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Abstract7

Motivation: Genotyping and parameter estimation using high throughput sequencing data are8

everyday tasks for population geneticists, but methods developed for diploids are typically not applicable9

to polyploid taxa. This is due to their duplicated chromosomes, as well as the complex patterns of10

allelic exchange that often accompany whole genome duplication (WGD) events. For WGDs within a11

single lineage (autopolyploids), inbreeding can result from mixed mating and/or double reduction. For12

WGDs that involve hybridization (allopolyploids), alleles are typically inherited through independently13

segregating subgenomes.14

Results: We present two new models for estimating genotypes and population genetic parameters from15

genotype likelihoods for auto- and allopolyploids. We then use simulations to compare these models to16

existing approaches at varying depths of sequencing coverage and ploidy levels. These simulations show17

that our models typically have lower levels of estimation error for genotype and parameter estimates,18

especially when sequencing coverage is low. Finally, we also apply these models to two empirical data19

sets from the literature. Overall, we show that the use of genotype likelihoods to model non-standard20

inheritance patterns is a promising approach for conducting population genomic inferences in polyploids.21

Availability: A C++ program, EBG, is provided to perform inference using the models we describe. It22

is available under the GNU GPLv3 on GitHub:23

https://github.com/pblischak/polyploid-genotyping.24

Contact: blischak.4@osu.edu.25

Supplementary information: Supplementary data are available online.26

Introduction27

The discovery and analysis of genetic variation in natural populations is a central task of evolutionary28

genetics, with applications ranging from the inference of population structure and patterns of historical29

demography, detecting selection and local adaptation, and performing genetic association studies. The30

ability to use high throughput sequencing technologies to detect variants across the genome has further31

advanced our understanding of the impact of evolutionary forces on genetic diversity in populations.32

However, the nature of data sets collected using high throughput sequencing often require special33

considerations regarding sequencing error and, especially, the level of sequencing coverage. Common34

approaches for dealing with low-coverage sequence data use genotype likelihoods to integrate over the35

uncertainty of inferring genotypes when estimating other parameters [allele frequencies, inbreeding36

coefficients, population differentiation, etc.] (e.g., Martin et al., 2010; Li, 2011; Nielsen et al., 2011, 2012;37

Fumagalli et al., 2013; Vieira et al., 2013; Huang et al., 2016, among others). Genotype likelihoods for38

biallelic SNPs are calculated as the probability of the sequencing read data mapping to a variable site39

(total number of reads, number of reads with the alternative allele, and probability of sequencing error)40

given the possible values of the genotypes (typically 0, 1, or 2 for the number of copies of the alternative41
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allele in diploids). When combined with computationally efficient algorithms for inference, these models42

are the primary tools used for conducting population genetic analyses from high throughput data.43

Although the theory for these models is well established for diploids and even special cases of higher44

ploidy samples (treated equivalently to pooled samples of multiple diploids), the application of these45

tools to taxa that have experienced a recent whole genome duplication (WGD) is currently limited46

(McKenna et al., 2010; DePristo et al., 2011; Li, 2011). This is due in part because of ambiguity in the47

copy number of each allele in the genotype of a polyploid, a phenomenon referred to as allelic dosage48

uncertainty (Blischak et al., 2016). Another important aspect of polyploid evolution to consider is that49

the occurrence of WGD can have an impact on how alleles are exchanged in a population, making the50

assumption of randomly inherited alleles inappropriate. Together these two factors have limited the51

widespread application of population genomic tools to gain insights about levels of genetic variation52

following WGD. Given both the evolutionary and economic importance of many of these organisms (e.g.,53

agricultural crops, farmed fishes), the development of methods that can accommodate more complex54

patterns of inheritance is critical for the study of polyploids (Stebbins, 1950; Grant, 1971; Otto and55

Whitton, 2000; Soltis and Soltis, 2000; Soltis et al., 2014).56

In this paper we present two new models for SNP genotyping in polyploids using high throughput57

sequencing data. The models correspond to two different ways in which polyploids can be formed:58

WGD within a lineage (autopolyploid) or involving hybridization between two lineages (allopolyploid).59

The former builds off of previous work to relax the assumption of Hardy-Weinberg equilibrium60

by including inbreeding (Blischak et al., 2016) and the latter provides a framework for separately61

determining the genotypes within the two genomes that compose the allopolyploid (typically referred62

to as subgenomes). We test our models using a wide range of simulations and describe our numerical63

approach for parameter estimation using the expectation maximization (EM) algorithm (Dempster et al.,64

1977). For comparison, we analyzed our simulated data sets using two additional approaches based on65

models that assume either Hardy Weinberg equilibrium or equal genotype probabilities. Finally, we also66

test the models on empirical data sets collected for a diploid-allotetraploid species pair from the genus67

Betula (birch trees) and a mixed-ploidy grass species, Andropogon gerardii. Overall, we demonstrate68

that genotype uncertainty resulting from both low-coverage sequencing data, allelic dosage uncertainty,69

and non-standard inheritance patterns can be overcome in polyploids using genotype likelihoods.70

Models71

Assumptions: For each of the models below, we assume that SNPs are biallelic, and that loci and72

individuals are independent. For the autopolyploid model, we do not directly include double reduction73

(but see Discussion). For the allopolyploid model, we assume that subgenomes are independent, that74

they do not interact during meiosis (i.e., no homoeologous recombination), and that they are both in75

Hardy Weinberg equilibrium.76

Notation for each model is introduced in the descriptions we provide below and is also summarized77

in Table 1. Throughout the paper, we use boldface letters to denote an array of the respective78

parameter across either individuals (N), loci (L), or both (e.g., p := p1, . . . , pL, F := F1, . . . , FN , and79

G := g11, g12, . . . , gN(L−1), gNL).80

Autopolyploid Model81

The genotype for a biallelic SNP in an autopolyploid with K sets of chromosomes has K + 1 possible82

values. For example, using A and a to denote the two alleles, an autotetraploid can have genotypes83

equal to AAAA, AAAa, AAaa, Aaaa, or aaaa (e.g., gi` = 0, 1, 2, 3, or 4, if a is the alternative allele;84
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i = 1, . . . , N and ` = 1, . . . , L). A simple extension of the typical binomial sampling (Hardy Weinberg;85

HW) model used for diploids but with larger sample size to accommodate higher ploidy levels has86

been used previously (Li, 2011; Blischak et al., 2016). However, inbreeding in various forms can bias87

inferences made when HW equilibrium is assumed. Vieira et al. (2013) introduced a genotype prior88

to include inbreeding either per-site or per-individual for a sample of diploids (implemented in the89

programs ngsF and ANGSD). This model used a formulation for generalized HW that includes the90

inbreeding coefficient, F , which is the probability that two alleles are identical by decent (ibd). Instead91

of using a generalized HW formulation for autopolyploids, we used the Balding-Nichols beta-binomial92

model (Balding and Nichols, 1995, 1997; Bradburd et al., 2013), which also models the probability of93

two alleles being ibd but is more easily extended to higher ploidy levels by not directly enumerating all94

combinations of allele draws for the genotype of an autopolyploid. The beta-binomial distribution is95

obtained from the product of a binomial and beta distribution, which are commonly used in population96

genetics to model genotypes and allele frequencies, respectively (Wright, 1931). The beta distribution97

in this case is used to model genetic correlations that can result from inbreeding and/or population98

subdivision. These types of models are commonly referred to as F-models because of their relation to99

Wright’s fixation indices (e.g., FIS , FST ; Wright, 1931), and they form the basis of many well-known100

population genetic models, including those by Holsinger et al. (2002), Falush et al. (2003), and Foll and101

Gaggiotti (2008), as well as more recent modeling applications that include uncertainty in genotype102

calling from high throughput sequencing data using genotype likelihoods (e.g., Gompert et al., 2010;103

Gompert and Buerkle, 2011; Fumagalli et al., 2013).104

Given genotype values at L loci for N individuals each of ploidy mi, we model individual genotypes105

at each locus (gi` = 0, . . . ,mi copies of the alternative allele) as a beta-binomial random variable. This106

distribution derives from treating the probability of drawing an alternative allele as a beta distributed107

random variable with parameters α = p`
1−Fi

Fi
and β = (1−p`) 1−Fi

Fi
, which scales the binomial probability108

of successfully drawing an alternative allele by both the allele frequency (p`) and the amount of inbreeding109

(Fi) (Balding and Nichols, 1995; Bradburd et al., 2013). The log likelihood of the genotype data for this110

model given the allele frequency at each site (p`) and the per-individual inbreeding coefficients (Fi) is111

then112

logL(p,F ;G) =
∑
i

∑
`

logP (gi`|p`, Fi)

=
∑
i

∑
`

log

B
(
gi` + p`

1− Fi
Fi

,mi − gi` + (1− p`)
1− Fi
Fi

)
B
(
p`

1− Fi
Fi

, (1− p`)
1− Fi
Fi

) . (1)

where B(α, β) represents the beta function with parameters α and β. Since genotypes must be inferred113

from sequence data (di`; see Methods), we can also account for this uncertainty by summing over114

the possible genotype values to get the likelihood of the sequence data given allele frequencies and115

inbreeding coefficients by including genotype likelihoods [P (di`|gi`)]:116

logL(p,F ;D)

=
∑
i

∑
`

log

[∑
a

P (di`|gi` = a)P (gi` = a|p`, Fi)

]
. (2)
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Here P (gi`|p`, Fi) is the beta-binomial distribution from Eq. (1). Because maximization of the log117

likelihood is encumbered by the logarithm of the sum over genotypes, we instead use an expectation118

conditional maximization algorithm to obtain maximum likelihood (ML) estimates for p and F (Meng119

and Rubin, 1993). Since an analytical solution for the maximization step is not readily available, we120

instead employ numerical maximization of the likelihood using Brent’s method (Brent, 1973). Then,121

given the ML parameter estimates, we can calculate the posterior probability of the genotype of each122

individual at each locus using Bayes’ theorem:123

P (gi` = a|di`) =
P (di`|gi` = a)P (gi` = a|p̂`, F̂i)∑mi

a′=0 P (di`|gi` = a′)P (gi` = a′|p̂`, F̂i)
, (3)

for a = 0, . . . ,mi.124

Allopolyploid Model125

Deviations from simple HW expectations are evident in allopolyploids in that they have two (sometimes126

more) sets of chromosomes inherited from separate evolutionary lineages. When these sets of chromosomes127

(called homoeologs, or homoeologous chromosomes) segregate during meiosis, they are inherited separately128

from one another and should be treated independently. For example, the genotypes for a biallelic SNP in129

an allotetraploid with two diploid subgenomes could have values AA|A′A′, AA|A′a′, Aa|A′A′, AA|a′a′,130

Aa|A′a′, aa|A′A′, Aa|a′a′, aa|A′a′, or aa|a′a′. Here the vertical bar ‘|’ denotes separation between the131

subgenomes and the ′ indicates homoeologous alleles. With perfect knowledge about which alleles go132

with each subgenome, determining the genotypes could be done completely independently. However, if133

separate reference genomes for the homoeologous chromosomes are not available, all reads mapping to134

a variable position will not be separable into reads coming from one subgenome or the other. Thus,135

when considering a variable site across the full set of homoeologs, we need to account for the fact that136

the frequency of the alternative allele may not be the same in each subgenome due to their separate137

evolutionary histories, even if both subgenomes are independently in Hardy Weinberg equilibrium.138

When we cannot separate reads, we can instead consider the full genotype of an allopolyploid with139

two subgenomes as being a combination of the genotypes within the subgenomes (i.e., the number140

of alternative alleles summed across subgenomes). Returning to the previous example, a tetraploid141

with two diploid subgenomes can have a full genotype of 0, . . . , 4 copies of the alternative allele, but142

each of these full genotypes can be found via a different combination of genotypes in the subgenomes:143

{0 = (0, 0); 1 = (0, 1), (1, 0); 2 = (0, 2), (2, 0), (1, 1); 3 = (1, 2), (2, 1); 4 = (2, 2)}. In general, for an144

allopolyploid that has two subgenomes with ploidy levels equal to m1i and m2i, there are a total of145

(m1i + 1)× (m2i + 1) genotype combinations to consider. The probabilities of these genotypes are then146

determined using the allele frequencies for the alternative allele in the subgenomes.147

An obvious complication of not being able to separate the sequencing reads into sets coming from each148

subgenome is that it makes independently estimating the allele frequencies and genotypes impossible.149

However, it is sometimes the case that the parental species of the allopolyploid are known, which can150

help with inferring genotypes by providing an outside estimate of the allele frequencies within the151

subgenomes. For our model, we relax this use of outside knowledge further and assume that only a152

single parent has been identified. Arbitrarily designating the known parent as subgenome one, we treat153

the allele frequencies at each locus estimated in the parental population to be known (p∗1) and require154

only the estimation of the allele frequencies in subgenomes two (p2). We then model the full genotype155

in the allopolyploid as the sum of the two independent subgenomes with separate, and potentially156

unequal, allele frequencies. Since we assume Hardy Weinberg equilibrium within each subgenome, we157
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can model the sum of the number of alternative alleles in the two subgenomes as a product of two158

binomial distributions. The log likelihood for known genotype data across individuals at all loci is then159

given by160

logL(p2;p
∗
1,G1,G2)

=
∑
i

∑
`

[
log

(
m1i

g1i`

)
(p∗1`)

g1i`(1− p∗1`)(m1i−g1i`)

+ log

(
m2i

g2i`

)
(p2`)

g2i`(1− p2`)(m2i−g2i`)
]
. (4)

The inclusion of genotype likelihoods is done in a similar way to the autopolyploid model, only now we161

are summing over the values of the genotypes in both subgenomes one and two. The log likelihood for162

the observed sequence data given the allele frequencies in each of the subgenomes is163

logL(p2;p
∗
1,D)

=
∑
i

∑
`

log

[∑
a1

∑
a2

P (di`|gi` = a1 + a2)

× P (g1i` = a1|p∗1`)P (g2i` = a2|p2`)
]
, (5)

where P (di`|gi`) is the genotype likelihood, and P (g1i`|p∗1`) and P (g2i`|p2`) are binomial distributions.164

Because maximizing the log likelihood involves the logarithm of a double sum, we turn once again165

to the expectation maximization algorithm to obtain a ML estimate for the allele frequency at each166

locus in subgenome two (Dempster et al., 1977). An analytical solution for the maximization step of the167

EM algorithm is given by (derived in the Supplemental Text, §S1.2)168

p
(t+1)
2` =

∑
i

∑
a1

∑
a2
a2P (gi` = a1 + a2|di`, p∗1`, p

(t)
2` )∑

im2i
, (6)

where P (gi` = a1 + a2|di`, p∗1`, p
(t)
2` ) is the joint conditional probability of the genotypes in subgenomes169

one and two given the data and the current parameter estimates. Using these ML estimates, an empirical170

Bayes estimate of the genotypes within each of the subgenomes can be found using their joint posterior171

probability (note that subscripts i and ` are dropped for readability)172

P (g1 = a1, g2 = a2|d)

=
P (d|g = g1 + g2)P (g1 = a1|p∗1)P (g2 = a2|p̂2)∑

a′1

∑
a′2
P (d|g = g1 + g2)P (g1 = a′1|p∗1)P (g2 = a′2|p̂2)

, (7)

for a1 = 0, . . . ,m1i and a2 = 0, . . . ,m2i.173

Other Approaches174

We consider two additional approaches that use genotype priors that have been described in previous175

studies. The first is an implementation of the SAMtools Hardy Weinberg equilibrium prior (Li, 2011)176

and the second is a flat prior on genotypes that is similar to the model used by the Genome Analysis177

Toolkit (GATK; McKenna et al., 2010). Other approaches that accommodate polyploids such as the178

FITTETRA package in R (Voorrips et al., 2011) and the method of Maruki and Lynch (2017) were not179
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considered here because they can only handle specific ploidy levels (triploids and/or tetraploids).180

Methods181

Genotype likelihoods were calculated using a simplified version of the SAMtools model by using average182

sequencing error values at each locus, ε`, across reads and individuals (Li, 2011). Then for the possible183

values of the genotype (a = 0, . . . ,mi copies of the alternative allele), the probability of the read data,184

di` = {ti`, ri`, ε`} (ti` = total read count, ri` = alternative allele read count), given the genotype, gi`, is185

P (di`|gi` = a) =

(
ti`
ri`

)
fε(a,mi, ε`)

ri`

×[1− fε(a,mi, ε`)]
(ti`−ri`), (8)

where186

fε(a,m, ε) =
a

m
(1− ε) +

(
1− a

m

)
ε, (9)

which is the probability of drawing an alternative allele weighted by the probability of a sequencing187

error.188

Simulations189

We generated sequencing read data with mean coverage per individual, per locus equal to 2x, 5x, 10x,190

20x, 30x, and 40x, simulated from a Poisson distribution for 10 000 sites. The number of individuals191

was set to 25, 50, or 100, and we tested ploidy levels equal to 4, 6, and 8 (4=2+2, 6=2+4, and 8=4+4192

for allopolyploids). Sequencing errors were drawn from a beta distribution with parameters α = 1 and193

β = 200 (mean error ≈ 0.005)]. Allele frequencies were drawn from a truncated beta distribution with a194

minimum minor allele frequency of 5% and parameters α = β = 0.01. For the autopolyploid model, the195

values of the inbreeding coefficient were set to 0.1, 0.25, 0.5, 0.75, and 0.9. For the allopolyploid model,196

the allele frequencies simulated for subgenome one were treated as the reference panel. Genotypes were197

drawn according to their respective generating models (autopolyploid or allopolyploid), and the number198

of alternative reads for each individual at each locus was drawn from the binomial distribution in Eq.199

(8) given the total read count, genotype, and level of sequencing error. For each simulation, we evaluated200

estimation error using the root mean squared deviation (RMSD).201

To compare our models with other methods, we reused these simulated data as input for the202

estimation of genotypes and model parameters using models that assume either Hardy Weinberg203

equilibrium or equal genotype probabilities (GATK-like). For the allopolyploid model, this also equates204

to ignoring the fact that genotypes are drawn from two independent subgenomes. Inference for the Hardy205

Weinberg model used the EM algorithm described in Li (2011). Genotyping based on the GATK-like206

model was carried out based on normalized genotype likelihoods as described in McKenna et al. (2010).207

Comparisons for the autopolyploid model were based on the RMSD of four estimates of the inbreeding208

coefficient. The first of these was the estimate obtained by our ECM algorithm, which is built directly209

into the model. The other three estimates were calculated as a summary statistic from estimated210

genotypes for the three models (Supplemental Text, §S2.1). We then also compared RMSD values of211

the estimated genotype values for the three methods. For the allopolyploid model, direct comparisons212

with models that assume Hardy Weinberg or uniform genotype priors are more difficult because they213

do not share the assumption of two subgenomes. Therefore, we focused on the accuracy of the models214
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to infer the full genotype by again comparing RMSD values.215

Empirical Data Analysis216

Andropogon gerardii217

We tested our autopolyploid model on an empirical data set collected in the grass species Andropogon218

gerardii. SNP data from McAllister and Miller (2016) were downloaded from Dryad as a VCF file219

(doi:10.5061/dryad.05qs7). The data were filtered using VCFtools v0.1.14 with the following criteria:220

biallelic SNPs only, no more than 50% missing data per site, one SNP per 10 000 base pair window,221

and a minimum sequencing depth of five reads (Danecek et al., 2011). The output from VCFtools was222

then converted to a plain text format containing the number of total reads and alternative allele reads223

per individual per site using a Perl script (available on GitHub). We then also removed any individuals224

with more than 50% missing data using an R script (available on GitHub). Since A. gerardii has two225

cytotypes (6N and 9N), we analyzed the hexaploid and nonaploid individuals separately and compared226

the estimates of the inbreeding coefficients across ploidy levels.227

Betula pubescens and B. pendula228

To test the allopolyploid model, biallelic SNP genotypes from Zohren et al. (2016) for the allotetraploid229

Betula pubescens and its putative diploid progenitor, B. pendula, were downloaded from Dryad230

(doi:10.5061/dryad.815rj). Treating the genotypes as known, we simulated read data and error values as231

before using Eq. (8) with beta distributed error values. We varied the level of sequencing coverage (5x,232

10x, 20x) but did not alter the amount of missing data. Allele frequencies for B. pendula were estimated233

under the assumption of Hardy Weinberg equilibrium and disequilibrium to assess which was a better234

fit. These allele frequency estimates were then used as the reference panel for genotype estimation in B.235

pubescens using the allopolyploid model.236

Comparison with GATK237

As a final comparison, we re-analyzed raw sequence data collected for B. pendula and B. pubescens238

using GATK v3.5.0 and our model for allopolyploids. Data for 15 individuals each of B. pendula and B.239

pubescens were downloaded from the European Nucleotide Archive (Project Accession ERA600270).240

Reads were mapped to a draft reference genome of B. nana (Dryad, doi:10.5061/dryad.815rj; Wang241

et al., 2013) using the MEM algorithm in BWA v0.7.13 with additional processing (conversion to BAM242

and sorting) using SAMtools v1.4.1 (Li and Durbin, 2009; Li, 2011). Read group information was243

added using Picard (http://broadinstitute.github.io/picard), followed by variant calling and genotype244

estimation using the GATK UnifiedGenotyper (B. pubescens was run with -ploidy=4; McKenna et al.,245

2010). Variant site positions in the resulting VCF files were used to extract base quality scores from the246

original BAM files using the SAMtools mpileup command (Li, 2011). All other data processing steps247

(filtering sites, finding shared variants, etc.) were conducted using Python and R scripts (available on248

GitHub; see Supplemental Text, §S3.2). Allele frequencies at each site were estimated in B. pendula249

using our implementation of the Hardy Weinberg model (run until convergence). These allele frequencies250

were then used as the reference panel for estimating genotypes in B. pubescens using the allopolyploid251

model (EM+Brent with 100 iterations). All VCF, pileup, and input/output files are publicly available252

on Zenodo (doi:10.5281/zenodo.825228).253
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Software and reproducibility254

We have packaged our code for the EM/ECM algorithms in a C++ program called EBG, which we255

have included as part of a GitHub repository for this manuscript (pblischak/polyploid-genotyping;256

Zenodo, 10.5281/zenodo.195779). This software includes our implementations of the autopolyploid257

(diseq), allopolyploid (alloSNP), Hardy Weinberg (hwe), and GATK-like (gatk) models for genotyping258

and parameter estimation in polyploids. Each of these models also outputs the updated distribution of259

genotype probabilities to allow genotype uncertainty to be preserved in downstream applications. Code260

for the simulation study and empirical data analyses was written using a combination of the R statistical261

language and C++ through the use of the RCPP package (Eddelbuettel and François, 2011; Eddelbuettel,262

2013; R Core Team, 2014). Figures were generated using the GGPLOT2 package in R (Wickham, 2009).263

Additional figure manipulations were done using Inkscape (https://inkscape.org/). All Python, Perl, R,264

and Bash scripts used to process data files are included on GitHub in the ‘helper-scripts/’ folder.265

Results266

Simulations267

Autopolyploid model268

Simulated read count data were generated to assess the impact of sequencing coverage and ploidy level269

on estimation error in autopolyploids using an expectation conditional maximization (ECM) algorithm.270

Convergence of the ECM algorithm depended on the number of individuals sampled, sequencing coverage,271

and ploidy. Each iteration of the algorithm employs Brent’s method, itself an iterative maximization272

algorithm, resulting in slower M-steps than the other EM algorithms we describe. However, overall273

convergence was reached before the maximum number of allowed iterations (1000) in all cases, with274

analyses typically employing between 50–100 iterations.275

For the estimation of individual inbreeding coefficients (Fi), Figure 1a shows the root mean squared276

deviation (RMSD) for estimated inbreeding coefficients for the four different estimation methods across277

ploidy levels and the three lowest levels of sequencing coverage (sample size of 50 individuals). Compared278

with the other methods that used called genotypes (diseqCG, hwe, gatk), the level of sequencing coverage279

and ploidy level had virtually no effect on estimation error using our model (diseq). For the other280

estimates, increasing sequencing coverage lowered estimation error as expected, and higher ploidy levels281

showed higher levels of error. However, inbreeding coefficients estimated from genotypes called from our282

model (diseqCG) did have lower RMSD values than the other methods, except when the inbreeding283

coefficient was 0.5, when the level of error was about the same. All of the methods except for Hardy284

Weinberg showed low levels of estimation error once the depth of sequencing reached 10x. Figures S1–S3285

show the results for all simulated depths of sequencing (2x to 40x) and sample sizes (25, 50, and 100286

individuals).287

Our empirical Bayes approach for maximum a posteriori (MAP) genotype estimation resulted288

in a similar overall pattern of lower estimation error for increased sequencing coverage (Figure 1b).289

Interestingly, the other two methods for genotyping (gatk, hwe) showed opposing patterns of accuracy:290

the GATK-like model increased in accuracy with increasing levels of inbreeding but the Hardy Weinberg291

model had decreasing accuracy. Genotypes called by our method showed some dependence on the level292

of inbreeding with intermediate values having the most error. However, our method was still the most293

accurate across the range of inbreeding values simulated. Ploidy also had an impact on genotyping294

with higher ploidy levels having higher levels of estimation error. This is largely due to the fact that295
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Figure 1: RMSD values for simulations under the autopolyploid model with inbreeding for (a) estimated
inbreeding coefficients and (b) estimated genotypes. Each individual plot within (a) and (b) displays
the RMSD on the y-axis and inbreeding coefficients on the x-axis. Rows correspond with the depth of
sequencing coverage (2x, 5x, 10x) and the columns correspond to the ploidy level (4, 6, 8). The different
estimation methods (diseq, diseqCG, gatk, hwe) are represented by different shapes within each plot. (a)
The RMSD of the inbreeding coefficient estimated by our model (diseq) is consistently the lowest across all
depths of sequencing coverage, ploidy level, and level of inbreeding. (b) Genotypes estimated by our model
are at least as accurate as the other methods and are not as affected by high or low levels of inbreeding.

higher ploidy individuals have a larger number of possible values for the genotype and that the average296

sequencing coverage per allele (chromosome) is lower (e.g., 10x coverage in a tetraploid is on average297

2.5x per allele but is 1.25x in an octoploid). Once the depth of sequencing reached 10x, the only model298

that still showed a higher level of error was the Hardy Weinberg model. Figures S4–S6 show the results299

for all simulated depths of sequencing (2x to 40x) and sample sizes (25, 50, and 100 individuals).300

Allopolyploid model301

Using the same general parameter settings as the simulations for the autopolyploid model (except302

for inbreeding), we calculated genotype likelihoods by simulating read data from genotypes generated303

under the model from Eq. (4). The ploidy of each subgenome was as follows: tetraploids = diploid +304

diploid, hexaploid = diploid + tetraploid, and octoploid = tetraploid + tetraploid. Our expectation305

maximization algorithm for this model was slow to converge, despite each maximization step taking306

less time when compared with the autopolyploid model. Analyses never reached the upper limit on the307

number of iterations (again 1000) but some analyses did not reach convergence until over 900 iterations308
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Figure 2: RMSD values for full genotype estimation (combined number of alternative alleles in subgenomes
one and two). Sequencing coverage is on the x-axis and RMSD values are on the y-axis. Each column
represents a different ploidy level and the three methods used (allosnp, gatk, hwe) are represented by
different shapes. For low levels of sequencing coverage, the allosnp and hwe models have much lower levels
of estimation error when compared with the gatk model. The level of sequencing coverage required for the
three methods to converge in error rate depends on the ploidy level, with tetraploids needing less coverage
and octoploids needing more.

had been run. To make analyses with this model more practical, we reanalyzed all simulated data sets309

using only 100 EM iterations followed by direct maximization of the log likelihood of the observed data310

given by Eq. (5) using Brent’s method (EM+Brent).311

Comparing our model with other genotype priors (Hardy Weinberg, GATK) only allowed us to312

consider the full genotype (total number of alternative alleles in subgenomes one and two) estimates313

from the different methods. Figure 2 shows the level of estimation error for each of the three genotyping314

methods for each ploidy level across all depths of sequencing coverage. For low depths of sequencing,315

genotyping with the GATK-like model resulted in high levels of error. As the depth of coverage increased,316

the three methods converged. However, this was dependent on the ploidy level: octoploids required a317

higher depth of sequencing for the GATK model than tetraploids or hexaploids to achieve the same318

level of accuracy. The Hardy Weinberg prior performed almost identically to our allopolyploid model,319

most likely as a result of our assuming Hardy Weinberg within the subgenomes of the allopolyploid.320

We also assessed the accuracy of the model for estimating parameters based on the true values used321

for the simulations. Allele frequency estimates for subgenome two improved as the number of individuals322

and sequencing coverage were increased (Figure S7). Tetraploids showed the highest estimation error for323

subgenome two (diploid), followed by octoploids and hexaploids (tetraploid subgenomes), respectively.324

This pattern with hexaploids and octoploids is counterintuitive considering that higher ploidy levels325

typically result in better estimates of allele frequencies since more alleles are sampled from the population326

(Blischak et al., 2016). However, the tetraploid subgenomes in the hexaploid and octoploid individuals327

do not show similar levels of error as would be expected. This is likely a result of subgenome one328

having higher ploidy in the octoploid simulations, resulting in a larger number of possible genotype329

combinations and therefore higher estimation error (octoploid: 5× 5 = 25 vs. hexaploid: 3× 5 = 15).330

Figures S8 and S9 show the error in genotype estimation in subgenome one and two, respectively. Here331

we again observe that higher ploidy levels have higher levels of estimation error for genotypes. Overall,332

genotype estimates were inferred with higher error for subgenome two. This result makes sense given333

that we treat the allele frequencies for subgenome one as known but have to estimate them in subgenome334
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two.335

Empirical Data Analysis336

Andropogon gerardii337

Analyzing and filtering the data sets for hexaploid and nonaploid A. gerardii separately resulted in338

slightly different numbers of loci (6N: 83 individuals, 6 928 loci; 9N: 70 individuals, 6 887 loci). The339

average depth of sequencing coverage was 10.9x for hexaploids and 10.8x for nonaploids. Though levels340

of inbreeding for both cytotypes were low, nonaploids showed significantly higher levels of inbreeding341

than hexaploids (Figure 3a; F1,151 = 36.14, p = 1.3× 10−8).342

Betula pubescens and B. pendula343

The data set for the species of Betula consisted of 130 individuals for B. pubescens and 34 individuals for344

B. pendula with genotype data for 49 021 loci. For B. pendula, we inferred allele frequencies and genotypes345

assuming Hardy Weinberg (HW), as well as using our model for individual inbreeding coefficients. The346

log likelihoods of the two models were very similar and most of the inbreeding coefficients were estimated347

to be close to 0, so we used the allele frequency estimates from the HW model as the reference panel348

for the allopolyploid model. After estimating the parameters of this model for B. pubescens using the349

EM+Brent method, we assessed the accuracy of our empirical Bayes genotype estimates by comparing350

them to the original data set using the root mean squared deviation (Figure 3b). The left panel shows351

the RMSD for each genotype value and the right panel shows a weighted measure of the RMSD that352

corresponds to the relative amount of error based on the frequency of that genotype in the original353

data set. For example, we do a poor job of estimating the genotype when the true value is 0 copies354

of the alternative allele, but very few of the true genotypes have that value (∼0.5%), so the relative355

contribution to the overall error is much less. In contrast, roughly 75% of the true genotypes have a356

value of 4 copies of the alternative allele, which is the value that we estimate the best. In addition, many357

of the genotypes in B. pendula were homozygous for the alternative allele (∼88%), so the estimates of358

the allele frequencies were very close to 1.0, which could have led to more error prone estimates of the359

genotypes in B. pubescens when using them as the reference panel.360

Comparison with GATK361

Variant calling and genotype estimation using GATK resulted in 14 931 shared SNPs between B. pendula362

and B. pubescens after applying the following filters: biallelic sites only, variant quality score (QUAL)363

greater than 30, minimum read depth (DP) per individual per site of at least five, and a maximum of364

five missing individuals per site. Analyzing these same sites for B. pendula using the Hardy Weinberg365

equilibrium model produced genotype estimates that were 99.1% identical to the estimates from GATK.366

Similarly for B. pubescens, genotype estimates combined from the allopolyploid subgenomes resulted367

in full genotype estimates that were 96.2% identical to GATK. Run times between our models and368

GATK are not directly comparable because it was used to identify all variants before filtering and it369

also performs more steps than genotyping and parameter estimation. However, it is worth noting that370

the analyses with our models took approximately 3.5s and 43s for the Hardy Weinberg and allopolyploid371

models, respectively (measured using the Unix time command).372

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/120261doi: bioRxiv preprint 

https://doi.org/10.1101/120261
http://creativecommons.org/licenses/by/4.0/


● ● ● ●● ●

●

●

●

●

● ●● ● ●● ●● ● ●● ● ●●● ● ●● ● ●● ●● ●● ●●●●● ●● ●● ● ●● ● ●●●

●

●

●

●

●
●

●●● ●●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ● ●●●● ● ● ●● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

0.00

0.02

0.04

0.06

6N 9N

In
b

re
e

d
in

g

Ploidy
●

●

6N

9N

(a) Inbreeding levels in A. gerardii

RMSD RRMSD

0 1 2 3 4 0 1 2 3 4

0.0

0.5

1.0

1.5

V
a

lu
e

Coverage
c5

c10

c20

(b) Genotyping error for B. pubescens

Figure 3: Results of empirical data analyses. (a) Levels of inbreeding in Andropogon gerardii. Inbreeding
in the two cytotypes of A. gerardii is generally low, but the nonaploid (9N) samples have higher levels
of inbreeding on average. (b) Genotype estimation error in Betula pubescens. The left panel shows the
RMSD values for each of the possible full genotypes (0–4; number of alternative alleles in subgenomes one
and two). The right panel shows a relative measure of the RMSD where each value is weighted by the
occurrence of the particular genotype in the data set (see text for details).

Discussion373

The ability to genotype individuals in a population can be an under-appreciated task, even though it374

is typically the first step of any population genetic analysis. This is especially true for populations of375

polyploids, where genotyping is further complicated by duplicated chromosomes and their subsequent376

genome evolution. Until recently, genotyping polyploids using high throughput sequencing data was only377

possible in model organisms with reference genomes and/or subgenomes. However, more researchers378

have begun genotyping SNPs in both model and non-model organisms using whole genome resequencing379

and reduced representation methods such as restriction-site associated DNA sequencing (RADseq) and380

its variants (e.g., Arnold et al., 2015; Douglas et al., 2015; Cornille et al., 2016; Zohren et al., 2016).381

Most of these studies used already existing pieces of software to perform SNP calling and genotyping382

[e.g., Genome Analysis Toolkit (McKenna et al., 2010), UNEAK (Lu et al., 2012), TASSEL-GBS383

(Glaubitz et al., 2014)] but others used novel approaches for estimating genotypes (e.g., Voorrips et al.,384

2011; Zohren et al., 2016; Maruki and Lynch, 2017). A major caveat with these tools, however, is that385

many of them cannot estimate inbreeding coefficients for arbitrary ploidy levels in autopolyploids,386

nor can they separately estimate genotypes in the subgenomes of an allopolyploid. This is especially387
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important considering that ignoring the independence of allopolyploid subgenomes can lead to biases in388

the estimation of heterozygosity when alternative alleles are fixed in the individual subgenomes (fixed389

heterozygosity, Cornille et al., 2016). In general, our models aim to incorporate more biologically realistic390

assumptions about how population-level factors influence the distribution of genotypes in populations391

of polyploids, which is critical when conducting population genetic studies in these taxa. Furthermore,392

our approaches use genotype likelihoods and produce updated estimates of genotype probabilities given393

population parameters that can be used to propagate the uncertainty in calling genotypes in polyploids394

to downstream analyses such as estimating heterozygosity or population differentiation, rather than395

relying on called genotypes.396

Though our models were accurate for many of our simulations and outperformed comparable methods397

at low depths of sequencing coverage, it is important to consider scenarios when their assumptions are398

inappropriate. One concern for autopolyploids is the occurrence of double reduction, a process by which399

alleles in the genotype are identical by decent due to the segregation of sister chromatids to the same400

gamete during meiosis (Haldane, 1930). As we mentioned before, our model does not directly estimate401

rates of double reduction. However, because double reduction leads to identity by descent, it contributes402

to deviations from Hardy Weinberg that are similar to inbreeding. Therefore, our model for individual403

inbreeding coefficients should be able to accommodate, but not specifically estimate, double reduction.404

Allopolyploids present a different set of challenges that are a result of their hybrid origins. In our405

model, we assume that the two subgenomes of the allopolyploid are completely independent. However,406

homoeologous recombination can make this assumption inappropriate. Future work that models this407

exchange of alleles between subgenomes will be an important extension of the model we presented408

here. Another potential avenue would be to develop ways to use more parental information, as well as409

demographic parameters to account for the amount of divergence between the allopolyploid and its410

parents. Models that help to identify parental taxa will also be an important contribution for future411

research on allopolyploids.412

Conclusions413

As methods for the analysis of polyploid data continue to be developed, we are hopeful that the barriers414

to more widespread study of these taxa will begin to drop. The prevalence of polyploidy in plants and415

other groups of eukaryotes, including fish, amphibians, and fungi, make these methods fundamentally416

important for furthering our understanding of the impact of WGD on genetic diversity (Rogers, 1973;417

Otto and Whitton, 2000; Gregory and Mable, 2005; Wood et al., 2009). Of the main problems that418

complicate population genetics in polyploids, modeling allelic inheritance remains the most difficult.419

Overall, we believe that using genotype likelihoods when studying polyploids to overcome difficulties420

in determining allele copy number and for dealing with low-coverage sequencing data is a promising421

approach for future model development.422
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Table 1: A key to the symbols and notation that are used in describing the autopolyploid and allopolyploid
models. We use a either a bold or bold-capitalized letter when referring to the collection of parameters
together (e.g., G refers to gi` for all individuals at all loci). Parameters within subgenomes for the
allopolyploid model use the same symbol but with either a 1 or a 2 added as a subscript.

Symbol Description
N , L The number of individuals and loci sampled.
mi Ploidy level of individual i.
di` Sequence data for individual i at locus `

(={ti`, ri`, ε`}).
ti` Total number of reads for individual i at

locus `.
ri` Number of alternative allele reads for

individual i at locus `.
ε` Average sequencing error at locus `.
gi` Genotype for individual i at locus `.
p` Allele frequency at locus `.
Fi Inbreeding coefficient for individual i.
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