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ABSTRACT8

The recent surge in enthusiasm for simultaneously inferring relationships from extinct and9

extant species has reinvigorated interest in statistical approaches for modelling morphological10

evolution. Current statistical methods use the Mk model to describe substitutions between11

discrete character states. Although representing a significant step forward, the Mk model presents12

challenges in biological interpretation, and its adequacy in modelling morphological evolution13

has not been well explored. Another major hurdle in morphological phylogenetics concerns the14

process of character coding of discrete characters. The often subjective nature of discrete15

character coding can generate discordant results that are rooted in individual researchers’16

subjective interpretations. Employing continuous measurements to infer phylogenies may17

alleviate some of these issues. Although not widely used in the inference of topology, models18

describing the evolution of continuous characters have been well examined, and their statistical19

behaviour is well understood. Also, continuous measurements avoid the substantial ambiguity20

often associated with the assignment of discrete characters to states. I present a set of simulations21

to determine whether use of continuous characters is a feasible alternative or supplement to22

discrete characters for inferring phylogeny. I compare relative reconstruction accuracy by23

inferring phylogenies from simulated continuous and discrete characters. These tests demonstrate24

significant promise for continuous traits by demonstrating their higher overall accuracy as25

compared to reconstruction from discrete characters under Mk when simulated under unbounded26

Brownian motion, and equal performance when simulated under an Ornstein-Uhlenbeck model.27

Continuous characters also perform reasonably well in the presence of covariance between sites. I28

argue that inferring phylogenies directly from continuous traits may be benefit efforts to maximise29

phylogenetic information in morphological datasets by preserving larger variation in state space30
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compared to many discretisation schemes. I also suggest that the use of continuous trait models in31

phylogenetic reconstruction may alleviate potential concerns of discrete character model32

adequacy, while identifying areas that require further study in this area. This study provides an33

initial controlled demonstration of the efficacy of continuous characters in phylogenetic inference.34

Keywords: phylogenetics, morphology, palaeontology, quantitative characters, Bayesian35
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The development and widespread adoption of statistical phylogenetic methods has36

revolutionized disparate disciplines in evolutionary biology, epidemiology, and systematics.37

Studies utilizing maximum-likelihood (ML) and Bayesian approaches have become the preferred38

means to analyse molecular data, largely eclipsing parsimony and distance methods. Despite this,39

approaches which draw inference from morphological data have remained comparatively40

underdeveloped (but see relevant discussion and citations below). As a result, non-probabilistic41

tree inference methods have continued to be employed for the phylogenetic analysis of42

morphological characters. Nonetheless, several landmark advances in the development of43

statistical morphological phylogenetic methods have demonstrated the benefits of further44

developing this framework. This will be particularly important in the near future as burgeoning45

approaches enabling the rapid collection of morphological data may begin to outstrip methods46

through which to analyse them (Chang and Alfaro 2015b,a). This may significantly alter and47

enhance our view of the tree of life, especially considering that the majority of macro-organisms,48

represented by fossil taxa, can only be analysed from their morphology.49

A foundational contribution in morphological phylogenetics has been the Mk model of50

discrete trait evolution (Lewis 2001). This is a version of the Jukes-Cantor model of nucleotide51

substitution generalised to accommodate varying numbers of character states (Jukes and Cantor52

1969). Extensions to this model accommodate for biased sampling of parsimony informative53

characters (Lewis 2001), rate heterogeneity between sites (Wagner 2012), and asymmetric54

transition rates (Ronquist and Huelsenbeck 2003; Wright et al. 2015). The deployment of this55

model has demonstrated the utility of statistical approaches to morphological phylogenetics. Such56

approaches improve estimates of uncertainty over non-probabilistic approaches, enable a clearer57

statement of modelling assumptions, and enable branch length estimation. This has enabled a58
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better understanding of much of the fossil tree of life (Dávalos et al. 2014; Pattinson et al. 2014;59

Dembo et al. 2015). These approaches have also enabled the application of tip dating methods to60

the combined analysis of extinct taxa represented by morphological data with extant taxa61

(Nylander et al. 2004; Ronquist et al. 2012). These total evidence tip dating methods have been62

widely used since their introduction, and are implemented in the BEAST (Bouckaert et al. 2014)63

and MrBayes (Ronquist and Huelsenbeck 2003) packages. These have more clearly resolved the64

timing of species divergences and relationships between fossil and living taxa (Wiens et al. 2010;65

Wood et al. 2012; Lee et al. 2013, 2014, but see Arcila et al. (2015)). Overall, probabilistic66

approaches to morphological phylogenetics appear to represent an improvement in accuracy67

compared to cladistic methods, and are indispensable in their distinct ability to allow the68

estimation of branch lengths and evolutionary rate. The benefits of a statistical total-evidence69

framework as applied to fossil taxa will only become clearer as more data become available and70

improved methods are developed (Pennell and Harmon 2013; Lee and Palci 2015).71

Despite the these strides, discrete character models represent an imperfect solution in their72

current usage. Although Bayesian inference under Mk appears to outperform parsimony under73

certain conditions, error increases at high evolutionary rates (Wright and Hillis 2014). Also,74

under many circumstances, phylogenetic inference under the Mk model includes imprecision and75

uncertainty, both in simulations (O’Reilly et al. 2016; Puttick et al. 2017) and empirical studies76

(Lee and Worthy 2012; Dembo et al. 2015). Previous researchers have also expressed concerns77

over the efficacy of model-based approaches in the presence of missing data (Livezey and Zusi78

2007; O’leary et al. 2013). However, these have been assuaged and any issues arising from79

missing data are likely not specific to probabilistic approaches (Wright and Hillis 2014;80

Guillerme and Cooper 2016). Another potential issue is the lack of clarity in interpreting the Mk81
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model biologically. Although transition rates have a strong theoretical and empirical basis in82

population genetics, their significance beyond serving as nuisance parameters is less83

straightforward when applied to morphological data. Discrete morphological characters may not84

undergo change in a manner analogous to nucleotides, which are well understood to alternate85

between states repeatedly. Conversely, many characters used for phylogenetic inference consist of86

single, parsimony informative directional changes between taxa (Klopfstein et al. 2015). It is87

unclear how adequately discrete Markov models describe such variation. The Mk model itself88

does not accommodate directional evolution, and previous researchers have questioned the89

adequacy of existing discrete character models (Ronquist et al. 2016). This is particularly90

important when considering the importance of branch lengths in total evidence tip dating methods91

discussed above, but may also be expected to mislead inference of topology.92

Aside from the modelling concerns discussed above, discrete morphological characters93

present a non-trivial set of challenges to phylogenetics that are distinct from those possessed by94

molecular data. Perhaps foremost among these is disagreement between researchers in the95

categorisation, ordering, and weighing of discrete character states (Farris 1990; Hauser and96

Presch 1991; Pleijel 1995; Wilkinson 1995). Despite extensive discussion among comparative97

biologists, the interpretive nature of the process of character coding has continued to leave major98

palaenotological questions unresolved (Upchurch 1995; Wilson and Sereno 1998; Bloch and99

Boyer 2002; Kirk et al. 2003).100

Use of continuous characters may help to address some of the concerns with discrete traits101

discussed above. They can be collected more objectively than qualitative observations and do not102

require ordering of states. Their use in phylogenetic inference has been discussed among the103

earliest advancements in statistical phylogenetics (Cavalli-Sforza and Edwards 1967; Felsenstein104
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1973), and their phylogenetic informativeness has been demonstrated empirically (Goloboff et al.105

2006; Smith and Hendricks 2013). Still, the use of continuous characters for the inference of106

phylogenetic topology has remained uncommon, with methods for their use in phylogenetics107

remaining relatively poorly examined beyond the foundational works referenced above. Although108

many palaeontological studies incorporate continuous measurements, they are binned into109

categories and analysed as discrete. However, since fossil data are often scarce, it may be110

beneficial to maximise the amount of information gleaned from available specimens by111

representing such variation in its entirety.112

Another potential benefit to inferring phylogeny from continuous characters is the wealth of113

models developed in phylogenetic comparative methods to describe their evolution. Most114

comparative models of continuous trait evolution belong to the Gaussian class, which are also115

well utilized in disparate fields such as physics, economics, and engineering. In comparative116

biology, they are used to describe stochastic Markovian movement through continuous trait space117

along continuous time. This class of models includes Brownian motion (BM) (Felsenstein 1973,118

1985; Gingerich 1993), Ornstein-Uhlenbeck (OU) (Hansen 1997; Butler and King 2004; Beaulieu119

et al. 2012), and Lévy processes (Landis et al. 2013). Under BM, evolution is described as a120

random walk, with phenotypic change being normally distributed with a mean displacement of121

zero, and variance σ2. OU models expand upon this by introducing terms producing a stabilizing122

force which stabilizes movement around an optimal trait value, while Lévy processes contain123

terms producing saltational jumps in character space, interspersed either by BM diffusion or124

stasis. Two major benefits to Gaussian models in phylogenetics are their relatively125

straightforward interpretability and the relative ease of deriving mathematical extensions to126

describe a range of biological processes.127
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Given the existence of well understood and clearly interpretable models describing their128

evolution, the use of continuous traits may offer several advantages over discrete characters in129

phylogenetic inference. However, their behaviour is not well understood when applied to the130

inference of phylogenetic topology, and so further investigation is needed. In addition, there are131

potential hurdles to their efficacy. Possibly foremost among these is the widespread covariance132

between continuous measurements that is expected through both genetic and morphometric133

perspectives (Lynch et al. 1998; Uyeda et al. 2015; Adams and Felice 2014). Nevertheless, the134

expected magnitude in covariance among continuous morphological measurements and the135

robustness of phylogenetic methods to this violation is not known. Furthermore, it is also136

generally reasonable to expect evolutionary covariance between nucleotide sites, and137

phylogenetic methods that do not accommodate for this are routinely applied to molecular data.138

In this study, I carry out simulations to compare the relative performance of binary discrete139

and continuous characters at reconstructing phylogenetic relationships. Simulations of continuous140

characters were designed to reflect a range of scenarios that may influence accuracy including141

overall evolutionary rate and matrix sizes. I also conduct inference on continuous traits that have142

undergone correlated evolution, an important violation to single-rate BM thought to be143

widespread in continuous character evolution.144

METHODS145

Simulations146

I generated a set of 100 pure birth trees using the Phytools package (Revell 2012) package in147

R (R Core Team 2016), each containing ten taxa. All trees were ultrametric and generated with a148

total length of 1.0 units for consistency in parameter scaling for trait simulations (Fig. 1). These149

trees were used to simulate continuous characters evolving along an unbounded BM process,150
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again using Phytools. This is a Markovian process in continuous time where the variance of the151

process can increase infinitely through time. This differs from the BM σ2 parameter, which gives152

the variance in the amount of character displacement at each draw, effectively describing the153

magnitude of the random BM walk or a rate of character displacement. To assess performance154

across several biological scenarios, traits were simulated at σ2 parameterizations of 0.05, 0.5, 1.0,155

1.5, and 3. Since the process under which traits were simulated is unbounded, phylogenetic signal156

is expected to remain consistent across rates (Revell et al. 2008), but different rates were chosen157

to illustrate this consistency and to provide even comparison to discrete trait simulations. Discrete158

characters were simulated in the Phytools package (Revell 2012) under an Mk model with159

homogeneous transition probabilities. Traits were generated at transition rates 0.05, 0.5, 1.0, 1.5,160

and 3. All character matrices were generated without rate heterogeneity, and include invariable161

sites (ie. no acquisition bias).162

Matrices containing 500 traits were generated and randomly subsampled to create smaller sets163

of 20 and 100 characters to reflect a range of sampling depths. These were chosen because many164

published morphological matrices fall within this range. The subsampled matrix sizes were165

chosen to represent reasonably sized palaeontological datasets, while the 500 trait matrices were166

tested to assess performance when data are abundant. While such large datasets are uncommon in167

morphology, several studies have produced character matrices of this size, and for continuous168

characters, it may be feasible to generate such large datasets from morphometric data.169

I also simulated continuous characters under an OU model parameterised without directional170

drift (θ = 0), and with the stabilizing (α) parameter set to yield the same phylogenetic half-life171

present in the binary Mk model used for comparison. For OU continuous characters, phylogenetic172
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half-life is defined by:173

log(2)

α
(1)

and for binary discrete characters as:174

log(2)

(q01 + q10)
(2)

With q01 and q10 corresponding to the respective transition rates between binary character states.175

When phylogenetic half-life is set to be equal, phylogenetic constraint should be the same176

between both sets of characters in the sense that they reach saturation over the same timescale.177

This comparison examines whether either data source performs inherently better when178

phylogenetic signal is held constant. These data were generated in matrices of 100 traits at an179

evolutionary rate of 0.5. Because the phylogenetic information content of both sets of constrained180

traits should be the same, both sets are expected to perform similarly. Nevertheless, this181

comparison provides a control by assessing whether unknown differences in the behaviour of182

each model (or other properties of each method) themselves lead to any differences in183

reconstruction accuracy.184

Data were also generated under a correlated BM process to mimic inference in the presence of185

multidimensionality. These datasets were constructed at covariance strengths of 0.1, 0.5, and 0.9186

and covarying dimensions of 5 and 25 traits. These were chosen to represent situations where187

traits range from being loosely to tightly correlated to each another, and where the number of188

correlated dimensions is large to small. Although differing, these values were chosen to loosely189

follow the scheme of Adams and Felice (2014).190

Estimation of Phylogenies and Reconstruction Accuracy191
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I estimated Bayesian phylogenetic trees under a single rate BM model for all sets of192

continuous characters using RevBayes (Höhna et al. 2016). Trait likelihoods were computed after193

Felsenstein (1973, 1985). MCMC simulations were run for 150,000-1,000,000 generations and194

checked manually for convergence using Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/).195

Runs were accepted when the effective sample size (ESS) for logged parameters exceeded 200.196

Trees were inferred from discrete data in MrBayes version 3.2.6 (Ronquist and Huelsenbeck197

2003), simulating for 1,000,000 generations. Different programs were used because, while198

MrBayes remains the standard in the field for Bayesian phylogenetic inference, its current version199

does not implement likelihood functions for continuous character models. So the continuous200

character approach needed to be developed in RevBayes, however, I preferred to remain with the201

standard and proven implementation where possible. For both continuous and discrete characters,202

I incorporated a birth-death prior on node heights. This was done to enable an even comparison of203

branch lengths obtained through both methods that are scaled to time. Example configuration files204

for RevBayes and MrBayes analyses are provided as supplementary data. Tree distributions were205

summarized using TreeAnnotator version 2.4.2 (Rambaut and Drummond 2013) to yield206

maximum clade credibility (MCC) topologies. MCC trees maximize the posterior probability of207

each individual clade, summarizing across all trees sampled during MCMC simulation. Once208

summarised, all trees were rescaled to match inferred tree lengths to the true trees using Phyx209

(https://github.com/FePhyFoFum/phyx).210

I assessed topological accuracy from simulated trait data using the symmetric211

(Robinson-Foulds) distance measure (Robinson and Foulds 1981), giving the topological distance212

between true trees and inferred trees. Symmetric distance is calculated as a count of the number213

of shared and unshared partitions between compared trees. As such, the maximum symmetric214
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distance between two unrooted trees can be calculated as 2(N-3). These values were then scaled215

to the total possible symmetric distance for interpretability. Additionally, I measured error in216

branch length reconstruction using the branch length distance (BLD) (Kuhner and Felsenstein217

1994). This is calculated as the sum of the vector representing the individual differences between218

the branch lengths of all shared bipartitions. The scale of this value depends on the lengths of the219

trees under comparison. If trees of different lengths are compared, BLD can be very high.220

However, in this study, all trees are scaled to a root height of 1 to allow comparison of topological221

and internal branch length reconstruction error. All distances were calculated using the DendroPy222

Python package (Sukumaran and Holder 2010). Summary barplots were constructed using223

ggplot2 (Wickham 2016).224

RESULTS225

Unconstrained and Independently Evolving Continuous Traits226

Topological reconstruction error is lower overall for trees estimated from continuous227

characters than from binary discrete (Fig. 2a, Supp. Fig, 1a). For discrete characters, symmetric228

distance increases significantly at high evolutionary rates, likely due to saturation and loss of229

phylogenetic signal. Distance also increases in discrete characters when rate is very slow, due to230

lack of time for phylogenetic signal to develop. This pattern is similar to that recovered by231

(Wright and Hillis 2014) in their test of Bayesian inference of Mk, which revealed highest232

topological error at very low and high rates. As expected, continuous characters perform233

consistently across rates because saturation cannot occur, even at very fast rates. Because of the234

differing sensitivities of each data type to evolutionary rate, topological error should also be235

compared using the most favourable rate class for discrete characters, 0.5 substitutions per million236

years (Fig. 2b, Supp. Fig. 1b). Even at this rate, continuous reconstruction performs more237
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consistently than discrete, with error more tightly distributed around a slightly lower mean. A238

likely explanation is that discrete characters retain less information that continuous characters.239

The small state space of the binary character model likely causes phylogenetic signal to become240

saturated more quickly at fast rates, and develop too slowly at slow rates than multi-state241

characters. BM and Mk appear to perform fairly similarly in reconstructing branch lengths (Fig.242

2; Supp. Fig. 1). The pattern across rates and matrix sizes are very similar between BLD and243

symmetric distances, with the fastest rates producing the most error. This likely results from244

increased saturation at fast rates, causing underestimation of hidden character changes.245

Matrix size has a major impact on tree reconstruction accuracy. Estimations from both246

discrete and continuous traits improve substantially at each increasing matrix size (Fig. 2).247

Estimates from 20-character matrices possess fairly high error in both data types, with248

approximately 1 in 5 bipartitions being incorrectly estimated from continuous characters, and 2 in249

5 incorrectly being incorrectly estimated from discrete data. Increasing matrix size to 100 traits250

improves accuracy significantly, with both data types estimating approximately 1 in 10251

bipartitions incorrectly. Although at several rates, mean symmetric distance compared between252

data types is close, continuous characters tend to be less widely distributed, and thus appear to253

reconstruct trees with more consistent accuracy. When matrix size is increased to 500 characters,254

both continuous and discrete characters are able to recover phylogeny with very high accuracy,255

except for at very fast rates, where discrete characters estimate approximately half of all256

bipartitions incorrectly on average.257

Continuous Traits Evolving Under Selective Constraint258

Phylogenies inferred from continuous traits simulated under an OU model achieve virtually259

identical performance to binary discrete characters simulated under the same phylogenetic260

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/121343doi: bioRxiv preprint 

https://doi.org/10.1101/121343
http://creativecommons.org/licenses/by-nc-nd/4.0/


constraint (Fig. 3). Both sets of characters display a very similar range of error, with261

approximately 15% of bipartitions estimated incorrectly on average. This result demonstrates that262

any performance increases observed for continuous traits over discrete traits result from263

differences in realised phylogenetic information.264

Covarying Continuous Characters265

Tree inference under BM appears relatively robust to the violation of co-evolving continuous266

characters. Although error is recognisably greater with strong covariance and many trait267

dimensions, symmetric distance is remains close to values from uncorrelated traits at lower268

covariance strengths and/or fewer trait dimensions (Fig. 4). When correlated traits are of low269

dimensionality and covariance strength, reconstruction appears to be nearly as accurate as270

uncorrelated traits, with all bipartions estimated correctly on average. As covariance strength and271

dimensionality are increased to intermediate values, topological error increases such that between272

0 and 17% of bipartitions are estimated incorrectly, with a wider distribution than is present at the273

lowest values. Accuracy is most diminished when covariance is strongest and dimensionality is274

largest, with most reconstructions estimating between 17-29% of bipartitions incorrectly.275

Although statistical significance cannot be estimated for BLD and symmetric distance, estimation276

under low to intermediate trait covariance appears at least qualitatively similar, albeit slightly277

worse, to uncorrelated continuous and binary discrete characters. The decreases in accuracy278

observed can likely be attributed to the decrease in total information content caused by279

covariance. This reduces the effective amount of data from which to draw inference. This is280

reflected in the results, with higher covariances and dimensionalities reconstructing trees with a281

similar magnitude of error as is shown for the 100 character datasets.282

DISCUSSION283
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The results demonstrate that phylogenetic reconstruction from continuous trait data can284

provide a reasonable supplement or alternative to inference from discrete characters. Continuous285

characters that are unconstrained and unbounded in their evolution outperform discrete286

characters, and perform equally well when constrained by selection. The unconstrained traits’287

resilience to high evolutionary rate is expected, because continuous characters evolving under an288

unbounded and unconstrained BM process will continue to increase in variance through time.289

Therefore, such characters are able to retain phylogenetic information at high evolutionary rates290

that may cause rampant saturation in discrete characters (Fig. 4). Further work is needed in this291

area to investigate the extent to which continuous characters are bounded and constrained in their292

evolution relative to discrete characters. This will be especially important moving forward, as293

temporal variation in evolutionary regimes and model parameters can interact in complex ways,294

sometimes extending the maintenance of phylogenetic signal through time (Revell et al. 2008).295

Although continuous characters in empirical are undoubtedly constrained in their evolution, the296

added information contained in continuous character datasets may lessen the extent of saturation297

relative to discrete characters in practice.298

The demonstration that performance becomes equal when the amount of phylogenetic299

constraint is held constant between both data sources identifies the major source of the300

performance increase observed in unconstrained BM traits compared to discrete traits. The301

average amount of phylogenetic constraint exhibited by discrete and continuous traits, however, is302

not well understood in empirical datasets. Conversely, the susceptibility of discrete traits to the303

loss of phylogenetic signal at high evolutionary rates and deep timescales has long been304

recognised (Hillis and Huelsenbeck 1992; Yang 1998). Although this effect is understood to305

affect molecular data, discrete morphological datasets may possess increased susceptibility to this306
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effect because of the frequent use of binary character coding schemes. Discrete characters307

constrained to fewer states increases signal loss at high evolutionary rates due to increased levels308

of homoplasy, saturation, and lower information content overall (Donoghue and Ree 2000). The309

extent to which continuous traits are constrained in their evolution on average is not well310

understood. However, the results here suggest that researchers would benefit in treating311

continuous traits as such and inferring phylogenies under continuous trait models in order to312

maximise usable information contained in datasets.313

My results demonstrate that the fundamental issues in comparing continuous and discrete314

traits are state space, selective constraint, and evolutionary boundedness. When selective315

constraint in continuous characters occurs at levels which restrict phylogenetic signal with the316

same strength as binary characters, reconstruction accuracy is predictably equal. Nevertheless, it317

is unclear the extent to which phylogenetic half-life in continuous and discrete traits tends to318

differ in empirical datasets. Continuous characters may be expected to commonly evolve under319

some manifestation of selective constraint, but it is unclear whether such effects typically mask320

phylogenetic signal to the same extent as rapidly saturating binary traits.321

Discrete traits with more than two states possess a significantly longer phylogenetic half-life322

than binary characters, but could be supplanted by continuous characters in many cases. Although323

empirical morphological datasets typically incorporate discrete characters with more than two324

states, these are typically fewer in number than binary coded characters. Multi-state characters325

are also typically discretized codings of continuous measurements. Such "discrete" traits would326

be susceptible to the same selective forces as their continuous counterparts, and so treatment of327

the multi-state partitions of morphological matrices as continuous can only increase the amount328

of phylogenetic information contained within datasets. The tendency of morphological matrices329
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to be predominantly composed of binary characters should encourage further consideration of330

continuous traits in future empirical and theoretical studies.331

Error in branch length estimation was fairly high with the 20-trait matrices but decreased332

substantially when matrix size was increased to 100 traits. Although BM and Mk achieve similar333

accuracy in estimating branch lengths in this study, careful thought should continue to be applied334

when relying upon Mk branch length estimates in the future. Branch length error may be higher335

when inferring under Mk from empirical datasets, since many discrete morphological matrices336

are constructed to include only parsimony informative characters. In these cases, characters are337

expected to have undergone only single synapomorphic changes. Although the lack of invariable338

sites in datasets tailored to parsimony is addressed through the ascertainment bias correction339

developed by (Lewis 2001), it is unclear how meaningfully the directional single character340

changes often observed in these datasets can inform evolutionary rates. This mode of change,341

which may characterise much of discrete character evolution, differs from the population342

dynamics of nucleotide substitution.343

Although continuous traits may often follow covarying evolutionary trajectories in nature, this344

appears to have a relatively minor impact on reconstruction. Accuracy was only greatly lowered in345

the simultaneous presence of very high dimensionality and covariance strength. Offering further346

support to the ability of continuous characters to reconstruct phylogeny despite evolutionary347

covariance, Adams and Felice (2014) also report the presence of phylogenetic information in348

multidimensional characters, even when the number of dimensions is greater than the number of349

taxa. Despite these generally positive findings, it should be noted that inference may be misled if350

sampling is significantly biased to include relatively small numbers of strongly correlated351

measurements. In these cases, it would be beneficial to examine the correlation structure and352
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information content of the dataset to assess the amount of biased redundancy in signal.353

Can Using Continuous Characters Benefit Morphological Phylogenetics?354

Use of continuous traits has the benefit of reducing subjectivity in the construction of data355

matrices in many cases. Categorizing qualitative characters often requires subjective356

interpretation. However, quantitative measurements can be taken without this source of human357

error. This increased objectivity in the measurement of quantitative characters would expand358

biologists’ capacity to assess statistical uncertainty. Although the likelihood approaches to359

morphological phylogenetics enabled by the Mk model represent a major step in this direction,360

discordance in tree estimates can still be attributed to differences in qualitative categorization of361

variation by researchers. Translation of morphological observations into data that can be analysed362

can present serious complications in discrete characters. Steps such as the determination of363

whether or not to order states, the total number of states chosen to describe characters, and the364

assignment of character states can vary greatly and often yield widely different results (Hauser365

and Presch 1991; Pleijel 1995; Wilkinson 1995; Hawkins et al. 1997; Scotland and Pennington366

2000; Scotland et al. 2003; Brazeau 2011; Simões et al. 2017). Continuous measurements avoid367

many of these issues because they can be measured, by definition, objectively and quantitatively.368

In addition, they may better describe variation than discrete characters. Several workers have369

suggested that the majority of biological variation is fundamentally continuous (Thiele 1993; Rae370

1998; Wiens 2001). Although continuous characters have long been employed in phylogenetic371

analysis, they are generally artificially discretised, either by applying thresholds to interspecific372

measurements or through gross categorisations such as “large” and “small”. The major373

disadvantage to this approach is the loss of valuable biological information. Several researchers374

have condemned the use of continuous characters in phylogenetics, arguing that intraspecific375
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variation may be too great for clear phylogenetic signal to exist (Pimentcl and Riggins 1987;376

Chappill 1989). However, these arguments have been largely undermined by studies377

demonstrating the phylogenetic informativeness of continuous measurements (Goloboff et al.378

2006; Smith and Hendricks 2013).379

The expectation of correlated evolution between continuous characters has been a major380

argument against their use in phylogenetic reconstruction in the past (Felsenstein 1985). However,381

evolutionary covariance between sites is not a phenomenon that is restricted to continuous382

morphological characters. Population genetic theory predicts tight covariance between nucleotide383

sites under many conditions (e.g. Hill and Robertson 1968; Reich et al. 2001; Palaisa et al. 2004;384

Schlenke and Begun 2004; McVean 2007). Such covariance has also been demonstrated among385

discrete characters (Pagel 1994), and so this concern is not unique to continuous measurements386

but is shared by all phylogenetic approaches. While it is difficult to assess the relative magnitude387

of sitewise covariance between continuous, discrete, and molecular data, examination of the388

correlation structure of traits may be more straightforward in continuous characters using389

standard regressional techniques. This would ease the identification of biased and positively390

misleading signal among continuous characters, enabling correction through common391

transformation approaches such as principal components analyses or by weighting likelihood392

calculations by the amount of overall variance contributed by covarying sets of characters.393

The fundamentally continuous nature of many biological traits is supported by differential394

gene expression and quantitative trait loci mapping studies, which demonstrate their quantitative395

genetic basis (Andersson et al. 1994; Hunt et al. 1998; Frary et al. 2000; Valdar et al. 2006).396

Nevertheless, there remain well known instances where traits are truly discrete. Studies in397

evolutionary developmental biology have shown that many traits can be switched on or off in398
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response to single genes controlling genetic cascades (e.g. Wilkinson et al. 1989; Burke et al.399

1995; Cohn and Tickle 1999). Characters used in phylogenetic analysis are also frequently truly400

discrete, representing qualitative categories (eg., presence/absence). These traits may be401

incorporated as separate partitions into integrated analyses along with continuous measurements402

(Fig. 6). Such combined analyses can be performed in RevBayes by adding a discrete trait model,403

such as Mk, and discrete character data. In practice, this may improve inference from discrete404

characters alone, and would represent a conceptual advance in its ability to treat all available data405

as faithfully as is possible. Doing so may improve upon existing paradigms, which group406

continuous variation into multi-state discrete characters, potentially preserving more phylogenetic407

information. An added benefit would be the greater flexibility in modelling the evolution of such408

traits by making available all existing continuous trait models. An example RevBayes script for a409

phylogenetic analysis combining continuous and discrete characters is available in the410

supplement. Characters under the control of developmental expression pathways may also exhibit411

very deep phylogenetic signal (De Rosa et al. 1999; Cook et al. 2001). Thus, such integrated412

analyses may enable the construction of large phylogenies from morphology by use of datasets413

containing phylogenetic signal at multiple taxonomic levels.414

Depending on the extent to which individual morphometric datasets are bounded and415

constrained in their evolution, analysis of continuous characters may help to increase416

phylogenetic information. Collecting morphometric measurements in many dimensions may417

enable the assembly of datasets that are large in size compared to those comprised of discrete418

characters alone. Although large collections of morphometric measurements may be strongly419

covarying, analysis of the correlation structure of such datasets, as mentioned above, would420

enable correction for biased signal and may reveal additional phylogenetic information. This421
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would signify a more data-scientific approach to morphological phylogenetics by enabling422

researchers to dissect signal present in large morphometric datasets rather than reconstruct423

relationships using carefully curated data matrices. Such a paradigm shift would bring424

morphological phylogenetics closer in spirit to phylogenomic studies and enable deeper425

biological inferences through co-estimation of species relationships and dynamics in trait426

evolution. This would provide a firm phylogenetic backing to morphometric studies, and427

potentially reinvigorate the field in a similar way to the previous merging of phylogenetics and428

genomics. Improved ability to infer phylogeny among fossil taxa would also benefit molecular429

phylogenetics because the incorporation of fossils into total evidence matrices can improve both430

inference of molecular dates and alleviate long branch attraction (Huelsenbeck 1991; Wiens 2005;431

Ronquist et al. 2012). Though further study is needed to measure the expected phylogenetic432

information content of both continuous and discrete traits, all of the points discussed above433

should urge palaeontologists to give greater consideration to continuous traits in phylogenetic434

analysis of evolutionary patterns and relationships. This may improve efficiency in the use of435

hard-won palaeontological data by maximizing the amount of information gleaned from436

specimens and transform the field by facilitating new lines of questioning in palaeobiology.437

And despite this optimistic tone, it should be noted that major work is still needed to provide438

deeper understanding of the behaviour of continuous trait models when used to infer phylogeny.439

It will be also important to gain a better understanding of expected empirical properties of440

continuous and discrete characters. As is shown here, discrete and continuous characters perform441

equally well when phylogenetic constraint is held constant, but there still lacks a clear442

characterisation of the relative expected constraint found in empirical datasets. As such, further443

work will be necessary to develop knowledge of the relative phylogenetic information content444
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expressed across data types.445

Moving forward, several extensions to existing Gaussian trait models should be explored. For446

example, further work is needed to determine the extent and distribution of rate heterogeneity447

between sites in continuous alignments. Since its presence has been well documented in448

molecular and discrete morphological data, it is likely that such rate heterogeneity is present in449

continuous measurements, and should be accommodated in empirical studies. Since traits can450

evolve under a broad range of processes, the fit of alternative models of continuous character451

evolution to empirical data and their adequacy in describing variation among them should also be452

examined.453

Is Mk a reasonable model for discrete character evolution?454

Although likelihood approaches making use of the Mk model have been increasingly adopted455

in morphological phylogenetics, it is unclear whether it provides a reasonable approximation of456

the evolutionary process. Although there are explicit theoretical links between Markov457

substitution models and population genetic processes (Jukes and Cantor 1969), such theory does458

not exist in morphology. It should also be noted that molecular data are rarely modelled using the459

single parameter Jukes-Cantor model, with more complex generalisations typically preferred460

(Felsenstein 1981; Tavaré 1986). More sophisticated Markov processes can in principle be461

applied to morphological data, though this is rarely done. Nonetheless, MrBayes and RAxML462

implement HKY and General Time Reversible models, respectively, that can be applied to data463

with varying numbers of states (Ronquist and Huelsenbeck 2003; Stamatakis 2006). More work464

is needed to examine the adequacy of the Mk model in describing discrete character evolution.465

Such work will guide dataset assembly and the development of new model extensions. This is466

especially important in total-evidence tip dating methods employing Mk, as poor branch length467
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estimates may weaken the ability to infer branching times. Although presenting a unique set of468

challenges, the use of continuous characters may alleviate some of issues concerning model469

misspecification. Models describing their change have been demonstrated to provide a reasonable470

description of character change resulting from several different microevolutionary processes471

(Hansen and Martins 1996). Further work is needed to address the relative adequacy of discrete472

and continuous trait models in describing the evolution of phenotypic data. In light of the results473

presented here, I suggest that continuous trait models be favoured in phylogenetic analysis in474

cases where morphological variation can be described quantitatively. Moving forward, deeper475

insight concerning the behaviour and adequacy of both discrete and continuous character models476

will enable increasingly powerful inferences to be drawn from morphological data. These issues477

will be of critical importance as advances in data collection and fossil evidence usher in an age of478

unprecedented discovery in morphological phylogenetics.479
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Figure 1: a. Exemplar true simulated tree. b. Tree inferred from 20 discrete characters simulated

under Mk from true tree. c. Tree inferred from 20 continuous characters simulated under

Brownian motion. Blue dots denote incorrect bipartitions.
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Figure 2: Topological error calculated as the proportion of maximum symmetric distance across

trees estimated from independently evolving continuous characters. a. Error averaged across all

rates except for the highest rate category, which resulted in the highest error when inferring under

Mk. b. Error across all matrix sizes and rates.
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Figure 3: Topological error achieved after reconstructing trees from discrete traits simulated

under Mk at rate 0.5, and single rate Ornstein Uhlenbeck at rate 0.5 with no directional drift and

constraint set equal to the discrete characters.
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Figure 4: a. Topological error, calculated as proportion of maximum symmetric distance across

trees estimated from covarying continuous characters. b. Branch length distance (BLD) across

trees estimated from covarying continuous characters. Dimensions refers to the number of traits

within covarying blocks. Covariance strength refers to the strength of the correlation between

covarying characters, with a value of 0 describing to complete independence and 1 describing

perfect correlation.
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a. b.

Figure 5: Discrete and continuous characters simulated a. at slow evolutionary rate and b. fast

evolutionary rate. Y axis represents continuous phenotype. Changes in colour represent changes

in discrete character state. Note how continuous characters retain phylogenetic signal at fast rates,

while discrete characters saturate. Figure drawn using phytools (Revell 2012).
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Figure 6: a. True tree. b. Tree estimated from 50 discrete and 50 continuous characters c. Tree

estimated from 100 continuous characters simulated at rate 1.0 d. Tree estimated from 100

discrete characters simulated at rate 1.0. Blue dots signify incorrectly estimated bipartitions. The

tree in panel b. was generated by randomly subsampling the matrices used to generate trees c. and

d., and combining into a single matrix. This matrix was analysed in RevBayes. An example script

is provided in the supplement. 39
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Figure S1: Branch length distance (BLD) across trees estimated from independently evolving

continuous characters. a. BLD averaged across all rates except for the highest rate category,

which resulted in the highest error when inferring under Mk. b. BLD across all matrix sizes and

rates.
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