binding in these cell types is also determined by factors other than cooperativity.
Distributions of cooperatively and non-cooperatively bound regions are shown in orange and gray, respectively. The
whiskers of the box plot are the 5 − th and 95 − th percentiles of the distributions shown. (B) The Lognormal
CPI-EM variant consistently detects cell-type specific binding events of ERα and CDX2. ROC curves
of Lognormal (orange), Gamma (black) and Gaussian (gray) variants of CPI-EM, and the peak distance detector
(blue), on ERα-FOXA1 and CDX2-HNF4A datasets.The area under the ROC of each detector is indicated in the
legend. The peak distance detector was not run on ERα-FOXA1 data since peak locations were not available in the
peak calls. The ROC was generated using the same procedure as in Figure 4.
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