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Abstract

Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability
exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains.
We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in
a specific environmental condition, and analyze the heritability, predictability, and genetic basis
of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic
basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation
for fitness in a different environment. This genetic variation in adaptability and pleiotropy is
largely determined by initial fitness, according to a rule of declining adaptability with increasing
initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results
demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable
differences arising from naturally occurring variation.
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Introduction

All organisms can evolve in the face of environmental perturbations. Yet even closely-related

individuals may differ in how quickly and effectively they adapt (Kirschner and Gerhart, 1998;

Masel and Trotter, 2010; Lauring et al., 2013). Genetic modifiers that create these differences in

evolvability are subject to natural selection, and the potential consequences of secondary selection

on evolvability has been the subject of extensive theoretical work (Van Nimwegen et al., 1999; Wilke

et al., 2001; Masel and Bergman, 2003; Ciliberti et al., 2007; Cowperthwaite et al., 2008; Draghi

et al., 2010; Soyer and Pfeiffer, 2010). Only recently, however, have experiments begun to identify

these genetic modifiers and characterize their effects (Montville et al., 2005; Jarosz and Lindquist,

2010; Woods et al., 2011; McDonald et al., 2012; Stern et al., 2014; McDonald et al., 2016; Xiao

et al., 2016).

Modifiers of evolvability act by changing parameters of the evolutionary process. For example,

mutator or antimutator alleles often spread through adapting laboratory populations (Sniegowski

et al., 1997; McDonald et al., 2012; Wielgoss et al., 2013). Other empirical work has shown that

alleles that modify recombination rates can speed the rate of adaptation or help purge deleterious

load (Zeyl and Bell, 1997; Colegrave, 2002; Goddard et al., 2005; Cooper, 2007; Becks and Agrawal,

2012; Gray and Goddard, 2012; McDonald et al., 2016; Xiao et al., 2016). Mutations can also affect

evolvability in more subtle ways, through epistatic interactions that shape the future directions that

evolution can take. These epistatic effects create historical contingency: the presence of an initial

mutation changes the fitness effects of other potential mutations, opening up or closing off future

adaptive trajectories (Blount et al., 2008; Woods et al., 2011; Salverda et al., 2011; Blount et al.,

2012).

The identification and characterization of epistasis among specific sets of mutations has been a

subject of intensive recent research. For example, several groups have analyzed combinations of

mutations within the same protein that fixed during evolution (Weinreich et al., 2006; Bridgham

et al., 2009; Gong et al., 2013), or combinations of multiple mutations in a region of a protein (Hietpas

et al., 2011; Araya et al., 2012; Jacquier et al., 2013; Harms and Thornton, 2014). These studies

often find interesting intra-protein patterns of epistasis, including sign epistasis (i.e. mutations

shifting from beneficial to deleterious based on the genotype in which they are placed). Other

studies have measured pairwise epistasis among large collections of genome-wide mutations (e.g.

all single gene knockouts) (Jasnos and Korona, 2007; van Opijnen et al., 2009; Costanzo et al.,

2010; Szappanos et al., 2011; Babu et al., 2014; Costanzo et al., 2016). Still others have analyzed

epistasis among all combinations of a few mutations that accumulated along the line of descent

in a microbial evolution experiment (Chou et al., 2011; Khan et al., 2011; Wünsche et al., 2017),

measured the fitness effects of individual mutations in divergent genetic backgrounds (Wang et al.,

2016), or identified examples where a single mutation opens up an opportunity to colonize a new

metabolic niche (Blount et al., 2008, 2012; Quandt et al., 2014, 2015).

This body of work has extensively analyzed genetic interactions between individual mutations,

a phenomenon we call microscopic epistasis (Good and Desai, 2014). These interactions can

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/121749doi: bioRxiv preprint 

https://doi.org/10.1101/121749


lead to historical contingency in the order and identities of mutations that spread in an adapting

population (Weinreich et al., 2005). However, to affect evolvability a mutation must change the

entire distribution of fitness effects of future mutations. That is, it must lead to a region of the fitness

landscape which has statistically different properties, a phenomenon we refer to as macroscopic

epistasis.

Although it is clear that microscopic epistasis is widespread, much less is known about patterns

of macroscopic epistasis. Thus it is unclear how often and which mutations lead to differences in

evolvability. Several recent studies have addressed this question by analyzing variation in the rate of

adaptation among closely related microbial strains (Couce and Tenaillon, 2015). These studies have

found that a few initial mutations can affect how quickly a strain adapts in the future (Barrick et al.,

2010; Perfeito et al., 2014; Kryazhimskiy et al., 2014; Szamecz et al., 2014). Much of this variation

in adaptability can be explained by the fitness of the founder, with fitter founders adapting more

slowly (i.e. the rule of declining adaptability).

This work suggests that the rate at which a strain adapts is a heritable trait, influenced not

just by stochastic evolutionary factors, such as the random occurrence and fixation of mutations,

but also by genotype. However, little is known about variation in evolvability across larger genetic

distances. In other words, how different is the evolutionary process starting from very different

points in genotype space? Does a systematic pattern of declining adaptability with increasing fitness

still apply among more distantly related strains? Or are differences in evolvability caused primarily

by specific interactions between any of the initial genetic differences and the pool of potential

future mutations? Additionally, previous studies have analyzed evolution in a single environmental

condition, and thus could not test how initial genotype might affect the pleiotropic consequences of

evolution (i.e. how adaptation in one environment affects fitness in other conditions). Note that

here we use the term “pleiotropy” in a sense that is common in experimental evolution but not in

the genetics literature: it reflects how mutations that effect one trait (fitness in one environment)

also influence other traits (fitness in different environments).

In this study, we address these gaps by measuring genetic variation in adaptability among 230

haploid S. cerevisiae genotypes (“founders”) derived from a cross between two substantially diverged

parental strains (Bloom et al., 2013). The parental strains (a laboratory strain, BY, and a wine

strain, RM) differ at ∼ 50, 000 loci. Thus our 230 founders differ by on average ∼ 25, 000 mutations

that are to some degree representative of natural variation in yeast. We evolve four replicate lines

descended from each founder for 500 generations in each of two different laboratory environments.

As in earlier studies, we can then measure variation in evolutionary outcomes that can be attributed

to founder identity, above and beyond inherent evolutionary stochasticity. However, because our

founders are chosen from a panel of strains designed for mapping the genetic basis of phenotypes of

interest — each founder contains a random subset of the genetic variation between RM and BY

strains — we can also use standard methods from quantitative genetics to identify specific loci that

affect adaptation.

We focus on quantifying two specific aspects of evolvability: the rate of adaptation of each
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founder in each environment, and the pleiotropic consequences of adaptation in one environment

for fitness in the other. We also address the influence of founder genotype on the genetic basis of

future adaptation. Our results demonstrate that variation in both adaptability and pleiotropy is

widespread. Despite the fact that our founder genotypes span evolutionary distances that are several

orders of magnitude larger than tested in earlier work, the variation in their rates of adaptation

still follows an overall rule of declining adaptability. The variation in pleiotropic consequences of

adaptation between founders is also partly governed by founder fitness. Above and beyond these

effects of founder fitness, we also identified several specific quantitative trait loci (QTLs) that affect

adaptability and pleiotropy, including one which has a large influence on the genetic basis of future

evolution. Thus both macroscopic and microscopic epistasis are important in our system, and lead

to systematic variation in the rate, genetic basis, and pleiotropic consequences of adaptation.

Results

To measure genetic variation in adaptability in budding yeast, we selected 230 segregants (“founders”)

from a cross between a wine strain, RM, and a laboratory strain, BY (Methods). The parental strains

RM and BY differ by about 0.5% at the sequence level, so each founder differs from its siblings at

about 25,000 loci across the genome. We chose to analyze evolvability in two environments: rich

media at an optimal temperature of 30 °C (the OT environment), and synthetic media at a high

temperature of 37 °C (the HT environment). We measured the initial fitness of each founder in each

environment and found that the genetic differences between founders leads to substantial variation

in starting fitness in both environments (Figure 1). This variation is strongly correlated, implying

that at least on average, alleles that are more beneficial in our OT environment also tend to be

more beneficial in our HT environment.

We established eight replicate lines from each founder (a total of 1840 populations), and evolved

half of these replicate populations in our OT environment and half in our HT environment. After

500 generations of evolution, we measured the fitness of each descendant population in both

environments (Figure 1). The difference between the initial fitness of the founder, X, and the fitness

of a descendant population, X ′, is a measure of the rate at which that population adapted.

The measured rate of adaptation includes contributions from experimental error (inaccuracies in

our fitness measurements lead to apparent differences in the rate of adaptation), from evolutionary

stochasticity (some populations are more lucky than others in accumulating beneficial mutations),

and from the inherent adaptability of the founder (some founders may tend to adapt faster than

others). We are primarily interested in understanding the third component: the effect of founder

genotype on adaptability. To disentangle this from evolutionary stochasticity, we can compare

the variation in the rate of adaptation between lines descended from the same founder with the

variation between lines descended from different founders. Similarly, to disentangle the effects of

measurement error, we can compare the variation between lines descended from the same founder

with the variation between replicate fitness measurements of the same populations. We could
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in principle compare these different sources of variation using an analysis of variance (ANOVA)

framework, following the approach we used in previous work (Kryazhimskiy et al., 2014). Here, we

instead describe this analysis in the language of quantitative genetics. While some of the underlying

methods are equivalent, this quantitative genetics framework provides a useful perspective, and

makes it possible to address additional questions about the genetic basis of variation in adaptability.

We begin by calculating the broad and narrow sense heritability of founder fitness and adaptability.

Here the broad-sense heritability of a phenotype, H2, is the fraction of the variance in that phenotype

that can be explained by genotype. The narrow-sense heritability, h2, is the fraction of the total

variance in the phenotype which can be explained by an additive model of the individual loci. We

calculate both broad and narrow-sense heritability using standard methods (Yang et al., 2010; Zuk

et al., 2012; Visscher et al., 2006), which exploit the fact that in an additive model the covariance

between founder phenotypes is a linear function of their relatedness (Methods). Since our populations

are all haploid, the gap between broad-sense and narrow-sense heritability arises primarily from

epistatic interactions between loci and any experimental error in our estimation of these quantities,

although it may also carry contributions from untagged rare variants, mitochondrial copy number

variation, and any uncontrolled GxE effects (Bloom et al., 2015).

We first consider the heritability of the founder fitness. We find that this has a broad-sense

heritability near 100% (Figure 2, Table 1), indicating that measurement errors are small compared

to genuine differences in fitness between founders. Consistent with previous work (Bloom et al.,

2013), we find a substantial gap between h2 and H2 (Figure 2, Table 1), indicating the importance

of epistasis in determining founder fitness.

We next consider the heritability of adaptability. The broad-sense heritability of adaptability,

H2
∆X , is the fraction of variance in ∆X = X ′−X that can be attributed to founder genotype, rather

than to inherent evolutionary stochasticity or to measurement errors. In contrast to founder fitness,

which we expect to be a property of the genotype, there is no reason that the rate of adaptation

must be heritable. However, multiple previous studies have found that genotype does affect the

rate of adaptation in microbial populations (Burch and Chao, 2000; Barrick et al., 2010; Woods

et al., 2011; Perfeito et al., 2014; Kryazhimskiy et al., 2014). Consistent with this earlier work, we

find that adaptability is heritable, with H2
∆X ≈ 0.61 in the OT environment and 0.65 in the HT

environment (Figure 2, Table 1). The fact that the values of H2
∆X are lower than those of H2

X is

expected because, in addition to measurement errors, our measure of adaptability is affected by the

inherent randomness of the evolutionary process.

As before, we fit a linear model to estimate the narrow-sense heritability of adaptability h2
∆X . We

find h2
∆X = 0.46 in the OT environment and h2

∆X = 0.44 at HT (Figure 2, Table 1). The difference

between H2
∆X and h2

∆X indicates that about two thirds of the heritable variation in adaptability can

be explained by an additive model of the underlying genotype, showing that epistasis is important

to this trait (Figure 2).
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Predicting adaptability from genotype and founder fitness

We next sought to map the genetic basis of the observed variation in founder fitness and adaptability.

To do so, we applied a standard iterative procedure to identify QTLs that affect each of these traits

in each environment (see Methods). We identified 6 QTLs that affect founder fitness at OT, and 3

QTLs that affect founder fitness at HT. Consistent with the strong correlation between these two

phenotypes, 2/3 of the HT QTLs also appear as OT QTLs (Table 2). In both cases, these QTLs

explain 76% of the trait variance. This is consistent with the estimated values of narrow-sense

heritability (Figure 2, Table 1), indicating that these QTLs explain most of the genetic variation

in founder fitness that can be captured by an additive model of the underlying genotype (Table

2). We also found 4 QTLs that significantly affect adaptability, ∆X, at OT and 2 QTLs that

affect adaptability at HT. Note that these 2 loci are a subset of the OT adaptability loci (Table

2). Together these adaptability QTLs explain 30% of the total variance in this trait in the OT

environment, and 31% in the HT environment, also consistent with our estimates of narrow-sense

heritability (Figure 2 and Figure 3 and Table 1).

Interestingly, three of the four adaptability loci were also independently identified as QTLs for

founder fitness (Table 2), suggesting that loci that affect founder fitness also affect adaptability. This

is consistent with the conclusions of several recent studies, which show that much of the variation

in adaptability between closely related microbial strains can be explained by differences in their

initial fitness, according to the rule of declining adaptability (Perfeito et al., 2014; Kryazhimskiy

et al., 2014; Couce and Tenaillon, 2015). Motivated by these results, we asked whether a similar

effect holds in our system as well, even though our founders are several orders of magnitude more

diverged than strains analyzed in earlier studies. We found that indeed founder fitness explains

much of the variation in adaptability, and follows the rule of declining adaptability (Figure 3).

Specifically, a model where adaptability declines linearly with founder fitness explains 42% of the

total variance in adaptability in the OT environment, and 52% of the adaptability at HT, or about

68% and 80% of the heritable variance, respectively (Figure 2). This represents more of the variance

explained than the linear QTL models described above, despite the fact that the QTL models

have more free parameters. Interestingly, the variance explained by founder fitness is comparable

to the narrow-sense heritability, suggesting that founder fitness may be as good of a predictor of

adaptability as any linear genetic model.

Since founder fitness explains more variation in adaptability than additive QTL models, and

since three of the identified QTLs affect both fitness and adaptability, it is natural to ask whether

there are any genetic loci that explain some of the variation in adaptability above and beyond that

explained by fitness. Indeed, about 30% and 20% of heritable variation in adaptability remain

unexplained by founder fitness in the OT and in the HT environment, respectively (Figure 2, Table

1). Can we then identify QTLs that explain any of this residual variation?

To address this question, we first asked whether any of the previously identified QTLs (either for

founder fitness or for adaptability) can help explain variation in adaptability once we have taken

fitness into account. We found that several of these QTLs had a modest effect on adaptability
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above and beyond fitness (Table 2). The QTL with the largest effect was centered at position

376,315 on chromosome XIV, and we refer to it as the “KRE33 locus.” This QTL explains 2%

percent of residual residual variation in adaptability in the HT environment, and 0.4% percent in

the OT environment (Figure 3). We previously identified this locus as having the largest effect on

founder fitness: segregants with the BY allele at this locus are on average 9% more fit at OT and

19% more fit at HT compared to segregants with the RM allele. After adding pairwise interaction

terms between the KRE33 locus and other detected QTLs, the combined model explains 82% of

the heritable variation in adaptability in the HT environment and 88% in the OT environment

(Table 1). Thus most of the heritable variation in adaptability in our system can be explained by

founder fitness, with some additional contributions from genotype at a few adaptability QTL loci.

Nonetheless, there remains some residual variation due to further unidentified genotype effects.

To check for strong effect adaptability QTLs not previously identified, we repeated the QTL

discovery procedure described above, taking the trait to be the residual variation in adaptability

about the regression line in Figure 3. We recovered a subset of the already-identified adaptability

QTLs, without identifying any further loci.

The genetic basis of adaptation

Our observations of heritable variation in adaptability indicate that macroscopic epistasis is

widespread in our system, and can be largely explained by a model involving founder fitness

and a small number of QTLs. However, it is not clear whether this is accompanied by microscopic

epistasis between alleles in the founders and potential future mutations. In other words, do different

founders accumulate different sets of beneficial mutations as they adapt? And if so, can we identify

QTLs or other factors (e.g. founder fitness) that modify the spectrum of mutations that accumulate

during adaptation?

To address this question, we sequenced 273 whole-population samples from the final timepoint of

all independently evolved populations descended from each of 35 founders (Supplementary File 3).

We discarded nineteen populations for technical reasons before calling mutations (see Methods),

leaving us with a total of 254 sequenced lines (mean 23x depth). We identified SNPs and small

indels in this mixed-population sequence data (Methods). We focus here only on mutations that

were fixed or estimated to be at high frequency (above 50%) within the population at this final

timepoint. We identified a total of 603 mutations (on average 1.3 per OT population and 3.6 per

HT population) meeting these criteria. Of these, 449 are nonsynonymous mutations or indels in

genes (293 from HT populations, 156 from OT populations).

More fit founders can adapt more slowly because they have access to fewer beneficial mutations,

or to beneficial mutations of weaker effect, or both. In any of these cases, we expect that mutations

accumulate more slowly over time in populations descended from fitter founders. Consistent with

this expectation, we found that the number of mutations identified in a population declines weakly

but significantly with the initial founder fitness (Figure 4).

Beyond variation in the number of mutations, did founder genotype affect the spectrum of
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mutations available to future adaptation? To address this question we focused on genes that were

mutated in multiple populations (genes mutated in a single population are uninformative for this

purpose). We found 27 genes in which missense or putative loss of function mutations were called

in two or more independent populations (Figure 5); these “multi-hit” genes are expected to be

enriched for targets of selection.

The gene with the second-largest number of identified de novo mutations was KRE33: 31

independent sequenced populations acquired a mutation in this gene (a total of 12% of our 254

sequenced lines; Figure 5). All 31 of these populations are descended from founders that had the

less-fit RM allele at the QTL containing the KRE33 gene (i.e. the same QTL that we identified

above as affecting adaptability; Figure 5). This observation suggests that genetic variation in the

KRE33 gene itself might have caused the observed variation in adaptability. Since the Kre33

protein is a member of the 90s preribosomal pathway, we reasoned that the deleterious effect of the

RM allele could potentially be compensated not only by mutations in KRE33 itself, but also by

mutations in genes that code for other members of the ribosome biogenesis pathway. Consistent

with this hypothesis, we found 108 putatively functional mutations in our sequenced lines in 10

genes (including KRE33) that were categorized as belonging to this pathway, all of which arose

in descendants of founders that carry the RM allele at the KRE33 locus (Figure 5). Thus,

compensation for the deleterious effect of the RM allele in the KRE33 gene is likely one of the

strongest targets of selection in our experiment, and it likely contributes to the increased adaptability

of the founders which carry the RM version of KRE33.

Of the remaining 101 mutations in multi-hit genes, 14 out of 15 mutations in GPB1, GPB2

and PDE2 — genes involved in cAMP regulation — occurred exclusively in populations descended

from founders that carry the more-fit BY allele at the KRE33 locus. This suggests a potential

genetic interaction between KRE33 and this pathway, such that mutations in GPB1, GPB2, and

PDE2 are more beneficial in the BY KRE33 background. However, it is also possible that these

mutations are always beneficial, but are less likely to fix in the KRE33-RM background where

they can be lost to clonal interference with more strongly beneficial mutations (e.g. those in the

ribosome biogenesis pathway).

The effect of the KRE33 allele on the genetic basis of future adaptation suggests that other

loci that contribute to fitness or adaptability differences between RM and BY strains might also

be targets for adaptive de novo mutations. To test this hypothesis, we asked whether multi-hit

genes are preferentially found within the 8 QTLs that we identified as influencing founder fitness or

adaptability. We found two additional examples of multi-hit genes that lie within the confidence

interval for one of these 8 QTLs: IRA2 and BFR2 (Table 2). These 2 genes, along with KRE33,

represent an enrichment over the expected number of genes in common between the set of multi-hit

genes and those within QTL confidence intervals (Methods). Additionally, RAS2, an essential gene

which acts as a master regulator in the cAMP pathway that includes 5 multi-hit genes (including

IRA2 Figure 5), is found within one of the QTLs affecting fitness. These results suggest that some

loci that underlie variation in fitness among founders are also targets of selection during subsequent
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evolution. They also suggest that the cAMP pathway, which has been implicated as a target of

adaptive de novo mutations in several other experimental evolution studies (Venkataram et al.,

2016; Kvitek and Sherlock, 2013; Lang et al., 2013), may also explain some of the fitness differences

caused by natural genetic variation.

With the exception of the cases noted above, which all involve QTLs previously identified as

affecting fitness or adaptability, we lack power to identify individual loci in the founder genotype

that affect the genetic basis of future adaptation. That is, we cannot find specific QTLs that affect

whether mutations in any of the 27 multi-hit genes will be observed in the descendants of a given

founder. However, we can still ask whether the mutations that occur during adaptation show a

nonrandom association with the founder genotype. We can also ask whether the mutations that

occur during adaptation depend on the environment in which evolution was conducted. To do so,

we calculated the mutual information I(G,E;M) provided by the founder genotype G and evolution

environment E about the set of mutations M that accumulate during adaptation (see Methods for

details; note in particular that we control for the identity of the KRE33 allele throughout this

analysis). Intuitively, the mutual information I(G,E;M) measures the amount of information (in

bits) that we gain about M by knowing G and E. Higher values of I indicate that G and E more

strongly predict M .

We used I(G,E;M) as a test statistic to determine whether there were nonrandom associations

between founder genotype, evolution environment, and the mutations that underlie adaptation.

Controlling for the number of mutations acquired by each population, we detected a significant

association between the evolution condition and the mutations that accumulate during adaptation.

For example, we found putatively functional mutations in SIR3 and SIR4 in 34 different populations,

30 of which evolved at HT. However, the overall magnitude of this effect of E on M is small, on the

order of 0.1 bits. In addition to this effect of environment, we also find that the genotype G affects

M . Specifically, controlling for the number of mutations, the KRE33 allele, and the evolution

environment, there is a small additional effect of founder on the identities of de novo mutations.

This suggests that while founders with the same allele at the KRE33 locus draw many common

adaptive mutations from the same pool, there are additional founder-specific epistatic interactions.

The pleiotropic consequences of adaptation

Adaptation to one environment can lead to concomitant fitness gains or losses in other environments,

an effect we refer to as pleiotropy for fitness. To characterize these pleiotropic effects in our system,

we analyzed how evolution in our OT environment affects fitness in the HT environment, and vice

versa. We can describe the founder fitnesses in both environments as ~W = (X,Y ), where X is the

initial fitness at OT and Y is the initial fitness at HT. As noted above, the founder fitnesses in the

two environments were strongly correlated, especially within each of the two KRE33 allele groups

(Figure 6A), suggesting that the alleles that distinguish RM and BY have correlated effects in our

environments.

We next calculated the fitness gains for populations adapted to each environment. After
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evolution in a given environment, a founder with fitness ~W = (X,Y ) will have adapted, yielding a

descendant line with fitness ~W ′ = (X ′, Y ′). We denote the fitness increments of this population as

∆ ~W ≡ (∆X,∆Y ) = (X ′ −X,Y ′ − Y ); this vector represents the increase or decrease in fitness of

the descendant population in both environments, after evolution in one of the two environments.

For clarity, we will use the notation ∆OT to refer to the fitness increments of descendant populations

after evolution in the OT environment, and ∆HT to refer to the fitness increments after evolution in

the HT environment. We refer to the environment in which a given population evolves as its “home”

environment, and the other environment as its “away” environment. Thus ∆OTX and ∆HTY are

fitness increments in the home environments, and ∆OTY and ∆HTX are fitness increments in the

away environments.

We find that, on average, populations adapting to either of our two environments also gained

fitness in the other environment (Table 3), consistent with our observation that the sets of multi-hit

genes in the two environments were highly overlapping. Thus as populations adapt, their fitnesses at

OT and HT remain positively correlated (Figure 6B, C). Despite this overall pattern of correlated

adaptation, we find that the average fitness gain at HT was significantly higher after evolution at

HT than after evolution at OT (Table 3), as we might expect. However, the converse was not true:

populations increase in fitness at OT by about the same amount after evolving at HT as they do

after evolving at OT. Because populations evolved at HT and those evolved at OT made almost

identical fitness gains at OT, but different gains at HT, evolution in these two conditions must

involve different sets of adaptive mutations, despite the overlap in the targets of selection between

the two environments. This is consistent with our mutual information analysis above.

The genetic basis of pleiotropy

We next used the framework of quantitative genetics to analyze the effects of founder genotype on

pleiotropy. We find that the pleiotropic consequences of adaptation to our HT environment are

highly heritable, with broad-sense heritability H2 of the fitness increases in the away environment,

∆HTX ≈ 0.62. This is similar to the heritability of adaptability we found above. In contrast,

the pleiotropic consequences of adaptation to our OT environment are much less heritable, with

broad-sense heritability of ∆OTY ≈ 0.29, indicating that in this case stochastic evolutionary forces

are more important to the outcome than genotype.

As with the adaptability traits analyzed above, we find that the narrow-sense heritability of

pleiotropy is substantially lower than the broad-sense heritability (Figure 7). Specifically, we find

h2 ≈ 0.48 for ∆HTX and h2 ≈ 0.09 for ∆OTY . Thus most of the heritable variation in this trait

cannot be explained using an additive QTL model of the underlying founder genotype.

We next sought to understand which factors best explain the heritable variation in pleiotropy.

Analogous to our analysis of adaptability, we consider the potential effects of specific QTL loci

as well as of founder fitness (now in both home and away environments). We begin by fitting a

model in which the fitness increments in the away environment decline linearly with the founder

fitness in both the home and the away environments. We find that founder fitness does explain
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much of the heritable variation in pleiotropy (68% of the heritable variation in ∆HTX and 43%

for ∆OTY ). However, we find that it is only the initial fitness in the away environment that is

important: once founder fitness in the away environment is included in the model, founder fitness

in the home environment adds no further explanatory power, while the converse is not true.

To assess the dependence of pleiotropic outcomes on specific parental alleles, we next looked for

QTLs that influence fitness increments in the away environment, over and above founder fitness in

that environment. Specifically, we asked whether any of the eight previously-identified QTLs could

help predict pleiotropic outcomes over and above founder fitness in the away condition. We find

that 6 of these loci, including KRE33, do have a significant effect on pleiotropic outcomes (Table

2). Together with founder fitness in the away condition, they explain 75% and 58% of the heritable

variation in pleiotropy at OT and HT, respectively (Figure 7). To check for strong effect pleiotropy

QTLs not previously identified, we also repeated the QTL discovery procedure described above,

taking the trait to be the residual variation in fitness increments in the away environment after

regression against founder fitness in that environment. We recovered a subset of the previously

identified QTLs, without identifying any further loci.

Discussion

In order for evolution to increase or decrease adaptability, there must be genetic variation in this

trait that natural selection can act on. Here, we analyzed the extent and genetic basis of variation

in adaptability among 230 segregants from a cross between two divergent yeast strains (Bloom et al.,

2013). By exploiting the structure of the cross, we mapped QTLs that explain observed differences

in adaptability. We then compared the predictive power of these additive genetic models with an

alternative model where adaptability depends on founder fitness.

Consistent with earlier work, we find that the rate of adaptation is a heritable trait: different

founders consistently adapt at different rates. This means that some of the ∼ 50, 000 alleles that

distinguish BY from RM alter future adaptive trajectories. In principle, these effects could involve

just a few founder alleles whose effects on adaptability are independent of each other (e.g., if

particular alleles that distinguish RM and BY create opportunities for improvement of independent

biological processes). If this were the case, an additive model involving these variants would explain

the observed heritable variation in adaptability between founders. However, we find that the best

additive QTL model explains at most about half of the observed heritable genetic variation in

adaptability.

Instead, we find that a model based on founder fitness explains more of the heritable variation

in adaptability, despite having fewer free parameters. This is broadly consistent with earlier work

showing that initial fitness explains variation in adaptability among founders that differ only by a

few mutations (Barrick et al., 2010; Perfeito et al., 2014; Kryazhimskiy et al., 2014; Wang et al.,

2016). However, over the larger genetic distances we study here, a substantial fraction of heritable

variation in adaptability is not explained by founder fitness. About half of the remaining variation
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can be explained by including KRE33 and a small number of other loci as predictors in addition

to founder fitness, leaving about 20 percent of the heritable variation unexplained.

We next investigated the pleiotropic consequences of adaptation in one (“home”) environment

on fitness in another (“away”) environment. We found that in the two conditions we considered,

adaptation to the home environment leads on average to a fitness gain in the away environment.

As with adaptability, these fitness increments in the away environment were heritable. To some

extent this is expected: since founder genotype affects adaptability, we expect the founder genotype

to affect pleiotropy as well, simply because fitness gains in the home environment are correlated

with fitness gains in the away environment. Consistent with this, we find that founder fitness does

explain much of the heritable variation in pleiotropy. Surprisingly, however, only initial fitness in

the away environment is important. These results are consistent with a simple model in which

the fitness effects of mutations in any environment are modulated by the fitness of the genetic

background in that environment, regardless of how these mutations were acquired. Thus the effects

in environment B of mutations accumulated through evolution in environment A are determined

primarily by the fitness of the genetic background in environment B.

We also found that the broad-sense heritability of fitness changes in the away environment is

asymmetric. For populations evolved at HT, fitness gains in the OT environment were highly

heritable, and predicted well by founder fitness in the OT (away) environment. This suggests that

the HT populations acquired a set of mutations whose effects at OT are predictable based on the

fitness of the genetic background in this condition. Conversely, the populations evolved at OT saw

much more variable gains at HT. This implies that the mutations accumulated at OT have effects

at HT that are less predictable from founder fitness or genotype.

In addition to founder fitness, we find that the KRE33 allele and a few other smaller-effect QTLs

significantly affect evolutionary outcomes. To some extent, these QTLs affect evolution through

their impact on founder fitness. However, five QTLs, including KRE33, affect adaptability and in

some cases pleiotropy above and beyond their effects on founder fitness. The founder allele at the

KRE33 locus also strongly affects the spectrum of mutations that accumulate during adaptation:

founders that start with the less-fit RM allele at KRE33 accumulate mutations in KRE33 and

in other genes involved in the 90s preribosomal pathway. These genes are all essential, so these

mutations likely involve gain or attenuation rather than loss of function. Surprisingly, despite this

effect, KRE33 still has only a modest impact on adaptability and pleiotropy above and beyond

the founder fitness. For example, populations descended from founders with the BY and RM alleles

of KRE33 had similar patterns of fitness gains in the two environments, despite acquiring different

sets of mutations (Figure 6D). This suggests that the pleiotropic effects of these two classes of

mutations are similar.

Together, these observations suggest the following simple phenomenological picture of adaptation

in this system. The average fitness of an adapting yeast population in its home environment is

statistically predictable based on the fitness of its founding genotype, as well as the allele at the

KRE33 locus and a few other loci, even for highly divergent strains. Mutations accumulated during
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adaptation tend to lead to pleiotropic fitness gains in other, related, environments. Our ability to

predict these pleiotropic fitness gains depends on the environment: it is strong in one case but weak

in the other. This points to the possibility that fitness trade-offs between environments, and other

complicating factors, disrupt our ability to predict pleiotropic fitness gains.

We note that our experimental approach has several limitations. Most importantly, we define

adaptability as the expected increase in fitness of a line descended from a given founder after 500

generations of evolution in one of two specific laboratory environments. The effects of founder

fitness and genotype on adaptability and pleiotropy might change over different timescales or in

a different set of environmental conditions. In particular, the heritability of pleiotropic effects of

adaptation may be a consequence of the similarity of the environments we chose, and might be lower

across less similar conditions. Our results may also depend on our choice of this specific yeast cross

as our source of founder genotypes. Nevertheless, our work provides the first systematic analysis of

genetic variation in adaptability and pleiotropy.

Our results are consistent with earlier studies showing that microscopic epistasis is common

among mutations that accumulate along the line of descent in laboratory microbial evolution

experiments. However, it has been unclear whether this microscopic epistasis leads to macroscopic

epistasis, in which related genotypes have different distributions of fitness effects of new mutations.

In principle, many patterns of microscopic epistasis could be consistent with the same pattern of

macroscopic epistasis, or with no macroscopic epistasis at all. In turn, many types of macroscopic

epistasis could be consistent with the same pattern of variation in adaptability, since the expected

rate of adaptation depends in a complex way on the entire distribution of fitness effects of new

mutations and on population parameters. For example, it is possible to have extensive macroscopic

epistasis without any variation in adaptability.

One way to study differences in adaptability would be to take a bottom-up approach, measuring

patterns of microscopic epistasis and using these to characterize macroscopic epistasis and then

adaptability. We have instead taken the opposite approach, by directly measuring genetic varia-

tion in adaptability. We show that even across large genetic distances, less-fit initial genotypes

adapt more rapidly than more-fit initial genotypes. However, we also find at least one significant

microscopic epistatic interaction that affects adaptability at both fitness and genotype levels in our

HT environment, involving the allele at the KRE33 locus. This microscopic epistasis also exists

in our OT environment, as evidenced by its effect on the genetic basis of adaptation, and on the

pleiotropic consequences in the HT condition. Surprisingly, however, this microscopic epistasis has

a very weak effect on the rate of adaptation in the OT environment, above the effect we expect

from lower founder fitness. This is an example of a case where idiosyncratic microscopic epistasis

does not lead to differences in adaptability, either because the microscopic epistasis does not lead

to macroscopic epistasis, or because it leads to macroscopic epistasis which does not significantly

affect adaptability.
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Methods

Founders of evolving populations

We selected the founders of our evolving populations from a panel of haploid segregants constructed

by Bloom et al. (Bloom et al., 2013). Briefly, Bloom et al. mated strains derived from RM11-1a and

BY4716, sporulated the resulting diploids, and then isolated and sequenced 1000 haploid offspring

(Bloom et al., 2013). We used the first 230 MATa segregants from this cross as our founder strains

(Supplementary File 1).

Experimental evolution

We established eight populations from each founder. To avoid artifacts arising from shared standing

variation, we founded each population from an independent colony. We propagated each of the

resulting 1840 lines for 500 generations in batch culture in unshaken flat bottom polypropylene

96-well plates. We maintained half of the lines (four descended from each founder) in 128 µL of

rich laboratory media, YPD (1% Bacto yeast extract (VWR #90000-722), 2% Bacto peptone

(VWR #90000-368), 2% dextrose (VWR #90000-904)) at 30°C with daily 1 : 210 dilutions (the OT

environment). We maintained the other half of the lines in 128 µL of synthetic complete media

(0.67 % YNB with nitrogen (Sunrise Science #1501-250), 0.2% SC (Sunrise Science # 1300-030),

2% dextrose) at 37°C with daily 1 : 29 dilutions (the HT environment). All liquid handling was

conducted using a BiomekFX robot (Beckman Coulter). Prior to dilution, cultures were resuspended

by shaking at 1200 rpm for 2 minutes on a Titramax 100 plate shaker.

As previously described by Lang et al. (2011), this protocol results in approximately ten

generations per day (for the OT environment) or nine generations per day (for the HT environment)

at an effective population size of Ne ≈ 105. Every 7 days, aliquots from each population were mixed

with glycerol to 25% and kept at −80°C for long-term storage. To check for cross-contamination,

each plate contained a unique pattern of blank wells. No cross contamination events were observed

during the evolution. However, some wells were lost due to pipetting artifacts. These wells were

excluded from all analysis, leaving a total of 910 evolved lines in the OT environment and 839 in

the HT environment.

Fitness assays

We conducted fitness assays as described previously (Kryazhimskiy et al., 2014). Briefly, we

measured fitness by competing founding clones and evolved populations against a common reference

strain. To construct the reference, we selected a segregant with intermediate fitness from the initial

RMxBY cross (segregant LK3-B08; see Supplementary File 1 for the genotype). We integrated

an mCitrine-KanMX cassette at the ho locus of this segregant. The marker was obtained via a

digest of plasmid pEJ03-mCitrine-KanMX-HO (Supplementary File 4) with pMEI and transformed

using standard yeast genetic techniques (Adams et al., 1998). Transformants were selected based on
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growth on G418, and the Citrine+ phenotype was confirmed via flow cytometry.

For each fitness assay, we first allowed both the evolved and reference strains to acclimatize in the

relevant environment for 24h. We then mixed these strains in approximately equal proportions and

propagated them for two days using the same protocol as for evolution. We used Fortessa and LSRII

flow cytometers (BD Biosciences) to count the ratio of evolved and reference strains 1 and 2 days

(approximately 10 generations and 20 generations respectively, or 9 and 18 in the HT environment),

counting approximately 30,000 cells in each measurement. We estimated the fitness of the evolved

strain relative to the reference as s = 1
τ ln(

ne,f

nr,f

nr,i

ne,i
), where τ is the time between measurements

in generations, ne,i, ne,f are the initial and final counts of the evolved strain, and nr,i, nr,f are the

initial and final counts for the reference. In the HT environment (synthetic medium), we found

that in a sample of pure reference cells, 98.5% were fluorescent. To account for this, we adjusted

the fitness estimates for this environment slightly: s = 1
τ ln(

ne,f−pnr,f

nr,f

nr,i

ne,i−pnr,i
), where p = 0.015

is the non-fluorescent proportion of reference cells. To estimate the error on the founder fitnesses,

we measured the fitnesses of the eight founder clones picked from each segregant in their home

environment (i.e. four at OT and four at HT). We measured the fitnesses of each final evolved

population at both OT and HT. To obtain estimates of the technical error for these measurements,

we chose 24 final populations at random and made 8 technical replicate measurements of each in

each of the two measurement conditions.

Sequencing and mutation calling

We sequenced all 273 populations descended from 35 founders in both environments (this excludes 7

populations descended from these founders that were lost due to pipetting artifacts during evolution,

as described above). The founders selected for this sequencing were chosen to ensure approximately

equal representation of each parental KRE33 allele (see below), but were otherwise random. To

focus on common mutations within each population, we sequenced mixed whole-population samples.

We prepared libraries for sequencing as described previously (Baym et al., 2015), and performed

whole-genome sequencing on an Illumina HiSeq 2500 in rapid run mode.

To process the whole-population sequence data, we first trimmed reads using Trimmomatic

function ‘Illuminaclip’, with options Leading:20, Trailing:20 (Bolger et al., 2014). We merged

overlapping paired-end reads using the bbmerge function of bbtools (v36.77). We then used Breseq

v0.27.1 (Deatherage and Barrick, 2014) with option ‘-p’ (polymorphic mode) to align reads to

the S288c public reference genome (version R64-2-1, downloaded 13 January 2015 (Engel et al.,

2014)). We did not directly use the SNP and indel calls made by Breseq. Instead, we used the

Samtools mpileup function and a custom python script to create an unfiltered list of the calls in

each population at each base pair. To call de novo mutations, we first filtered out fixed differences

between the parents by removing all sites where the alternate allele is in the majority in at least

6 lines. We then filter error-prone sites by removing sites where the alternate allele is above 10%

frequency in 5 or more populations. These errors typically arise from alignment artifacts. We called

a mutation in a population when it occurred in more than 50% of the reads, with support for the
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alternate allele in at least 4 reads. Although we are sequencing mixed-population samples, 57% of

the mutations that we called were supported by 100% of the reads for that population, and 68 %

were at ≥ 90% frequency.

We discarded 12 sequenced populations due to insufficient coverage and/or library prep failure.

We also checked the genotypes of our founding clones at loci where the RM and BY parents differ,

to verify that they matched the genotypes reported by Bloom et al. (2013). We found that 254/261

(97%) of genotypes matched those reported by Bloom et al. (2013), but 7 (3%) were incorrect. We

attribute this to errors in picking clones to set up the founders for evolution. We discarded these 7

populations from the sequence data analysis.

We detected 3 SNVs that were shared among multiple descendant populations of the same

founder (7 populations in total). For two of these cases, the SNV appears in one OT population and

one HT population; in the third case, it appears in one OT population and two HT populations.

These mutations likely arose prior to picking clones to found populations, and we discarded them

from the analysis.

Broad-sense heritability

Broad-sense heritability H2 is the fraction of observed variance in a phenotype that can be attributed

to genetic differences between founders. We find the broad-sense heritability of founder fitness,

H2
X , by partitioning the total observed variance in fitness, σ2

X,t, into the component σ2
X,ε arising

from measurement error and the component σ2
X,f arising from founder genotype. The broad-sense

heritability of initial fitness is then

H2
X =

σ2
X,f

σ2
X,t

.

We estimate the components of variance according to the formulas

σ2
X,t =

1

ng

ng∑
i=1

(
Xi −X ··

)2
, σ2

X,ε =
1

ng

ng∑
i=1

σ2
X,ε,i, σ2

X,f = σ2
X,t − σ2

X,ε. (1)

Here ng = 230 is the number of founders and we denote the replicate fitness measurement k of

founder i by Xik. We have also defined Xi ≡ Xi· = 1
nr,i

∑nr,i

k=1Xik as the estimate of fitness of

founder i; σ2
X,ε,i = 1

nr,i(nr,i−1)

∑nr,i

k=1(Xik − Xi)
2 is the unbiased estimate of error variance in the

fitness measurement of founder i; nr,i is the number of technical replicate measurements for founder

i; and X ·· =
1
ng

∑ng

i=1Xi is the mean fitness across all founders. We calculate confidence intervals

for H2 using a leave-n2 -out jackknife on genotypes.

Similarly, to estimate the broad-sense heritability of the fitness increment after evolution, H2
∆X ,

we partition the total observed variance in fitness increment, σ2
∆X,t, into the component due to

measurement error plus evolutionary stochasticity (which arises due to random variation in fitness

gains between populations descended from the same founder), σ2
∆X,p, and the component σ2

∆X,f

due to systematically different fitness gains in populations descended from different founders. The

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/121749doi: bioRxiv preprint 

https://doi.org/10.1101/121749


broad-sense heritability in fitness increment is then

H2
∆X =

σ2
∆X,f

σ2
∆X,t

.

We estimate the variance components as follows. The estimate of the fitness increment of population

j descended from founder i is ∆Xij = X ′ij −Xi, where Xi is the estimate of fitness of founder i

given above and X ′ij is estimate of final fitness of the focal population. We estimate the variance

σ2
∆X,p due to measurement error and evolutionary stochasticity as

σ2
∆X,p =

1

n

ng∑
i=1

np,i
np,i − 1

np,i∑
j=1

(∆Xij −∆Xi·)
2,

where ∆Xi· = 1
np,i

∑np,i

j=1 ∆Xij is the mean fitness increment in populations descended from founder

i, and n is the total number of descendant populations. We estimate the total variance in fitness

increment as

σ2
∆X,t =

1

n

ng∑
i=1

np,i∑
j=1

(∆Xij −∆X ··)
2,

where ∆X ·· = 1
n

∑ng

i=1

∑np,i

j=1 ∆Xij is the mean fitness increment across all populations. Finally, the

variance due to founder genotype is

σ2
∆X,f = σ2

∆X,t − σ2
∆X,p.

As above, we calculate confidence intervals on the estimate of H2
∆X using a leave-n2 -out jackknife on

genotypes.

Narrow-sense heritability

We estimate the narrow-sense heritability of two types of traits: the fitness of founding genotypes,

Xi, and the fitness increment of population ij, ∆Xij . Let the trait value of a particular individual be

Yi. Without perfect knowledge of which loci affect the trait, we can still estimate the narrow-sense

heritability based on how the covariance in trait values between individuals depends on their genetic

relatednesses (Yang et al., 2010; Zuk et al., 2012).

Supposing the trait Yi was a linear combination of contributions from all loci, we have

Yi = α+
m∑
k=1

gik ak + εi, (2)

where gik = − p√
mp(1−p)

if individual i carries the RM allele at locus k or gik = 1−p√
mp(1−p)

if it

carries the BY allele at locus k, p is the frequency of the BY allele at locus k, and m is the total

number of loci. We denote the contribution of allele k to the trait as ak. If we take this to be a
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random effects model, with a ∼ N(0, σ2
a) and ε ∼ N(0, σ2

e), then the variance-covariance matrix V

of Yi is V = Rσ2
a + Iσ2

ε (Yang et al., 2010), where Rij =
∑

k gik gjk is the relatedness between two

segregants. The narrow-sense heritability is then h2 = σ2
a

V ar(Y ) , the ratio of the additive variance to

the total phenotypic variance.

We fit σ2
a using standard REML optimization, and estimated ĥ2 = σ̂2

a
V ar(Y ) . To maintain

consistency, we calculated confidence intervals using a leave-n2 -out jacknife on segregants.

Mapping QTLs

Following Bloom et al. (2013), we took an iterative approach to identify QTLs for a trait. As before,

let Yi be the phenotypic trait value for founder i. At each iteration we detect one QTL, so that

after completing iteration k, we will have identified k QTLs. At iteration k + 1, we first fit the

linear model

Yi = α(k) +

k∑
`=1

gi`a
(k)
` + ε

(k)
i . (3)

Here α(k) and all a
(k)
` are fitting parameters and ε

(k)
i are noise terms, which are normally distributed

random variables with mean 0 and variance σ2
ε,k. As before, gi` denotes the genotype of founder

i at locus `. Note that, at the first iteration, the second term in equation (3) is absent. We

then calculate the residuals y
(k+1)
i = Yi −

(
α̂(k) +

∑k
`=1 gi`â

(k)
`

)
, where the hat symbol denotes

the fitted parameters. Next, for each locus `, we calculate the log of the odds (LOD) score as

−ng/2 log10(1− r2
k,`), where r2

k,` is the Pearson correlation coefficient between the allele at locus `

and y
(k+1)
i , and ng is the number of founders. For this correlation analysis, we weigh observations by

the square root of the number of technical replicate measurements. Next, we perform a permutation

test (by permuting y
(k+1)
i values) to determine whether the QTL with the largest value of the test

statistic is significant at the 0.05 level. If it is, it becomes the k + 1th QTL, and we proceed to the

next iteration. If it is not, QTL detection is terminated. At each round, we calculate a confidence

interval for the location of the QTL based on an LOD decline of 1.5.

We carry out this QTL detection procedure separately for two traits, initial fitness X and fitness

increment ∆X, in each of the two environments, OT and HT.

Fitness models for adaptability

We model the dependence of adaptability on fitness using the standard linear regression,

∆Xi = α+ βXi + εi, (4)

where ∆Xi = 1
ni

∑ni
j=1X

′
ij −Xi is the mean fitness increment of founder i, and Xi is the fitness of

founder i.

Our null model is that the true fitness gains are independent of the founder fitnesses. However,

our estimates of ∆Xi also include measurement error, and these errors are not independent of the
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measurement errors in Xi. These errors could generate spurious correlations between ∆Xi and Xi.

Note that we expect this effect to be small, because the error variance in Xi is 0.5% of the total

variance in Xi at OT and 0.8% at HT. To assess the influence that these spurious correlations could

have had on our results, we also fit the model

∆Xi = α+ βX̃i + εi, (5)

where X̃i = Xi + δi, δi ∼ N(σ2
X,ε,i, 0), where σ2

X,ε,i is the error variance in founder fitness i, as

defined above. This additional error lowers the correlation from 0.522 to 0.518 at HT and 0.417 to

0.415 at OT.

To assess the extent to which fitness in either environment predicts fitness changes in the other

condition, we fit the model

∆Xi,a = α+ βXi + γYi + εi, (6)

where ∆Xi,a is the fitness increment of population ij in the ‘away’ environment, in which it did not

evolve, Xi is the founder fitness in the away environment, and Yi is the founder fitness in the home

environment. As above, to control for spurious correlations due to experimental noise, we also fit

∆Xij,a = α+ βX̃i + γYi + εi. (7)

We assessed the significance of each coefficient in both models.

Combined QTL and fitness model

To determine whether any loci influence adaptability over and above fitness, we created a master

list of all distinct QTLs detected for the initial fitness or fitness increment as traits. We tested

whether each of these loci significantly improved predictions of delta fitness in both environments.

We also included terms for potential pairwise interactions between the largest-effect QTL and the

others. Specifically, we fit the model

∆Xi = α+ βXi + γg∗ +

k∑
`=1

gi`a` +

k∑
`=1

g∗gi`b` + εi, (8)

where g∗ is an indicator variable on the largest-effect QTL, taking values 0.5 or −0.5; the gi` are

indicator variables on the previously identified QTLs, also taking values 0.5 or −0.5, and α, β, γ,

a`, and b` are coefficients.

We fit this model for fitness increment in each environment separately. In each case, we evaluated

the significance of the coefficients using a Bonferroni-corrected F-test. We refit the model including

only terms with significant coefficients to determine the best predictor of delta fitness in each

environment (Figure 3, Source Data 1).

To check for additional loci that influenced adaptability over and above fitness, we repeated the

QTL detection procedure described in the previous section, taking the trait to be residual differences
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in adaptability beyond those explained by initial fitness. We did not find any additional QTLs

beyond those previously identified.

We repeated this analysis for fitness increment in the alternative condition (Figure 7, Source

Data 3).

Mutual Information Analysis

To detect associations between the properties of a population and the de novo mutations that occur

during adaptation, we used a test statistic based on mutual information. For clarity, we will first

define the mutual information between a property and mutations in one gene, and then describe

how we combine the information from all the genes. Let W be the property, with groups W1, ...Wn

(for example, if the property is the evolution condition, then we have W1 = HT, W2 = OT). Let

our gene of interest be gl, and let m be an indicator variable with value 1 when a de novo mutation

was called in a population in this gene, 0 otherwise. Then the mutual information between the

treatment W and gene gl is

I(W, gl) =
∑

W=(W1,...Wn)

p(W )
∑

m=(0,1)

p(m|W ) log2

p(m|W )

p(m)
, (9)

where we estimate the probabilities based on observed counts: p(m) is the frequency of observing

a mutation in gl across all populations, p(m|W = Wj) is the frequency of observing the mutation

among populations with property Wj , and p(W = Wj) is the proportion of populations with property

Wj .

We will also often be interested in the mutual information conditional on a second property Z.

This will allow us to determine whether a property carries additional information after we have

already taken a known predictor into account. This can be calculated as

I(W, gl|Z) =
∑

Z=(Z1,..Zq)

p(Z)
∑

W=(W1,...Wn)

p(W |Z)
∑

m=(0,1)

p(m|W,Z) log2

p(m|W,Z)

p(m|Z)
. (10)

As our test statistic, we take the sum of the mutual information across all of the genes

M(W |Z) =
∑
gl

I(W, gl|Z), (11)

where for generality we have included the possibility of conditioning on one or more factors. Let

W = Kr be a population’s KRE33 allele, which can be either RM or BY. Let W = E be the

evolution environment, and let W = F be the population’s founding genotype. Then we calculate

M(Kre), M(E|Kre), and M(F |Kre,E).

We calculate the null distributions of these statistics by permuting mutations among populations,

holding the number of mutations per population fixed. We report the mutual information as

M(Kre)−M̄p(Kre), where M̄p(Kre) is the mean of the null distribution; M(E|Kre)−M̄p(E|Kre),
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and M(F |Kre,E)− M̄p(F |Kre,E), with 95% confidence intervals calculated from the null distri-

butions (Source Data 2).

Comparing QTL locations and de novo mutations

To ask whether we see multi-hit mutations near QTL loci more often than we would expect, we

determined whether there was an enrichment of common members between the list of 27 multi-hit

genes and the list of 99 genes within QTL confidence intervals. Because we excluded dubious ORFs

from both lists, we took the number of genes in the yeast genome to be 5858. We computed the

expected number of common members to be 0.95.
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Fitness Fitness Adaptability Adaptability Pleiotropy Pleiotropy
at OT at HT at OT at HT HT pops at OT OT pops at HT

H2 0.995 0.992 0.613 0.654 0.622 0.291
(0.992, 0.997) (0.988, 0.994) (0.541, 0.672) (0.586, 0.716) (0.552, 0.680) (0.193, 0.394)

h2 0.837 0.805 0.460 0.440 0.477 0.091
(0.639, 0.964) (0.555, 0.936) (0.280, 0.582) (0.173, 0.595) (0.308, 0.636) (0, 0.228)

r2, QTL models 0.760 0.761 0.303 0.318 NA NA
(0.712, 0.820) (0.707, 0.823) (0.232, 0.388) (0.242, 0.340)

r2, founder fitness NA NA 0.417 0.522 0.425 0.127
(0.352, 0.478) (0.451, 0.585) (0.361, 0.492) (0.082, 0.182)

Added variance NA NA 0.105 0.199 NA NA
fitness vs. QTLs (0.047) (0.143)

r2, combined models NA NA 0.501 0.577 0.467 0.171
(0.442, 0.561) (0.510, 0.641) (0.411, 0.534) (0.126, 0.235)

Added variance NA NA 0.087 0.057 0.047 0.044
combined vs. fitness (0.060) (0.035) (0.021) (0.022)

Table 1. Heritability of fitness, adaptability, and pleiotropy, along with the fraction of variance
explained by QTL, fitness, and combined models. Row 5 represents the median added variance
explained by the fitness model over the QTL model under a jacknife over segregants (Methods); Row
7 similarly represents the added variance explained by the combined model over the fitness model.
Paired numbers in parentheses denote 95% confidence intervals; single numbers in parentheses
denote lower bounds (5th percentile) on added variances.

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/121749doi: bioRxiv preprint 

https://doi.org/10.1101/121749


Locus Genes within confidence interval Fitness at OT Fitness at HT Adaptability at OT Adaptability at HT Signficantly affects Signficantly affects Signficantly affects Signficantly affects
adaptability adaptability pleiotropy pleiotropy

(above fitness), OT (above fitness), HT (above fitness) (above fitness)
HT pops at OT OT pops at HT

ChrXIV 376315 FYV6, KRE33, TOM22, CPT1 y y y y y y n y

ChrXV 154799 WRS1, COQ3, HMI1, RFC4, TRM10 y y y n n y n y
YPQ1, SPO21, MSH2, HAL9, MPD2

DUF1, MHF2, ADH1, PHM7, ATG34,
ATG19, IRA2, REX4, AVO1, ATP19,

BRX1

ChrVII 123335 NCS6, YPT32, MIG2, SIP2, SPT16 y n n n n n n n
CHC1, POX1, YGL204C, KEX1, ARO8

MCM6, EMP24,YIP4, MDS3, DSD1,
GCN1, YGL194C-A, HOS2, YGL193C, IME4,
COX13, CDC55, RPS26A, YGL188C-A,COX4,

TPN1, YGL185C, STR3, MND1, YGL182C
GTS1, ATG1, TOS3

ChrXIV 470303 MIC27, OCA1, RAS2, YNL097C-B, PHO23 y n n n y y n y
RPS7B, APP1, YPT53, YNL092W, NST1,

RHO2, TOP2, TCB2,TCB2, SNN1,
MKT1, END3, SAL1, PMS1, SWS2,
EOS1, TPM1, NIS1, APJ1, MKS1

IMP4, MLF3, MSK1, RNH201, LAT1

ChrXII 646707 RCK2, YEF3, SSP120, SYM1, MCP2 y n n n y n y y
NDL1, HAP1, YLR257W, GSY1, HSP60
LCB5, YPT6, TMA7, RED1, RPS28B,

YLR264C-A, NEJ1, PDR8

ChrIV 1062759 HDA2, MHR1, SUR2, ATP5, BFR2 y n y n n n n n
PRO1, CFT1, GPI11, RSC3, CPR5,

HNT2, YDR306C, PMT7, SRB7, GIC2,
SUM1, TFB1, SSF2, PIB1, RAD34

IPK1, OMS1, HIM1, MCM21, YFT2,
SWA2, DAD4, YDR320W-B, ASP1

ChrXII 210540 SSL1, SSK1, NSE1, PAM18 n n y y y n y n
RLP24, TEN1, LOT6, YLR012C,GAT3,
PPR1, BRE2, PML1, MEU1, POM34,

PSR2, YEH2, IRC25, SDO1, IZH3
UBR2, SNF7, SED5, AAT2, ADE16,

RPL15A, YLR030W, YLR031W, RAD5,
RSC58, SMF3, MLH2, YLR036C, PAU23

ChrXIV 254149 POP1, ADE12, ALG9, MGS1, YNL217W, n y n n n n y y
RAP1, IES2, PEX17, RRG9, VID27,

YNL211C, MER1, SSB2, YNL208W, RIO2,
RTT106, SPS18, SPS19, PSY2, NNR1,

GCR2, WHI3, SLZ1, YNL195C, YNL194C,
YNL193W, CHS1, DUG3, YNL190W, SRP1,
KAR1, SWT21, UBP10, MRPL19, YNL184C,
NPR1, IPI3, PBR1, RHO5, RPS3, MRPL22

Table 2. QTL locations, genes within confidence intervals, and traits that this QTL affects. Genes
associated with multi-hit mutations are in bold.
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KRE33 -RM KRE33 -BY
Evolved at OT Evolved at HT Evolved at OT Evolved at HT

Fitness 8.33 8.86 5.01 4.83
at OT, % (8.27, 8.38) (8.81, 8.92) (4.94, 5.07) (4.76, 4.90)

Fitness 9.57 20.33 6.25 11.51
at HT, % (9.42, 9.77) (20.18, 20.53) (6.12, 6.38) (11.38, 11.64)

Table 3. Average fitness increments of populations in home and away environments, in percent.
Numbers in parentheses denote 95% confidence intervals.
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Figure 1. Experimental design and fitness gains in evolved populations. (A) Schematic
of the experimental design. (B) Fitness of all 230 founders at both OT and HT. (C) Fitness of all
evolved lines in both OT and HT environments, after 500 generations of adaptation in one of the
environments. Each point represents the fitness of one population; vertical lines connect populations
descended from the same founder. Founders are ordered by the fraction of their genome derived
from the RM parent.
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Figure 2. Heritability of fitness and adaptability. Tan bars denote broad-sense and narrow
sense heritability of (A) founder fitness and (B) fitness gain after evolution in the indicated
environment (i.e. adaptability). White bars denote the heritability explained by a linear model
based on the QTLs identified as affecting initial fitness or adaptability (Methods). Green bars
indicate the heritability of adaptability explained by initial fitness in that condition. Error bars
indicate 95% confidence intervals.
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Figure 3. Models to predict adaptability. Each point represents the average fitness change
of four populations descended from the same founder after 500 generations of evolution in the
(A-C) OT environment or (D-F) HT environment. Error bars denote ±1 s.e.m. Lines show the
predictions of different models; r2 indicates the fraction of the variance explained, which is similar
to the fraction of the broad-sense heritability explained by the model. (A,D) Linear QTL model,
where the x-axis is the linear combination of identified QTLs that best predicts the fitness gains in
each environment. (B,E) Model where founder fitness is used as predictor for fitness gain. (C,F)
Combined model, where the x-axis is the linear combination of initial fitness and the identified
QTLs that best predicts the fitness gains in each environment. Dark and light shades represent BY
and RM alleles at the KRE33 locus respectively. For model parameters, see Source Data 1.
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Figure 4. Number of fixed nonsynonymous mutations. Each point represents the number
of fixed nonsynonymous mutations in a population evolved at (A) OT or (B) HT. Populations
descended from the same founder are connected by vertical lines for visual convenience, with founders
ordered according to their fitness in the corresponding environment. Dark and light shades represent
BY and RM alleles at the KRE33 locus respectively.
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Figure 5. Distribution of mutations in multi-hit genes across evolved populations.
The number of sequenced populations with a de novo mutation in each multi-hit gene, for each
environment and founder KRE33 identity. Genes are organized by functional groups. For mutual
information metrics, see Source Data 2.
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Figure 6. Pleiotropic consequences of adaptation. (A) The fitness of each founder in the
OT environment (X) and HT environment (Y ). Error bars represent ±1 s.e.m. over technical
replicates. Dark and light points represent strains carrying the BY and RM alleles at the KRE33
locus respectively. (B,C) Average fitness of all populations descended from each founder. Error
bars represent ±1 s.e.m. over replicate populations. Orange and blue colors represent strains evolved
at HT and OT, respectively; dark and light shades represent BY and RM alleles at the KRE33
locus respectively. (D) Average fitness increment of all populations descended from each founder;
error bars omitted for clarity. Arrows point to the centroids of the respective point clouds.
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Figure 7. Heritability and predictability of pleiotropic fitness gains. (A) Heritability of
the fitness gains in the HT environment after evolution at OT, ∆OTY , and the variance explained
by fitness and combined fitness/QTL models. The final (grey) bar indicates the median difference in
variance explained between the combined fitness/QTL model and the fitness model under jackknife
resampling (Methods). (B) Heritability of ∆HTX and the variance explained by fitness and
combined fitness/QTL models. The final (grey) bar is as in A. (C) Predicted and actual values of
∆OTY based on initial fitness at HT and QTL loci (Table 2, column 9). Each point shows the mean
over populations descended from the same founder. Error bars denote ±1 s.e.m. over technical
replicates (x-axis) or over replicate evolved populations (y-axis). Dark and light points represent
strains carrying the BY and RM alleles at the KRE33 locus respectively. (D) Predicted and actual
values of ∆HTX based on initial fitness at OT and QTL loci (Table 2, column 10). For model
parameters, see Source Data 3.
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Source Data and Supplementary Files

Source Data 1
Parameters for combined fitness and QTL models for adaptability.

Source Data 2
Mutual information between de novo mutations and the KRE33 allele, the evolution environment,
and the genotype.

Source Data 3
Parameters for combined fitness and QTL models for pleiotropy.

Supplementary File 1: Segregant genotypes
Genotypes of segregants used in this study. Note this data is reproduced from Bloom et al. (2013),
with marker loci that are redundant for this subset of the segregant panel removed.

Supplementary File 2: Fitness measurements
Fitness measurements in the OT and HT environments for each founder and descendant population.

Supplementary File 3: Table of de novo mutations
All mutations called at frequencies of ≥ 50% in evolved populations.

Supplementary File 4: pEJ03-mCitrine-KanMX-HO
Annotated sequence for pEJ03-mCitrine-KanMX-HO.
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