
Abstract

Motivation: Visualizing BAM and VCF files is a common task for
biologists, but they’re missing a way to filter and to explore the details of
each short-read or variation.
Results: In that context, we wrote an interactive java-based interface
named JfxNgs that uses javascript snippets to filter and reformat BAM
and VCF files.
Availability: https://github.com/lindenb/jvarkit/blob/master/docs/JfxNgs.md
Contact: pierre.lindenbaum@univ-nantes.fr.

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

https://github.com/lindenb/jvarkit/blob/master/docs/JfxNgs.md
mailto:pierre.lindenbaum@univ-nantes.fr
https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

JfxNgs : A BAM/VCF viewer with

javascript-based filtering/reformatting

functionalities.

Pierre Lindenbaum (i), Matilde Karakachoff (ii), and Richard
Redon (i)

(i)L'Institut du thorax, INSERM, CNRS, UNIV Nantes
8 quai Moncousu, 44000 Nantes, France.

(ii) L'Institut du thorax, INSERM, CNRS, UNIV Nantes, CHU
Nantes

8 quai Moncousu, 44000 Nantes, France.
pierre.lindenbaum@univ-nantes.fr

March 2017

1 Description

Powerful tools like the Integrative Genomics Viewer (IGV) (Thorvalds et al.,
2013) are very efficient at visualizing the features laying in a genomic region
but they’re not really suitable for exploring the details of each item (quality,
functional annotations, ...). Biologists in our lab currently explore the VCF
files using knime4bio (Lindenbaum et al., 2011), a plugin we developped for the
knime plateform. But by breaking the VCF structure into a table, we lose
important informations like the VCF header, and we cannot use the existing
programming interfaces like the ’java API for high-throughput sequencing data
formats’ (htsjdk) (htsjdk, 2016) to analyze the data. Hence, we have written
’JfxNgs ’ a java heavy client displaying the items of some VCF and BAM files.
Nevertheles we do not see JfxNgs as a competitor of IGV but rather like a
companion that will be used to get the details of each record in the file.

We have taken advantage that the standard edition of ’java’ distributed
by Oracle contains ’nashorn’, an embedded javascript engine. This engine gives
the abality to manipulate java objects using simple javascript statements. When
those objects are created by htsjdk (htsjdk, 2016), it gives the users a very simple
way to filter or reformat a VCF or a BAM file. We had previously implemented
this idea in the tools FilterVcf and FilterSamReads from the picard (Picard,
2017) suite and in jvarkit (Lindenbaum, 2015), and we have now implemented
it in the JfxNgs interface (Fig. 1 and 2).

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

mailto:pierre.lindenbaum@univ-nantes.fr
https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

f unc t i on my f i l t e r (vc) {
var countDP = 0 ;
f o r (var i = 0 ; i < vc . getNSamples () ;++ i) {

var genotype = vc . getGenotype (i) ;
i f (! genotype . hasDP ()) cont inue ;
var dp = genotype . getDP () ;
i f (dp >= 200) cont inue ;
i f (++countDP >= 2) return true ;
}

r e turn f a l s e ;
}

my f i l t e r (va r i an t) ;

Figure 1: A simple javascript-based filter retaining the variants having at least
two genotypes with a depth lower than 200 reads: an instance of the htsjdk java
class htsjdk.variant.variantcontext.VariantContext named ’variant ’ is injected
in the javascript context, the function ’myfilter’ is invoked. It runs a loop over
all the samples and count the number of genotypes having a depth (’DP’) lower
than 200.

whi l e (i t e r . hasNext ()) {
var samread = i t e r . next () ;
i f (samread . getReadUnmappedFlag ()) cont inue ;
out . p r i n t l n (samread . getCont ig () + ”\ t ” +

(samread . g e tS ta r t ()−1) + ”\ t ” +
samread . getEnd ()) ;

}

Figure 2: Reformatting a BAM file to a BED file. An iterator named ’iter ’, and
scanning some instances of the htsjdk java class htsjdk.samtools.SAMRecord,
is injected in the javascript context. As long as we can read a SAM record,
mapped on the reference, its’ genomic location is printed to ’out ’, the current
output stream.

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

https://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/variant/variantcontext/VariantContext.html
https://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/SAMRecord.html
https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

Figure 3: A Screen of jfxngs with a VCF and a BAM window. The ’JS’ tabs
provide a text area to write a javascript code to filter the data.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

JfxNgs can read local files as long as they’ve been indexed with tabix or
tribble. It can also access the remote files if the hosting server supports ’Byte-
Range’ requests. The main window provides tools for indexing BAM and VCF
files. The VCF and the BAM windows have common functionalities: filtering
the data with javascript, displaying the data in a very simple genome browser,
viewing the selected item in a web browser for a common database like Exac
(Song et al., 2015), displaying simple statistics (Fig. 3), exporting the data
with javascript, viewing the current selected genomic interval in IGV, viewing
the components of the file header, saving the filtered data in a new file. The
javascript areas contain a growing library of code snippets to help the user.

The BAM window shows the standard columns of the BAM specification
(Read-Name, Sam-Flags, etc...), it provides some tables to view the details of
the cigar string, the sam flags, the supplementary alignments. A pileup-like
table displays the bases covering each position.

The VCF window displays the standard columns of a VCF file (CHROM,
POS, etc...) , it provides some tables to clearly view the INFO, FILTER, ALTS
data. If the annotations of a prediction algorithm like VEP (McLaren et al.,
2010) of SNPEff (Cingolani et al., 2012) are detected, the predictions for each
transcripts are displayed in a new table. A table of each genotypes displays
the calls for each variant with the ability to filter out the Hom-Ref and No-Call
genotypes. A pedigree file can be associated to a VCF and is then used to detect
the Mendelian incompatibilities.

2 Availability

The software is available in the jvarkit package (Lindenbaum, 2015). It has been
tested under Linux, Windows and MacOS and is freely available at https://github.com/lindenb/jvarkit/blob/master/do
At the time of writing, our tool is also available, packaged as a java webstart
application, at http://redonlab.univ-nantes.fr/public html/jnlp/jfxngs, mean-
ing that it doesn’t require any installation but java and an always up-to-date
application is downloaded each time the user invokes it.

Acknowledgements

We want to thank the bioinformatics core facility of Nantes (Biogenouest) for
technical support.

Funding

This work was supported by the Institut National de la Santé et de la Recherche
Médicale (INSERM).

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

https://github.com/lindenb/jvarkit/blob/master/docs/JfxNgs.md
http://redonlab.univ-nantes.fr/public_html/jnlp/jfxngs
http://www.pf-bird.univ-nantes.fr/
https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

References

Cingolani, P., Platts, A., Wang, l. e. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., and

Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2;

iso-3. Fly (Austin), 6(2), 80–92.

htsjdk (2016). A java api for high-throughput sequencing data.

https://github.com/samtools/htsjdk. [Online; accessed 17-Mar-2017].

Lindenbaum, P. (2015). JVarkit: java-based utilities for Bioinformatics.

Lindenbaum, P., Le Scouarnec, S., Portero, V., and Redon, R. (2011). Knime4Bio: a set of custom

nodes for the interpretation of next-generation sequencing data with KNIME. Bioinformatics,

27(22), 3200–3201.

McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., and Cunningham, F. (2010). De-

riving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.

Bioinformatics, 26(16), 2069–2070.

Picard (2017). Picard: A set of command line tools (in Java) for manipulating high-throughput

sequencing (HTS) data and formats. [Online; accessed 16-Mar-2017].

Song, W., Gardner, S. A., Hovhannisyan, H., Natalizio, A., Weymouth, K. S., Chen, W., Thibodeau,

I., Bogdanova, E., Letovsky, S., Willis, A., and Nagan, N. (2015). Exploring the landscape of

pathogenic genetic variation in the ExAC population database: insights of relevance to variant

classification. Genet. Med.

Thorvalds, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV):

high-performance genomics data visualization and exploration. Brief. Bioinformatics, 14(2),

178–192.

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120196doi: bioRxiv preprint

https://github.com/samtools/htsjdk
https://doi.org/10.1101/120196
http://creativecommons.org/licenses/by-nd/4.0/

	Description
	Availability

