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Abstract

How are neural circuits organized and tuned to achieve stable function and produce ro-
bust behavior? The organization process begins early in development and involves a diversity
of mechanisms unique to this period. We summarize recent progress in theoretical neuro-
science that has substantially contributed to our understanding of development at the single
neuron, synaptic and network level. We go beyond classical models of topographic map for-
mation, and focus on the generation of complex spatiotemporal activity patterns, their role
in refinements of particular circuit features, and the emergence of functional computations.
Aided by the development of novel quantitative methods for data analysis, theoretical and
computational models have enabled us to test the adequacy of specific assumptions, explain
experimental data and propose testable hypotheses. With the accumulation of larger data
sets, theory and models will likely play an even more important role in understanding the
development of neural circuits.

Introduction

Neural systems are tuned to enable the efficient and stable processing of information across
different brain regions and to generate robust behaviors. This requires a balance between flexi-
bility, to learn from and adapt to new environments, and stability, to ensure reliable execution of
behavior. Generating systems with this double property is a non-trivial challenge and requires
a prolonged period of development when multiple mechanisms are coordinated in a hierarchy
of levels and timescales to establish a rich repertoire of computations. Studying this process is
of fundamental importance for the understanding of normal brain function and the prevention,
detection and treatment of brain disorders, including intellectual disabilities, autism, bipolar
disorder, schizophrenia and epilepsy.

The developing brain is not merely an immature version of the adult brain. Even before sen-
sory experience begins to sculpt connectivity, a diversity of mechanisms and structures unique
to development characterize the self-organization into functioning circuits. Technological ad-
vancements in experimental techniques have made feasible to record and manipulate a number
of circuit components. In parallel, data analysis techniques and theoretical and computational
models have enabled us to synthesize experimental data from multiple systems and to derive
key principles for how neural circuits are built and organized into functional units, which can
adapt to, learn from and discriminate different sensory stimuli.

We highlight recent theoretical work on neural circuit organization during early stages of
development (late prenatal or early postnatal) before sensory organs mature. We focus on
activity-dependent mechanisms governing this process, after neuronal differentiation and mi-
gration have taken place, and use the visual system and the immature (undifferentiated) cortex
as examples. By describing theoretical and modeling approaches for spontaneous activity gener-
ation, developmental refinements of connectivity and intrinsic single neuron properties, and the
emergence of computations, we highlight the success of theoretical models to analyze different
mechanisms and propose new hypotheses of neural circuit development.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2017. ; https://doi.org/10.1101/121574doi: bioRxiv preprint 

https://doi.org/10.1101/121574
http://creativecommons.org/licenses/by-nc-nd/4.0/


Models of topographic map formation in the visual system

The initial stages of circuit development consist of establishing precise patterns of connectivity
guided by matching molecular gradients and axonal targeting. One of the best studied models
of organization of neural circuit connectivity are topographic maps in the visual system, whose
orderly structure has made them an accessible model system for both theory and experiment.
Retinotopic maps between the retina and higher visual centers, including the superior collicu-
lus (SC), the lateral geniculate nucleus (LGN) and the cortex, have been the focus of intense
study, elucidating general principles underlying neural circuit wiring [1–6, 7•, 8••]. Most models
assume that topographic maps are formed by the interaction of molecular guidance cues, such
as Ephs/ephrins (reviewed in [5, 9]), and are subsequently refined by spontaneous neural ac-
tivity. We highlight three aspects of recent progress on map formation before we explore more
computational aspects of development.

Recent models simulate not only the final map, but the entire temporal evolution of map
formation from a combination of mechanisms: retinal axons initially arborize stochastically in
the target region, synaptic connections are subsequently refined by Hebbian activity-dependent
plasticity and regulated in strength through competition for a common source [10, 11, 12••].
Despite the success of these models in reproducing experimental results, one disadvantage is
their complexity – structure emerges from many interacting mechanisms making it difficult to
infer which of the resulting properties are the product of any of the model ingredients; another
disadvantage is their reproducibility since they take days to simulate.

With the accumulation of experimental data from normal and mutant animals, new quan-
titative analysis methods of maps have also been developed. One example is the ‘Lattice
Method,’ which enables a quantitative assessment of the topographic ordering in the one-to-
one map between two structures [13]. Fitting models to data from different types of mutants
has suggested that that activity-dependent and molecular forces most likely act simultaneously
(rather than sequentially) and stochastically to give rise to ordered connections as observed
experimentally [13, 14].

To compare and unify different models aimed at capturing specific aspects of map formation,
new frameworks now support the unbiased and quantitative testing of computational
models on available data from the mouse retinocollicular system [15••]. These enable us to
go beyond comparing model output to known perturbations and towards predicting how these
models would respond to novel manipulations. Such approaches are especially useful when
several different models are equally consistent with existing data [16••]. Despite the success in
modeling map formation, the challenge remains to integrate maps with the emergence of other,
more functional aspects of development.

Spontaneous activity: transient features and computational implications

Before the onset of sensory experience, many developing circuits can generate neural activity
spontaneously. Spontaneous activity regulates many developmental processes, including neu-
ronal migration, ion channel maturation and the establishment of precise connectivity [9, 17, 18].
In the retina, spontaneous activity is generated before the retina responds to light, and has been
commonly implicated in the refinement of retinotopic maps between the retina and SC or LGN
[18, 19]. The retina generates complex spatiotemporal waves of spontaneous activity during
the first two weeks of postnatal development (in rodents) ([20], for models see [21, 22]). These
propagate through the visual pathway to the SC, the thalamus, and the visual cortex [23, 24,
25•], which are themselves spontaneously active [26•, 27]. We review several transient cellular
properties and transient structures contributing to the generation and propagation of sponta-
neous activity in the cortex, and subsequently examine its computational implications and role
in the refinement of connectivity to downstream targets.

Developing neurons express a unique configuration of ion channels and receptors to mediate
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Figure 1: A,B. The nonlinearities in the LN model framework for a nongain-scaling (A) and a gain-
scaling (B) Hodgkin-Huxley neuron stimulated with white noise with a range of variances σ2. The lack
of gain scaling corresponds to cortical neurons recorded around birth, while the ability to gain scale
matches cortical neurons after the first postnatal week. The nonlinearities were computed using Bayes’
rule: T (s) = P (spike|s)/r = P (s|spike)/P (s) where r is the neuron’s mean firing rate and s is the stimulus
filtered by the spike-triggered average [29••]. The nonlinearities of gain-scaling neurons overlap over a
wide range of σ. C. The output entropy as a function of the amplitude of fast fluctuations, σ, measures
the information about fast fluctuations. D,E. Peristimulus time histograms (PSTHs) from each layer in
feedforward networks of nongain-scaling (D) vs. gain-scaling (E) neurons showing the propagation of a
slow-varying input (magenta, top) in the presence of background fast fluctuations (black, top). PSTHs
were normalized to mean 0 (horizontal line) and variance 1 (vertical scalebar = 2). F. Mutual information
about the slow-varying input (D,E magenta, top) transmitted by the two networks in D and E. Figure
adapted from [29••].

specific patterns of spontaneous activity, which may be incompatible with the information-
processing functions of mature neurons [17]. In the developing mouse cortex, the proportions of
the two main spike-generating conductances (sodium and potassium) of single neurons change
during the first postnatal week. This biophysical change enables single neurons to gain an ability
to dynamically adjust their response range to the size of stimulus fluctuations [28]. This property
is termed ‘gain scaling’ and can be extracted by building linear-nonlinear (LN) models from
the response of single neurons to random noisy stimuli (Fig. 1A,B)[28]. Gain scaling in more
mature neurons supports a high rate of information transmission about stimulus fluctuations in
the face of changing stimulus amplitude, and is absent in immature neurons (Fig. 1C) [29••].

These single neuron changes in gain scaling during development can generate very different
dynamics at the network level [29••]. The lack of gain-scaling early in development (around
birth) allows slow activity transients to propagate through model cortical networks (Fig. 1D).
This can be related to the ability of the cortical network to propagate spontaneous waves at
birth. The emergence of gain scaling a week later when spontaneous waves disappear, makes the
networks better suited for the efficient representation (but not propagation) of information on
fast timescales relevant for sensory stimuli (Fig. 1E) [29••]. These different abilities of the two
networks to transmit slow stimulus fluctuations, can be captured in the mutual information be-
tween the slow stimulus and the average network response (Fig. 1F). This example demonstrates
that single neuron properties can influence network dynamics, thus bridging the gap between
two levels of description, and makes predictions for the information processing capabilities of
these networks which can be evaluated in experimental data.

To model cortical spontaneous activity in more biologically realistic set ups requires that
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spontaneous transients are endogenously generated by the networks themselves, rather than
provided as input to the network (as in Fig. 1E,F). To determine the source of these transients
consistent with data, Baltz and colleagues proposed three different models implicating intrinsic
bursts, spikes or accumulation of random synaptic input [30]. Although all models could gen-
erate propagating spontaneous events, networks where single neurons produced intrinsic bursts
were most consistent with in vitro recordings of spontaneous network activity [30]. Barnett and
colleagues distributed intrinsically bursting neurons along a gradient in a model network with
recurrent synaptic connectivity and local gap junctions. The gradient of intrinsic bursting was
sufficient to capture the direction of wave propagation in cortical slices [31•]. The models also
predicted that wave activity persists near the site of initiation even after a wave has passed,
which was confirmed experimentally [31•].

Other transient network features are also prominent in developing circuits. The depolarizing
action of GABA in immature circuits (reviewed in [32, 33]) is an example of a transient devel-
opmental feature which several models have utilized for the propagation of spontaneous activity
[30, 31•] – this feature seems to be important to support spontaneous activity in networks where
immature neurons have high excitability thresholds, and weak and unreliable connectivity. The
subplate is a transient structure with relatively mature properties, which serves as a scaffold to
establish strong and precise connectivity between the thalamus and cortex and then disappears
[34, 35]. As a third example, we mention the transient excitatory feedback connectivity between
the thalamic reticular nucleus (TRN), thalamus and visual cortex, which appears necessary for
the generation of feedforward connectivity along the developing visual pathway [36••]. The
TRN and the subplate have so far not been modeled, except for a circuit subplate model with a
single neuron at each relay stage (thalamus, subplate and cortex) [37], leaving open the question
of how these transient structures support the organization of large neural circuits with multiple
convergent and divergent connections.

Network models incorporating these transient features could shed light on how developing
circuits become spontaneously active even when cellular properties are immature and connec-
tivity is still forming. Models offer the advantage of studying the action of any mechanism
independently from the rest, allowing us to identify the relative influence of each, as has been
done with ion channel distributions and intrinsic excitability gradients.

Linking neural activity to the refinement of connectivity

How can developmental activity patterns (spontaneous or sensory-evoked) guide synaptic con-
nectivity refinements? Detailed analysis of the spatiotemporal structure of activity can provide
insights into the nature of the operating rules of synaptic plasticity. During early development,
patterns of spontaneous activity are ‘sluggish’ and characterized by long lasting events (bursts,
spindle bursts, and calcium-dependent plateau-potentials) that have correlation timescales on
the order of hundreds of milliseconds [23, 26•, 38–41]. Therefore, it is natural to assume that
the plasticity rules that translate these patterns into circuit refinements should operate over
long timescales.

Theoretical studies of phenomenological plasticity rules have helped us understand the im-
plications of different spatiotemporal structure of activity on the temporal evolution of con-
nectivity. The activity patterns are typically interpreted into functional synaptic changes and
circuit organization through Hebbian rules that use pre- and postsynaptic activity to increase
or decrease synaptic strength. One of the best studied forms of Hebbian plasticity in theoretical
models is Spike-Timing-Dependent Plasticity (STDP), where potentiation and depression are
induced by the precise timing and temporal order of pre- and postsynaptic spikes [42]. Because
this classical STDP rule integrates input correlations on the order of tens of milliseconds –
much faster than firing in development – more appropriate rules for developmental refinements
have been analyzed. These include STDP rules which integrate more spikes or long temporal
averages of the membrane potential (e.g. triplet STDP, voltage STDP) [43–45] and burst-based
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rules (e.g. BTDP) which evoke synaptic potentiation and depression based on the overlap (but
not order) of bursts of spikes [38, 39]. These plasticity rules have been studied in feedforward
model networks where an array of input units projects to a single postsynaptic neuron, suc-
cessfully explaining the emergence of various developmental receptive field features, including
eye-specific segregation [38], ON-OFF segregation [39], and direction selectivity [45, 46].

A recent study connected these mechanistic connectivity refinements from known plasticity
rules to normative models for the emergence of receptive field structures [47•]. By developing
the concept of nonlinear Hebbian learning, the theory simultaneously satisfied the requirements
for final receptive field structure and the mechanisms for its development [47•]. This type of
learning arises from the combination of plasticity with a neuron’s input-output function and
can be implemented by sparse coding and independent component analysis [48, 49]. Coupling
neurons into recurrent networks resulted in the development of diverse receptive fields through
nonlinear Hebbian learning, which was necessary to represent the entire space of possible stimuli.
Going one step further, it would be interesting to extend this theory to link bottom-up and top-
down approaches for plasticity in recurrent synapses.

These theoretical studies drive synaptic refinements based on low-order correlations mea-
sured in spontaneous activity and early evoked responses. However, developmental activity
patterns contain much more structure on several temporal and spatial scales, and activity itself
refines during brain maturation [25•, 26•, 50•]. At the same time, these activity-dependent
refinements interact nontrivially with molecular mechanisms as discussed earlier [10, 12••]. A
future challenge is to determine how more complex activity patterns could shape network con-
nectivity and sensory representations in models which are still analytically tractable.

The emergence of systems-level organization

One major challenge for modeling the implications of realistic developmental patterns is plas-
ticity in recurrent networks of spiking neurons; this problem has been recently approached in
numerical simulation studies. Clopath and colleagues introduced a biologically motivated plas-
ticity rule for spiking neurons, voltage STDP, to model plasticity in spiking recurrent networks
with different input configurations [44]. Although the assumed input patterns were abstract
groups of correlated neurons, unrelated to experimentally recorded activity, plasticity in the
networks generated different functional network structures including synfire chains and self-
connected assemblies accompanied by prevalence of bidirectional connections [44].

Voltage STDP was also applied to a developmental scenario of the emergence of functional
specificity of recurrent connections among similarly-tuned neurons in mouse V1 [51••]. This
specificity of recurrent connections only emerges after eye-opening, building on feature pref-
erence of individual neurons which is already present at eye-opening [51••]. To capture the
additional aspect of feature preference before eye-opening, the same plasticity rule was imple-
mented at feedforward synapses preceding any recurrent plasticity. The presence of gap junc-
tions among specific cortical neurons was used to establish initial selectivity biases that were
eventually amplified by recurrent plasticity and redistribution of recurrent synaptic connections
[51••]. Therefore, the action of a single phenomenological plasticity rule successfully captured
the experimentally observed sequence of developmental events from feedforward feature pref-
erence acquisition, to the emergence of recurrent connection specificity among similarly-tuned
neurons.

Sadeh and colleagues studied a comparable process in large recurrent networks of spiking
neurons with balanced excitation and inhibition, where the dominant input to a neuron is not
feedforward but comes from the local recurrent network into which the neuron is embedded
[52•]. This recurrent input sharpened the initially weak orientation selectivity of single neu-
rons. Plasticity at both recurrent excitatory and inhibitory synapses produced adult connection
specificity [52•]. In addition to sharpening orientation selectivity, the neurons also sparsified
their responses as observed experimentally around eye opening [53, 50•]. One caveat of both
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Figure 2: A. Excitatory connectivity matrix of an unstructured recurrent network of excitatory and
inhibitory spiking neurons [52•, 57]. B. Spike rasters of the evoked response in the network by driving
three different subsets of excitatory neurons with stronger external input compared to the other neurons,
as indicated by the elevated firing rates. C. Activity in the network in response to uniform external
input to all excitatory neurons. D. Excitatory connectivity matrix of a structured recurrent network of
excitatory and inhibitory spiking neurons. Neurons are more strongly connected within a cluster, which
could be imprinted through plasticity mechanisms in simulated networks [54•, 55•, 56]. E. Spike rasters
of the evoked response as in B. F. In response to uniform external input to all excitatory neurons, the
network spontaneously activates subsets of neurons with stronger connectivity [55•, 56]. These could be
interpreted as attractors of the network dynamics, giving rise to spontaneous retrieval of evoked activity
patterns. This behavior is absent in the unstructured network (C).

models [51••, 52•] is that they do not explicitly represent orientation selectivity: the emergence
of this feature selectivity is realized by the selective potentiation of feedforward inputs from
a group of correlated neurons. Related models, however, can give rise to biphasic, oriented
receptive fields localized in space under certain conditions [54•].

More broadly, preferentially strong connectivity among groups of neurons in recurrent net-
work models with balanced excitation and inhibition can emerge without reference to the feature
preference (or sensory tuning) of these neurons [55•, 56, 54•]. These preferentially connected
groups are called Hebbian assemblies; the attractor dynamics they can give rise to in net-
works [54•, 57] could be the substrate of different neural computations, including predictive
coding through the spontaneous retrieval of evoked response patterns (Fig. 2) [54•, 55•, 56] and
decreased variability during sensory stimulation [55•]. Interestingly, in some of these models
recurrent attractor dynamics and biphasic, oriented receptive fields localized in space emerge
only when the networks are trained with natural image stimuli, but not with white noise [54•].

Innovative theoretical analysis has also derived the conditions for the spontaneous emergence
of different types of assemblies through STDP at recurrent synapses, in the absence of feedfor-
ward patterned inputs [58]. By changing the shape of the plasticity rule and the biophysical
properties of synaptic transmission, the authors demonstrated the emergence of self-connected
assemblies vs. synfire chains [58]. Interestingly, the same structures emerged upon training
with random vs. temporal sequences of inputs (respectively) in models with feedforward and
recurrent plasticity under voltage STDP [44].

The development of functional recurrent circuitry in these models often relies on an interplay
of Hebbian and homeostatic forms of plasticity. Classical Hebbian-style plasticity rules alone
induce a positive feedback instability whereby neurons that are frequently co-active will increase
their connectivity and future co-activity. To combat this problem and bring circuit function to
a normal operating regime, the above models implement diverse homeostatic mechanisms based
on experimental observations [59]: (1) normalization of synaptic weights, (2) metaplasticity
where the amplitude and sign of Hebbian synaptic change is modulated ((1) and (2) reviewed
in [60••]) (3) plasticity at inhibitory synapses [54•, 55•, 56] and (4) shifts in intrinsic excitability
[61•, 62], or a combination of them [63, 64•]. A key insight from these models has been that
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experimental forms of homeostatic plasticity are too slow to stabilize Hebbian plasticity; stability
in the models requires faster forms of homeostatic plasticity that have yet to be identified
experimentally [60••, 65].

Taken together, these studies highlight the importance of theory and models to understand
how functional connectivity in recurrent networks emerges from Hebbian and homeostatic plas-
ticity giving rise to stable dynamics and computations. A future challenge would be to interpret
these findings in the context of specific biophysical mechanisms that might implement them
(e.g. [66]), and to relate them to the detailed map formation models discussed earlier [67•].
Moreover, it would be interesting to examine the emergence of functional organization under
realistic developmental patterns of activity, which as discussed earlier are sluggish and might
utilize different plasticity rules than those that rely on precise spike timing [68].

Conclusion

Theoretical and computational approaches have contributed in powerful ways to our under-
standing of how neuronal circuits develop to establish precise connectivity and tuned single
neuron responses, and to give rise to adult computations. Retinotopic map formation repre-
sents perhaps the most successful example of models of development (apart from orientation
maps): starting from phenomenological models, theorists have proposed more comprehensive
models which can explain larger data sets and make interesting predictions. However, this rep-
resents only one aspect of neural development. Going forward, we should use this example to
build modeling frameworks which capture the diversity of mechanisms unique to this period,
their timescales and spatial scales of operation and their coordinated action to generate adult
computations.

In addition to the detailed analysis of spontaneous and sensory-evoked activity in develop-
ing circuits in vitro, we still need to understand the generation and function of this activity
in the intact animal. With the recent spur of in vivo recordings [26•, 50•, 24, 25•], theoreti-
cal neuroscience can contribute to the quantitative analysis of longitudinal recordings of single
neuron and network activity in novel ways. This analysis can provide us with necessary as-
sumptions and constraints for new models of how this activity is generated, how it changes over
development, and what its role is in sculpting developing networks.

Analyzing this activity can also help us infer the appropriate developmental plasticity rules
from the potentially different correlational structure in the juvenile and the adult [38, 39, 69].
This will enable us to link theoretical descriptions of plasticity at the level of neuron pairs to
network connectivity refinements, explaining the emergence of functional units such as synfire
chains, assemblies and memory attractors [54•, 55•, 58]. The observation that the same network
structures emerge either intrinsically through the properties of the plasticity rule, or externally
through the nature of the input patterns, suggests that these issues should be examined ex-
perimentally under specific developmental scenarios where the derived model structures are
observed.

While it seems natural that models should explore novel hypotheses and make predictions
to direct future experiments, we also point out another important role. Existing models should
be tested on paradigms and data different from those on which the models were initially based.
This has the value of testing the generality and utility of modes and avoids overfitting. Theory
and models hold the potential to uncover common underlying principles (or differences) in the
development of different circuits, for instance sensory and motor [70•]. In some cases, the same
solution might emerge for different problems, but often different solutions might be beneficial
to ensure robustness and variability of responses.

With the accumulation of experimental data, theory and models need to play a larger role
in understanding the development of neural circuits with its diversity of interacting instruc-
tive signals guiding self-organization. We have proposed that the new focus should be on the
developmental emergence of single cell properties and population activity patterns, and the
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behaviorally relevant computations these might reflect. As many developmental processes are
carefully orchestrated, theoretical and modeling approaches are necessary to tease apart the
relative importance and role of each process.
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