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Abstract: 1 

Recent calls for a revision of standard evolutionary theory (SET) are based in part on arguments 2 

about the reciprocal causation.  Reciprocal causation means that cause-effect relationships are 3 

obscured, as a cause could later become an effect and vice versa. Such dynamic cause-effect 4 

relationships raise questions about the distinction between proximate and ultimate causes, as 5 

originally formulated by Ernst Mayr. They have also motivated some biologists and 6 

philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly 7 

expand the scope  of the Modern Synthesis (MS) and Standard Evolutionary Theory (SET), 8 

which has been characterized as gene-centred, relying primarily on natural selection and largely 9 

neglecting reciprocal causation. I critically examine these claims, with a special focus on the 10 

last conjecture and conclude – on the contrary– that reciprocal causation has long been 11 

recognized as important both in SET and in the MS tradition, although it remains 12 

underexplored. Numerous empirical examples of reciprocal causation in the form of positive 13 

and negative feedbacks are now well known from both natural and laboratory systems. 14 

Reciprocal causation have also been explicitly incorporated in mathematical models of 15 

coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and 16 

sexual selection. Such dynamic feedbacks were already recognized by Richard Levins and 17 

Richard Lewontin, well before the recent call for an EES. Reciprocal causation and dynamic 18 

feedbacks is one of the few contributions of dialectical thinking and Marxist philosophy in 19 

evolutionary theory, and should be recognized as such. I discuss some promising empirical and 20 

analytical tools to study reciprocal causation and the implications for the EES. While reciprocal 21 

causation have helped us to understand many evolutionary processes, I caution against 22 

uncritical extension of dialectics towards heredity and constructive development, particularly 23 

if such extensions involves attempts to restore Lamarckian or “soft inheritance”. 24 

 25 
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Introduction 26 

Last year – in January 2016 – the great population biologist Richard Levins passed away (Mehta 27 

2016). Scientifically speaking, Levins was mainly known for his pioneering models about the 28 

evolution of genetic variation and adaptive plasticity in changing environments (Levins 1968). 29 

But Levins was also a political activist, life-long committed communist and Marxist (Maynard 30 

Smith 1988). Together with his political and scientific ally at Harvard University – population 31 

geneticist Richard Lewontin – Levins published a partly controversial book in 1985 entitled 32 

The Dialectical Biologist (Levins and Lewontin 1985). In this book, Levins and Lewontin 33 

advocated the use of the dialectical method – as developed by German socialists and 34 

philosophers Karl Marx and Friedrich Engels – and they then applied such dialectical thinking 35 

to various problems in ecology and evolutionary biology (Levins and Lewontin 1985). Levins 36 

and Lewontin paid particular tribute to Friedrich Engels, who was interested in natural science 37 

and the new and emerging field of evolutionary biology. Engels’ book The Dialectics of Nature 38 

(1883) contains a series of partly unfinished essays about how dialectical thinking could help 39 

to understand the natural world. In this book, Engels explained the dialectical principle of the 40 

“transformation of quantity in to quality and vice versa” and illustrated this principle with an 41 

analogy of how water changes from a liquid state in to a gas as temperature increases. In terms 42 

of evolution of our own species (Homo sapiens), Engels argued that the human brain and hand 43 

co-evolved and influenced each other’s evolutionary trajectories through selective feedbacks, 44 

so that a larger brain made it possible to evolve more fine-scale movements of hands and fingers 45 

and vice versa (Engels 1883).    46 

 47 

Although the two Marxists Levins and Lewontin were highly critical of what they called 48 

“Cartesian reductionism” which they argued dominated Western science in general and 49 

evolutionary biology in particular, they did not deny the success of this traditional research 50 
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approach. However, they suggested, drawing their inspiration from primarily Engels early 51 

work, that the dialectical method should complement the traditional reductionist approach 52 

(Levins and Lewontin 1985). Given that this is actually a fairly modest claim for the 53 

justification of the dialectical method, it is somewhat surprising that their book was initially 54 

met with such an extreme hostility from a large part of the community of evolutionary 55 

biologists.  56 

 57 

One notable exception to this negative reception of their book was Levins and Lewontin’s friend 58 

and colleague, the British evolutionary biologist John Maynard Smith, who published a review 59 

of the book in London Review of Books (Maynard Smith 1988).  Maynard Smith was himself a 60 

former member of the Communist Party of Great Britain (CPGP) and he had thus a background 61 

in Marxist philosophy. In his critical review, Maynard Smith did not hesitate to admit that 62 

Levins and Lewontin’s dialectical method had some scientific utility (Maynard Smith 1988). 63 

He also praised Levins work as one of the best examples of how dialectical thinking could 64 

provide scientific insights about ecological phenomena and evolutionary processes beyond 65 

Cartesian reductionism (Maynard Smith 1988). Maynard Smith’s largely sympathetic although 66 

not entirely uncritical review contrasts sharply with the hostility against the book and its authors 67 

from other parts of the evolutionary biology community in the US. In retrospect and with a 68 

knowledge of subsequent history – most notably the fall of the Berlin Wall in 1989 and the 69 

collapse of the Soviet Union in 1991 – the extremely negative reactions to The Dialectical 70 

Biologist could perhaps be interpreted as an effect of the general political climate in the US and 71 

the ongoing Cold War. Also, many evolutionary biologists in the US were probably not aware 72 

about the crucial difference between Stalinism as an official state ideology in the Soviet Union 73 

and Eastern Europe, and the more critical intellectual Marxist analytical tradition in Western 74 

Europe. 75 
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 76 

One of the most famous chapters of The Dialectical Biologist has the title “The Organism as 77 

the Subject and Object of Evolution”. In this chapter, the authors build upon some earlier 78 

foundational work by Lewontin (Lewontin 1983) and use some general coupled differential 79 

equations to explore the relationship between organism (O) and environment (E). They show 80 

that organisms are not only passive objects of the external environment which suffer from the 81 

force of natural selection, but the organisms are also active subjects, who actively modify their 82 

environments, often towards their own advantage. Thus, a fit between O and E can in principle 83 

be achieved in two different ways (although not mutually exclusive); either natural selection 84 

modifies O to fit E, or O modifies E to its own advantage (Okasha 2005). One empirical 85 

example of this is thermoregulation behaviours in ectothermic animals like reptiles and insects. 86 

In Anolis-lizards, for instance, it has been shown that because of adaptive behavioural 87 

thermoregulation, animals can “buffer” themselves against harsh thermal environments (e. g. 88 

too cold environments) by actively searching for warmer places, thereby partly counteracting 89 

selection for improved thermal physiology (Huey et al. 2003). The main point is that there is a 90 

reciprocal feedback between O and E: E influences O through the process of natural selection, 91 

but O can also influence E through niche construction (Odling-Smee et al. 2003; Okasha 2005). 92 

For the consistence of terminology I shall call such feedbacks between O and E for reciprocal 93 

causation for the rest of this article, following the terminology by Laland and colleagues 94 

(Laland et al. 2011), although I note that Laland (2004) has also called this “cyclical causation” 95 

in one of his previous papers (Laland 2004; Dawkins 2004).    96 

 97 

Naturalists and field biologists have long been aware that organisms are not only passive objects 98 

of selection, but can modify their environments or use adaptive habitat selection to maximize 99 

fitness (Huey et al. 2003), so in that sense Levin’s and Lewontin’s main contribution was to 100 
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highlight what many already knew, and thereby encourage further investigation of these 101 

phenomena. However, it took a couple of more decades until Levin’s and Lewontin’s ideas 102 

attracted more interest from modellers. In 2003, Odling-Smee, Laland and Feldman published 103 

a book called Niche Construction – the neglected process in evolution (Odling-Smee et al. 104 

2003). Building on the original foundations laid by Levins and Lewontin, they further 105 

developed the mathematical models of coupled differential equations between O and E, and 106 

argued that niche construction deserved increased attention from evolutionary biologists, as it 107 

should be considered an evolutionary process, one potentially of equal importance as natural 108 

selection. While many evolutionary biologists would probably agree that niche construction 109 

and phenomena associated with reciprocal causation are interesting and important, Odling-110 

Smee et al. (2003) were also criticized for overstretching the domain of niche construction 111 

(Brodie 2005) and their book generated considerable discussion about definitions and domains 112 

of this process  (Dawkins 2004; Okasha 2005). Interestingly, Odling-Smee et al. (2003) cite 113 

Levins and Lewontin (1983) at only one page in the beginning of their volume, and neither of 114 

the terms “dialectics” or “Marxism” appear in their index. This is an interesting omission, 115 

considering the intellectual and scientific roots of niche construction and the crucial 116 

contributions by Levins and Lewontin. It is as if the Cold War was still ongoing in 2003, when 117 

Niche Construction was published. This might appear  unfortunate, as even the otherwise 118 

skeptical John Maynard Smith was not afraid of admitting the fruitful contribution of some 119 

aspects of Marxist philosophy to evolutionary theory (Maynard Smith 1988; Maynard Smith 120 

2001). Interestingly, two of the authors of Niche Construction claim to have taken the advice 121 

of Richard Lewontin, who was concerned that the use of the term ‘dialectic’ would lead to their 122 

scientific arguments being disregarded as politically motivated (Laland and Odling-Smee, 123 

personal communication). Nonetheless, niche construction theory can be viewed as implicitly 124 

embracing the dialectical method, by framing itself as a counterpoint to mainstream 125 
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evolutionary biology, with the motive of stimulating research on the topic (Odling-Smee et al. 126 

2003).  127 

 128 

Niche construction and reciprocal causation have recently been used as arguments in calls for 129 

an Extended Evolutionary Synthesis (EES), to complement and extend the Modern Synthesis 130 

(MS), sometimes also called Standard Theory (SET)(Laland et al. 2015). These calls have, 131 

however, also met several criticisms (Welch 2016; Gupta et al 2017). Among the criticisms that 132 

have been raised against the EES are that reciprocal causation is already well-recognized in 133 

several subfields of evolutionary biology, that it is already incorporated in standard 134 

evolutionary theory and that so-called “soft inheritance” is unlikely to be important in evolution 135 

(Brodie 2005; Dickins and Rahman 2012; Welch 2016; Gupta et al 2017).  136 

 137 

Here, I discuss this further with a focus on the role of reciprocal causation in the evolutionary 138 

process. I show that reciprocal causation features commonly in both empirical investigations 139 

and in theoretical models of both ecology and evolution, although it is seldom explicitly framed 140 

as such or couched in terms either reciprocal causation, dialectics, niche construction or the 141 

EES. Many evolutionary biologists have already implicitly or explicitly accepted reciprocal 142 

causation and unconsciously use dialectical thinking in their research practice, which calls in to 143 

question the need for urgent reform of SET and a major conceptual revision, requested by 144 

proponents of the EES. The main challenge is therefore mainly empirical rather than 145 

concepetual; namely to use existing analytical, statistical and mathematical tools to analyze 146 

reciprocal causation and spread knowledge about these tools to other subfields. I therefore 147 

suggest developing and exploiting these tools rather than calling for a major revision of 148 

evolutionary theory is a more constructive way to move research forward in these areas.. 149 
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 150 

Reciprocal causation: frequency-dependence, eco-evolutionary dynamics and co-151 

evolution 152 

Brodie (2005) in his review of Niche construction criticized the Odling-Smee et al. (2003) for 153 

painting a biased and misleading view of how evolutionary biologists study selection and its 154 

consequences:  155 

“The authors work hard to convince the reader that niche construction is a new ‘‘extended theory 156 
of evolution’’ that is a ‘‘co-contributor, with natural selection, to the evolutionary process itself’’ 157 
(p. 370). This argument is based on the somewhat disingenuous contention that evolutionary bi- 158 
ologists view natural selection as an abiotic entity that is not influenced or changed by living organisms, 159 
and that ‘‘adaptation is conventionally seen as a process by which natural selection shapes organisms 160 
to fi   pre-established environmental ‘templates’’’ (Laland et al. 2004). This straw man is weakened 161 
by the long list of similar ideas that the authors themselves describe, from frequency-dependent 162 
selection, to coevolution, to cultural inheritance, to maternal effects. Each of these ideas (and many 163 
others) points to a general appreciation that selection is a dynamic process that changes as organisms 164 
evolve and interact with their environments. The basic tenets of niche construction can be traced back 165 
at least as far as Fisher (1930). The oft-misunderstood fundamental theorem apparently included the 166 
assumption that growing populations are expected to degrade their environments so that the positive 167 
effects of genetic increases in fitness combine with negative feedback on environmental variation for 168 
fitness (Frank and Slatkin 1992). The net result in Fisher’s view was that selection for increased 169 
fitness would not lead to any observable change in population mean fitness because evolving organisms 170 
modify their environments. The more active sense of engineering an organism’s own selection was 171 
captured early on by Mayr’s (1963) notion that behavior leads the evolution of morphology, ecology, 172 
and species differences. Through behavioral plasticity, organisms might shift niches, change diets, 173 
and move to new habitats, thereby changing selection so that ‘‘other adaptations to the new niche. 174 
. . are acquired secondarily’’ (Mayr 1963, p. 604). The basic premise that organisms interact with 175 
selection through a dual-direction causal arrow is not particularly novel or earth-shattering.” 176 

 177 
 178 

From the perspective of an empirical field-oriented evolutionary biologist, I very much agree 179 

with Brodie’s characterization of the SET and the MS above, although advocates of niche 180 

construction theory would counter that while the fact that organisms modify their environments 181 

have been widely recognized, SET does not explicitly recognize this organismal agency as a 182 

direct cause of evolutionary change (Odling-Smee et al 2003). For another recent and extensive 183 

criticism of the EES and niche construction theory with additional empirical examples, see 184 

Gupta et al. (2015). Gupta et al. (2015) reviewed parts of the extensive literature of density-185 

dependent selection, and argued that many previous empirical studies on density-dependent 186 

selection already cover many of phenomena that Odling-Smee et al. (2003) claimed are missing 187 
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from the MS and SET. Central to this debate is how widely recognized is reciprocal causation 188 

in SET and among evolutionary biologists? Here, I discuss this by focusing on some phenomena 189 

which all exemplify reciprocal causation.  190 

 191 

First, negative frequency-dependent selection (NFDS) is a well-recognized evolutionary 192 

process that involves reciprocal causation, and which was known already by the founding 193 

fathers of the MS and the early mathematical population geneticists. NFDS was explicitly 194 

incorporated in Fisher’s model for sex ratio evolution (Fisher 1930) and investigated in depth 195 

by Sewall Wright in terms of its role in maintaining genetic polymorphisms (Wright 1969). 196 

Later, NFDS became popular also in behavioural ecology, through evolutionary game theory 197 

(Maynard Smith 1982). Empirically, NFDS has been identified and studied in several field and 198 

laboratory systems, and it is a dynamic research field that has grown out of SET (Sinervo and 199 

Lively 1996; Sinervo et al. 2000; Svensson et al. 2005; Neff and Svensson 2013; Zhang et al. 200 

2013; Le Rouzic et al. 2015). The importance of NFDS is by no means restricted to its role in 201 

maintaining genetic polymorphisms within local populations, but it can also affect population 202 

performance such as stability, productivity or extinction risk (Takahashi et al. 2014). Negative 203 

frequency-dependence might also be an important process in community ecology, where it can 204 

preserve biodiversity through rare-species advantages (Wills et al. 2006). NFDS is an example 205 

of a negative feedback loop in which a genotype’s fitness is negatively regulated by its own 206 

frequency (Fig. 1A). Agenotype can thus be said to “construct” its local selective environment 207 

(Brandon 1990; Fig. 1A). Therefore, NFDS is a prime example of a process of reciprocal 208 

causation, and it has been long been recognized as important in SET. Finally, Fisher’s 209 

Fundamental Theorem (as mentioned by Brodie 2005) does also contain a strong element of 210 

negative frequency-dependence and density-dependence through the effects of the deterioration 211 

of the environment that follows after an efficient, aggressive or highly exploitative genotype 212 
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have spread in a local population and starts to encounter and interact increasingly with itself 213 

(Frank and Slatkin 1992). 214 

 215 
 216 

However, also positive frequency-dependent selection (PFDS) is an important evolutionary 217 

process that exemplifies reciprocal causality (Fig. 1B). Under PFDS, a genotype’s fitness will 218 

increase as it becomes more common. PFDS leads to the loss of polymorphism and the fixation 219 

of locally common genotypes, in contrast to NFDS which plays a conservative role in 220 

population divergence (Svensson et al. 2005; cf. Fig. 1A vs. B). One classical example where 221 

PFDS plays an important role in evolution is Müllerian mimicry in Heliconus-butterflies, where 222 

locally common warning colouration patterns are favoured due to predator learning (Chouteau 223 

et al. 2016). Another example comes from classical models of sexual selection through female 224 

choice, in particular the Fisher-Lande-Kirkpatrick model (Fisher 1930; Lande 1981; 225 

Kirkpatrick 1982; Prum 2010). In this model, there is genetic variation in both female 226 

preferences for a male secondary sexual trait and the male trait itself. Female choice and non-227 

random mating leads to the buildup of linkage disequilibrium (LD) between female preference 228 

alleles and male trait alleles, and a genetic correlation between these disparate traits forms, even 229 

if the traits are governed by separate sets of loci (Kirkpatrick 1982). Provided that this genetic 230 

correlation becomes of sufficiently high magnitude, a tipping point might be reached and a 231 

“runaway” process can get started whereby PFDS drives male-expressed trait alleles and the 232 

corresponding female preference alleles to fixation (Prum 2010). The important message here 233 

is that selection becomes self-reinforcing: given set of preferences, male-expressed trait-alleles 234 

spread through the synergistic effects between PFDS and the LD that was generated by the 235 

female preference. Thus, not only do the traits of males and females evolve, but so does the 236 

selective environment itself – an excellent example of reciprocal causation and feedback 237 

between organism and environment (Levins and Lewontin 1985). Recently, positive frequency-238 
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dependence has also been suggested to be important in maintaining diversity of ecologically 239 

equivalent species (e. g. those formed by sexual selection alone) on regional scales (M'Gonigle 240 

et al. 2012), and it might also play an important role in community ecology through priority 241 

effects (De Meester et al. 2016). Even more generally, positive feedbacks and runaway 242 

processes have been suggested to be important in human social evolution in coalition formation 243 

and cooperative networks (Gavrilets et al. 2008) and in ecosystem ecology and climate science 244 

(Scheffer et al. 2001; Malm 2007).  245 

    246 

Reciprocal causation has also a key role in the field of “eco-evolutionary dynamics” (Schoener 247 

2011; Hendry 2016), where the focus are the bidirectional feedbacks between ecological (e. g. 248 

population dynamics) and evolutionary processes (e. g. genetic change within populations). 249 

Eco-evolutionary dynamics is expected when ecological and evolutionary time scales converge, 250 

such as in the case of rapid evolution, e. g. due to human-induced environmental changes 251 

(Hendry et al. 2017). Under such scenarios does not only ecological change affect genetic 252 

change, but also vice versa: genetic changes can feed back in to ecology and influence 253 

population dynamics (Sinervo et al. 2000; Yoshida et al. 2003). Note that this breakdown of the 254 

separation between ecological and evolutionary time scales can be viewed as a problem for 255 

certain modelling approaches, such as Adaptive Dynamics (AD), where a strict separation 256 

between ecological and evolutionary processes is a core assumption (Dieckmann and Doebeli 257 

1999; Waxman and Gavrilets 2005). Such dynamic feedbacks between ecology and evolution 258 

will without doubt continue to be explored in the future, and they show that reciprocal causation 259 

forms a key part of a rapidly growing research field that has largely developed independently 260 

from niche construction theory.  261 

 262 

Interestingly, Schoener (2011) called eco-evolutionary dynamics for “the newest synthesis” 263 
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between ecology and evolution. Schoener’s call for this new synthesis  was independent of 264 

Pigliucci, Laland and colleagues (Pigliucci 2007; Pigliucci and Müller 2010; Laland et al. 265 

2015). From a strict empirical viewpoint, eco-evolutionary dynamics have contributed more 266 

towards the development of a concrete empirical research program in a shorter time than has 267 

the EES sofar, although it is only recently that the latter has tried to formulate an empirical 268 

research program (Laland et al. 2015). I also agree with Welch (2016) that there is an 269 

unfortunate tendency in evolutionary biology to repeatedly use the richness of understudied and 270 

underappreciated phenomena and processes in our field as arguments for the urgent need of 271 

reform and to proclaim the arrival of new syntheses. It is worth emphasizing that there are also 272 

several other, more or less parallel attempts to call for new evolutionary synthesis, which are 273 

either based on conceptual considerations (Arnold 2014) or on new methods (Losos et al. 2013). 274 

These other synthesis-attempts are more modest in their scope than the EES, the latter which 275 

embraces an explicit counterpoint to SET, i. e. a dialectical approach. 276 

 277 

Reciprocal causation also forms a key component in studies of co-evolution, either within or 278 

between species, such as enemy-victim interactions (Fig. 1C). For instance, under interlocus 279 

contest evolution (ICE) between male and female over mating rates (i. e. sexual conflict), males 280 

evolve traits that increase their mating success, whereas females evolve resistance towards 281 

excessive male mating harassment (Rice and Holland 1997). Under certain conditions, such 282 

antagonistic male-female sexual interactions can lead to intraspecific co-evolutionary arms 283 

races (Rice 1996) and even speciation (Gavrilets 2000). Females can also evolve either 284 

resistance or tolerance to male mating harassment (Arnqvist and Rowe 2005; Gosden and 285 

Svensson 2009; Svensson and Raberg 2010), and such sexual antagonism can also, as an 286 

alternative outcome, result in the evolution of male and female genetic clustering or 287 

polymorphisms (Gavrilets and Waxman 2002; Svensson et al. 2009; Karlsson et al. 2013; 288 
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Karlsson et al. 2014; Le Rouzic et al. 2015). These antagonistic male-female interactions 289 

sometimes result in “Red Queen”-dynamics and co-evolutionary feedbacks between male and 290 

female fitness interests (Rice and Holland 1997). This exemplifies how reciprocal causation is 291 

deeply embedded in the empirical research traditions of evolutionary genetics and evolutionary 292 

ecology. Reciprocal causation also embedded in the idea of geographic coevolutionary 293 

selection mosaics across the landscape of interacting species (Gomulkiewicz et al. 2000; 294 

Nuismer et al. 2000; Thompson 2005). As in the case of frequency-dependent selection and 295 

eco-evolutionary dynamics, appreciation of reciprocal causation is the norm rather than the 296 

exception among many active empiricists in evolutionary biology.   297 

 298 

Reciprocal causation has also been explicitly incorporated in models and in empirical 299 

investigations in the evolutionary quantitative genetics tradition, where researchers are using 300 

the statistical methods that were developed by Russel Lande and Stevan Arnold (Lande 1976; 301 

Lande and Arnold 1983; Endler 1986). Examples of such studies incorporating reciprocal 302 

causality include indirect genetic effects in social evolution (Moore et al. 1998; Wolf et al. 303 

2001), the evolutionary dynamics of maternal effects (Kirkpatrick and Lande 1989; Wade 1998) 304 

and analyses of how interspecific interactions shape selection pressures on phenotypic traits 305 

(Ridenhour 2005). Empirical selection studies nowadays are not only aiming to quantify 306 

selection differentials and selection gradients, but researchers actively strive to understand the 307 

ecological causes of selection, whether those causes are predators, intra- or interspecific 308 

competitors (Wade and Kalisz 1990; Svensson and Sinervo 2000; Svensson and Friberg 2007; 309 

Calsbeek and Smith 2007; Calsbeek et al. 2012; Kuchta and Svensson 2014). It is a very long 310 

time ago since evolutionary ecologists were simply satisfied by having quantified selection 311 

(Lande and Arnold 1983; Wade and Kalisz 1990). Nowadays, evolutionary ecologists  are busy 312 

understanding the ecological causes of selection (Siepielski et al. 2017) and few journals in 313 
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evolutionary biology publish studies where selection coefficients are simply presented without 314 

any ecological context (and rightly so).  315 

 316 

This brief review illustrates how positive and negative feedbacks are a fact of life. Here, I find 317 

myself largely in agreement with advocates of the EES in emphasizing the ubiquity of 318 

reciprocal causation in evolution, but equally in agreement with critics wo maintain that 319 

reciprocal causation is already well recognized within SET. 320 

 321 

Analytical and empirical tools for studying reciprocal causation 322 

 323 

As I have discussed and exemplified above, reciprocal causation is hardly controversial among 324 

evolutionary biologists and widely recognized in several subfields in evolutionary biology. 325 

Moreover, reciprocal causality has been recognized as important for several decades and well 326 

before the formalization of niche construction (Odling-Smee et al. 2003)  and more recent calls 327 

for an EES (Laland et al. 2015). Few empirical and theoretical evolutionary biologists today 328 

adhere to a simple unidirectional causality. Even Ernst Mayr himself expressed a more 329 

dynamical view of causality in other contexts and publications than he did in his distinction 330 

between proximate and ultimate causes (Laland et al. 2011). Mayr’s views of the role of 331 

behaviour as a “pace maker” in evolution (Mayr 1963), strikes me as being much more 332 

sophisticated than the picture of unidirectional causality that has been described by Laland et 333 

al (2011). Mayr’s view of a crucial role of behaviour in the evolutionary process is clearly 334 

compatible with feedbacks between the organism and its environment. Mayr’s surprisingly 335 

early insights on the issue has clear similarities with similar views expressed several decades 336 

later by West-Eberhard, Levins and Lewontin (West-Eberhard 1983; Levins and Lewontin 337 

1985), albeit not developed in detail by him. 338 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/122457doi: bioRxiv preprint 

https://doi.org/10.1101/122457
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 339 

If reciprocal causation is then so widely recognized – at least in several key fields – why then 340 

is it not more studied? Here I question the claim that there is a major conceptual barrier to 341 

recognize reciprocal causation, as maintained by the architects of niche construction theory and 342 

the EES (Odling-Smee et al. 2003; Laland et al 2011; 2015). Rather, the answer is probably 343 

that there are enormous logistical and empirical challenges, and not all researchers are aware 344 

of suitable analytical tools. Progress in the field of evolutionary biology is perhaps more often 345 

limited to methods these days than to lack of conceptual insights. It therefore becomes more 346 

urgent to communicate between subfields so that researchers become aware of which analytical 347 

and empirical tools that are aready available, but which are underutilized. I therefore agree fully 348 

with Laland et al. (Laland et al. 2013) that different subfields in biology should become better 349 

integrated. However, I doubt that such integration will need or necessarily be facilitated by the 350 

adoption of an EES, at least not in its current rather vague form. Rather, the main motivation 351 

for fostering integration between different fields in biology is that statistical, mathematical and 352 

other analytical tools suitable for studying reciprocal causation are underutilized in some 353 

subfields, and scientific communication would facilitate their spread.   354 

 355 

One such tool that is clearly underutilized in many areas of evolutionary biology and which is 356 

excellently suited to analyze direct and indirect effects is path analysis and structural equation 357 

modelling (SEM)(Shipley 2002; see also Laland et al 2011). Although path analysis has been 358 

advocated as a suitable tool in selection analyses on phenotypic traits (Kingsolver and 359 

Schemske 1991), path analyses of selection are still relatively few (Sinervo and DeNardo 1996). 360 

This is unfortunate, as path analyses and SEM are powerful tools to incorporate information 361 

about how the development and expression of phenotypic traits are influenced by local social, 362 

biotic and abiotic environments, and how traits in turn affect fitness and thereby are linked to 363 
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selective environments (Svensson et al. 2001; Gosden and Svensson 2009). Moreover, path 364 

analysis can also be combined with experimental manipulations – either of phenotypic traits, of 365 

local selective environments, or both (Sinervo and Basolo 1996; Svensson and Sinervo 2000). 366 

Integrative studies combining path analysis, analysis of causation and experimental 367 

manipulations will increase our knowledge about organism-environment feedbacks and therole 368 

of such feedbacks in the evolutionary process (Svensson et al. 2002). Empirical information 369 

from covariance or correlation matrices can be translated in to causal quantitative models, 370 

whereby SEM provides a powerful tool to evaluate the fit of various alternative models (Shipley 371 

2002). 372 

 373 

Another underutilized tool to study reciprocal causation in the evolutionary process is time-374 

series analysis (Le Rouzic et al. 2015). Time-series analysis has perhaps been more used by 375 

ecologists interested in population dynamics than by evolutionary biologists, but it holds great 376 

promise as a tool to infer the processes driving ecological and genetic dynamics of interacting 377 

genotypes within species (Moorcroft et al. 1996; Pemberton et al. 1998; Sinervo et al. 2000; Le 378 

Rouzic et al. 2015) or in analyses of interspecific interactions (Yoshida et al. 2003). Time-series 379 

analysis could be especially powerful if it would be combined with experimental manipulations 380 

of putative causal ecological agents of selection (Wade and Kalisz 1990; Svensson and Sinervo 381 

2000). I anticipate that evolutionary time-series analysis will become an important tool in future 382 

studies dealing with eco-evolutionary dynamics, intra- or interspecific co-evolutionary 383 

processes in natural populations (Le Rouzic et al. 2015; Hendry 2016).  384 

 385 

Other promising research approaches to investigate reciprocal causation and dynamic 386 

feedbacks between organisms and their local environments include studies of non-random 387 

dispersal with respect to phenotype or genotype (Edelaar et al. 2008; Eroukhmanoff et al. 2011) 388 
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and consequences for matching habitat choice (Edelaar and Bolnick 2012), quantitative studies 389 

on the dynamics of niche evolution using phylogenetic comparative methods (Wiens 2011; 390 

Wiens et al. 2011), and experimental field studies on how animals use regulatory behaviours to 391 

maintain physiological homeostasis (Huey et al. 2003). Taken together, there is therefore a rich 392 

diversity of powerful empirical and analytical tools available to evolutionary biologists who are 393 

seriously interested in understanding how reciprocal causation and dynamic feedbacks between 394 

ecological and evolutionary processes influence organisms, from individuals to populations, 395 

species and higher taxa.  396 

 397 

A cautionary note about extending reciprocal causation to heredity and constructive 398 

development 399 

  400 

As I have shown in this article, reciprocal causation is already widely recognized in several 401 

fields, particularly those at the interface between ecology and evolution. Laland et al. (2015) 402 

do of course not deny the existence of such previous studies but they argue that: 403 

 404 

 “However, reciprocal causation has generally been restricted to certain domains (largely to direct interactions 405 

between organisms), while many existing analyses of evolution, habit- or frequency-dependent selection are 406 

conducted at a level (e. g. genetic, demographic) that removes any consideration of ontogeny. Such studied do 407 

capture a core structural feature of reciprocal causation in evolution – namely, selective feedback – but typically 408 

fail to recognize that developmental processes can both initiate and co-direct evolutionary outcomes” (p. 7. 409 

Laland et al. 2015). 410 

 411 

Thus, Laland et al. (2015) admit that reciprocal causation is and has often been studied by 412 

evolutionary biologists, but they argue that ontogeny and development should be incorporated 413 

in such analyses. I hardly disagree here, and I think incorporating the role of development and 414 
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ontogeny in studies of (say) frequency-dependent selection, eco-evolutionary dynamics, co-415 

evolution and analyses of selection is likely to yield many novel and important insights. 416 

However, the reason that development has not been incorporated in that many previous studies 417 

in this field is not that the researchers in question rely on an outdated and simple view of 418 

unidirectional causation, as implied by Laland et al. (2015). The reason is more likely a practical 419 

one: it is extremely difficult and empirically challenging to understand and study reciprocal 420 

causation even at single ontogenetic level, such as among adults. I therefore disagree with 421 

Laland et al. (2011; 2013) when they imply that the lack of consideration of development in 422 

past studies is due to the lasting legacy of Ernst Mayr’s proximate-ultimate dichotomy, and 423 

their suggestion that evolutionary biologists in general implicitly adher to an outdated view of 424 

unidirectional inheritance. Rather, the lack of studies of this kind reflect legitimate and difficult 425 

empirical challenges and I am not convinced that the EES-framework alone can solve these 426 

problems, unless some more concrete novel methodological or analytical tools are provided.  427 

 428 

Moreover, evolutionary geneticists and evolutionary ecologists have  actually paid attention to 429 

the interplay between ontogeny and selection. For instance, researchers have modelled and 430 

investigated how selection pressures change both in magnitude and sign during the organism’s 431 

life cycle (Schluter et al. 1991; Barrett et al. 2008). For instance, there is much interest and 432 

ongoing theoretical and empirical research aiming to integrate and model the interaction 433 

between interlocus sexual conflict at the adult stage over the reproductive interests of males and 434 

females, with intralocus sexual conflict experienced earlier in ontogeny (Rice and Chippindale 435 

2001; Chippindale et al. 2001; Barson et al. 2015; Pennell et al. 2016). There is also an increased 436 

appreciation of how alternative reproductive strategies shape ontogenetic trajectories, and how 437 

the same ontogenetic trajectories in turn affect adult phenotypes (Neff and Svensson 2013). 438 

 439 
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Laland et al. (2015) wish to extend the domain of reciprocal causation from the interaction 440 

between ecological and evolutionary processes (as discussed in this article) to the domain of 441 

organismal development, what they call “constructive development”. I will not dwell too deeply 442 

in to this here, due to space limitations, except that I note that there is of course no a priori 443 

reason why reciprocal causation and dialectical thinking should not be possible to apply also to 444 

development. However, constructive development is also perhaps the aspect of the EES that is 445 

most controversial and which has sofar been met with most resistance. This resistance is partly 446 

understandable and justified, on historical grounds. The architects of the MS had to work hard 447 

to get rid of popular evolutionary mechanisms of inheritance and evolution that in hindsight 448 

have clearly turned out to be wrong, including orthogenesis, vitalism, saltationism and 449 

Lamarckian inheritance (Smocovitis 1996; Mayr and Provine 1998). The increasing interest in 450 

epigenetic inheritance is certainly justified and will most likely lead to new empirical insights. 451 

Clear cases of epigenetic inheritance now exists (Dias and Ressler 2014) and it is now mainly 452 

an empirical issue to understand the importance of such effects and how widespread they are. 453 

However, claims that epigenetic inheritance can play a major role in explaining 454 

macroevolutionary phenomena (Pigliucci and Murren 2003)  or that such epigenetic inheritance 455 

would imply a major role for Lamarckian inheritance and saltations in evolution (Jablonka and 456 

Lamb 2005; 2008) have been criticized as speculative and without empirical footage (West-457 

Eberhard 2007; Dickins and Rahman 2012). The view that so-called soft inheritance (as defined 458 

by Jablonka and Lamb 2008) necessitates a replacing the MS with an entirely new theoretical 459 

framework shows that the Lamarckian temptation is still present among a small minority of 460 

biologists, but I will not dwell in to this further here. For in-depth criticisms of this minority 461 

position, see West-Eberhard (2007) and  (Haig (2007).   462 

 463 

Maynard Smith (1988; 2001) who certainly admitted that Marxist philosophy and dialectical 464 
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thinking could have a constructive influence on evolutionary theory cautioned against uncritical 465 

extenson of dialectics to heredity and development. Maynard Smith’s cautionary point should 466 

also be taken seriously by those today who argue for constructive development, including 467 

Laland et al. (2015). In a modest form, constructive development is entirely compatible with 468 

quantitative genetics theory, where it is explicitly recognized that gene expression is strongly 469 

environment-dependent (e. g. Lancaster et al. 2015), if such environment-dependent gene 470 

expression is heritable, and that genes, environmental conditions, gene-gene interactions 471 

(epistasis) and gene-by-environment interactions (GEI:s) all influence the development of the 472 

adult phenotype (Lynch and Walsh 1998). In a stronger form, constructive development could 473 

entail questioning the unidirectional flow of information from the genotype to the phenotype, 474 

based on (vulgar) dialectical arguments about reciprocal causality (Maynard Smith 1988; 475 

2001). The history of genetics in the Soviet Union under Stalin’s regime and under Trofim 476 

Lysenko is a particularly interesting and tragic case in point. Under Stalinism, Engels dialectical 477 

thinking became elevated to “natural laws” and became official dogma. Stalin and Lysenko 478 

rejected Mendelian genetics on the grounds that it was “undialectical” and hence an example 479 

of “bourgeoisie science”. Lysenko instead promoted an alternative and ideological state-480 

supported official view of constructive phenotype development based on neo-Lamarckism, 481 

where acquired characters could be inherited and transmitted genetically to future generations. 482 

Lysenko’s rejection of Mendel’s and Weisman’s views of heredity was, however, based on 483 

ideological, rather than scientific principles and hence a prime example of an ideological 484 

fallacy. The important point here is that Mendelism and unidirectional causality from heredity 485 

to phenotypes might seem undialectical, but it does not matter if this is how heredity works. 486 

After all, it must be reality that should be the guiding principle for scientific investigations, in 487 

evolutionary biology and other fields. Rejecting empirical findings in genetics solely on the 488 

basis that they seem undialectical is clearly unscientific and shows the danger of applying a 489 
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philosophical framework uncritically, and erroneously elevating dialectics to the status of 490 

natural laws.  491 

 492 

Few evolutionary biologists today would claim that the genotype-phenotype map is perfectly 493 

linear, that all genetic variation is additive and that environmental effects are unimportant in 494 

phenotype development.  On the contrary, most evolutionary biologists are well aware that 495 

additive effects of genes, environmnets, GEI:s and epistasis all jointly influence phenotypic 496 

development. The ideas of cultural evolution and various forms of non-genetic inheritance 497 

(including ecological inheritance) can and does play some role in between-generation change 498 

of phenotypes is also gaining some acceptance. The role of epigenetic inheritance in evolution 499 

does not necessarily require a major revision of SET, if we recognize the crucial difference 500 

between molecular and evolutionary definitions of the term “gene” and if we treat “epialleles 501 

using the same analytical framework as classical genetic alleles in population genetics (Lu and 502 

Bourratt 2017). However, it is considerably more controversial to argue for reciprocal causation 503 

if that implies that environments could causally influence genetic inheritance, i. e. a revival of 504 

acquired genetic inheritance and neo-Lamarckism. That the the germ line is separated from the 505 

soma and that phenotypes (as far as we know) cannot causally influence heredity in an adaptive 506 

fashion may seem undialectical, but are as close to scientific facts as they could possibly be. 507 

Extremely strong evidence would be required for any claims that the Weismannian germline-508 

soma separation is not valid anymore, that the so-called “Central Dogma” of molecular genetics 509 

does not hold up (Maynard Smith 1988; 2001) or that soft inheritance (Jablonka and Lamb 510 

2008) is a major player in evolution (Haig 2007; Dickins and Rahman 2012). Thus, while most 511 

evolutionary biologists would have few problems in accepting reciprocal causality in ecological 512 

and evolutionary interactions between organisms and their selective environments, few are – 513 

for quite understandable historical reasons - prepared to accept reciprocal causality in 514 
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constructive development and genetics, unless strong empirical evidence is presented for such 515 

claims.  516 

 517 

Can evolutionary quantitative genetics provide a bridge between MS and the EES? 518 

 519 

Laland et al. (2015) reviewed and compared the structures, assumptions and predictions of the 520 

EES and contrasted these against the MS. Among the core assumptions of the MS that they 521 

identifed were “The pre-eminence of natural selection” and “Gene-centred perspective” (their 522 

Table 1). They further criticized the “blueprint”, “program” and “instruction” metaphors in 523 

genetics and the MS, and contrasted the use of these terms against their own views on 524 

constructive development. Here, I take issue with these claims, and argue that these 525 

characterizations provides a wrong, or at least very biased picture of both the current state-of-526 

the-art of SET and the history of the MS. Laland et al. (2015) have underestimated the 527 

flexibility and scope of evolutionary genetics, a criticism that was recently developed in more 528 

detail by Gupta et al. (2015). 529 

 530 

With respect to the claim of the pre-eminence of natural selection in the MS, it must be 531 

emphasized that most evolutionary biologists today, including many molecular population 532 

geneticists, do not agree with this claim (see also Welch 2016 for further discussion). On the 533 

contrary, leading molecular population geneticists are highly critical of what they consider an 534 

excessive adaptationist research programme in evolutionary and behavioural ecology. Many 535 

evolutionary biologists on the contrary that random processes such as genetic drift should 536 

more often be used as a null modell and point of departure, before invoking natural selection 537 

(Lynch 2007). Historically, and from the very beginning of the MS, the non-adaptive process 538 

of genetic drift was considered to have a much more powerful evolutionary role than it 539 
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perhaps deserved to have, something which only became clear after extensive empirical 540 

investigations in both the field and in laboratory studies (Provine 1986).  541 

 542 

With respect to the characterization of the MS as gene-centred, many organismal biologists, 543 

particularly those working in the evolutionary quantative genetics tradition, are likely to 544 

strongly disagree. Evolutionary quantitative genetics focus on organisms and use their 545 

phenotypic traits (variances and covariances) as its point of departure, and thereby ignores 546 

underlying molecular genetic and developmental mechanisms behind these traits (Lynch and 547 

Walsh 1998). This might be perceived as a weakness with the evolutionary quantitative 548 

genetics approach, however, it can also be perceived as a strength (Steppan et al. 2002) as 549 

quantitative genetics through this procedure become liberated from the tyranny of genetic 550 

details in classical population genetics, as argued forcefully recently by Queller (2017). 551 

Moreover, the trait variance decomposition approach in quantitative genetics would work 552 

equally well in a non-DNA world with non-genetic inheritance, as long as there is trait 553 

heritability, i. e. this mechanism-free approach is general and flexible. For instance, the Price 554 

Equation does not assume that heredity is based on DNA, but is based on the phenotypic 555 

resemblance between relatives, such as parents- offspring covariance (Frank 1995; 1997). 556 

Thus, the quantitative genetic approach does already present a substantial extension of 557 

classical population genetics that it grew out from, and could potentially be extended further 558 

to account for various forms of non-genetic inheritance, such as ecological inheritance (see 559 

Helanterä and Uller 2010 for discussion). Quantitative genetics does already partly take 560 

constructive development in to account by modelling not only additive genetic variances and 561 

covariances, but also environmental components, dominance variation, epistasis and GEI:s 562 

(Lynch and Walsh 1998). Moreover, these different variance components are not static, but 563 

they are dynamic and can evolve. For instance, after population bottlenecks, epistatic variance 564 
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can be converted to additive genetic variance (Meffert et al. 2002) and models of the 565 

Fisherian Runaway process of sexual selection have revealed that genetic covariances can 566 

evolve through a dynamic feedback between the selective environment (female choice) and 567 

male secondary sexual traits (Kirkpatrick 1982). Finally, it is also worth emphasizing that 568 

natural selection can be viewed as both an ultimate and proximate explanation, as argued 569 

recentlyby Gupta et al. (2017). The process of natural selection has actually nothing to do 570 

with genetics, and questions about the causes of selection are also questions about ecological 571 

selective agents, which have their origin in the external environment (Wade and Kalisz 1990). 572 

Therefore, in this research tradition, genes are certainly not the main causal agents explaining 573 

evolution by natural selection; it is instead the selective environment that is the main causal 574 

agent (cf. Brandon 1990; Wade and Kalisz 1990).  575 

 576 

Conclusions 577 

 578 

Reciprocal causation is frequent in many studies of evolutionary processes, particularly those 579 

involving interactions between organisms, both within or between species. Research on 580 

reciprocal causation has a long tradition in evolutionary biology. Reciprocal causation was 581 

studied well before the recent calls for an EES, although not explicitly under the umbrellas of 582 

niche construction, developmental plasticity and cultural evolution. Evolutionary biologists 583 

today – particularly those working at the interface between ecology and evolution seldom have 584 

the simplified view of unidirectional causation as sometimes claimed and reciprocal causation 585 

is already an essential part of the conceptual framework of many empirical biologists. Apart 586 

from the subfields I have discussed in this article, there are also several other emerging areas 587 

where reciprocal causation is deeply embedded. For instance, non-random dispersal of 588 

phenotypes and matching habitat preferences (Edelaar et al. 2008; Edelaar and Bolnick 2012; 589 
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Eroukhmanoff et al. 2011) shows that organisms are not solely passive objects of evolution, but 590 

evolutionary subjects in their own right, with some degree of independence (cf. Levins and 591 

Lewontin 1985). Similarly, niche conservatism (Wiens et al. 2010) is common in many 592 

organisms, meaning that organisms actively track habitats where their fitness is maximized, 593 

rather than passively evolving in situ. Niche conservatism has many interesting consequences 594 

for speciation (Wiens 2004), thermal adaptation (Svensson 2012) and thermoregulatory 595 

behaviours (Huey et al. 2003). 596 

 597 

Evolutionary biology is a rich and diverse discipline that spans many levels of biological 598 

organization and which covers many different types of questions. This diversity of our 599 

discipline is a strength, but also comes with a cost: it is relatively easy to find areas where more 600 

research would be needed and topics that have been relatively little explored (Welch 2016). The 601 

existence of such knowledge gaps is presumably the primary science-sociological explanation 602 

for why calls for major revision of evolutionary theory or attempts to formulate new syntheses 603 

appear with regular intervals (Welch 2016). This is disputed by advocates of the EES who 604 

maintain the push for a new perspective arises not only from knowledge gaps but when new 605 

data, theoretical findings and and approaches collectively suggest an alternative causal 606 

understanding of evolution (Laland et al. 2015). We have seen several more or less independent 607 

attempts to formulate new syntheses only during the last decade (Pigliucci 2007; Pigliucci and 608 

Müller 2010; Schoener 2011; Losos et al. 2013; Arnold 2014; Laland et al. 2015). These 609 

attempts were preceeded by other calls in the past (Gould 1980). However, as I have argued 610 

elsewhere (Svensson and Calsbeek 2012a), new syntheses do not automatically establish 611 

themselves in the evolutionary research community because some biologists think that they are 612 

warranted. Rather, new syntheses grow organically, and become established only if they 613 

provide some new analytical, experimental, mathematical or statistical tools that moves the 614 
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research field forward. The MS was never such a monolithic research paradigm as sometimes 615 

portrayed by some critics (Jablonka and Lamb 2005; Laland et al. 2015).  Rather, the MS was 616 

a loose, albeit largely successful research framework and attempt to unify very heterogeneous 617 

and different branches of biology (Smocovitis 1996; Mayr and Provine 1998). Some have even 618 

questioned the existence of the MS as a clearly separated and identifiable historical period, and 619 

have argued that the term synthesis should now be abandoned as it is not valid anymore (Cain 620 

2009). The MS contained several very conflicting perspectives on evolutionary biology, both 621 

between different branches of population genetics (Provine 1986; Frank and Slatkin 1992; 622 

Coyne et al. 2000; Wade and Goodnight 1998) and between researchers focusing on micro- vs. 623 

macroevolution  (Eldredge and Gould 1972; Charlesworth et al. 1982; Futuyma 2015). Past and 624 

ongoing debates about selection versus neutralism in explaining genetic variation (Lewontin 625 

1974; Gillespie 1991) and the role of population structure, genetic drift and mass-selection in 626 

large panmictic populations (Coyne et al. 2000; Wade and Goodnight 1998) all illustrate that 627 

the MS has been continually evolving and adapting, from a flexible minimum platform that has 628 

survived several replacement attempts (Smocovitis 1996; Svensson and Calsbeek 2012b). The 629 

MS will therefore most likely probably continue to evolve and slowly adapt also in the future 630 

(Arnold 2014). Modern evolutionary biology and SET has also already moved considerably 631 

beyond the original scope of MS. In fact, it can be argued that substantial extensions of the MS 632 

already took place several decades ago, e. g. with the incorporation of neutral theory and the 633 

development of evolutionary quantitative genetic theory and methodology, complementing the 634 

classical population genetic tradition (Queller 2017). 635 

 636 

The perspective put forward in this article is largely an empiricist one. While I disagree with 637 

Laland et al. (2011;2015) that reciprocal causality is that neglected in evolutionary biology, I 638 

fully agree with them that it should become more widely appreciated and studied. The study of 639 
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reciprocal causation need to move beyond rhetoric and position papers and become operational. 640 

The insights that organisms construct their own environments and appreciation of organism-641 

environment feedbacks as well as the discussion whether there exist empty niches (or not) are 642 

all interesting but they need to be translated to a rigorous empirical research program, for 643 

instance, by utilizing some of the analytical tools I have discussed in this article. It remains to 644 

be seen if and how the EES can be translated in to a productive research program, but an attempt 645 

to do this is now underway (http://extendedevolutionarysynthesis.com/).The widespread 646 

existence of reciprocal causation should not be taken as an argument that cause-effect 647 

relationships are empirically impossible to study, but should rather motivate researchers to 648 

dissect long causal chains in to smaller operational study units to better understand the 649 

evolutionary process. A system of temporally separated factors of reciprocal causation can 650 

always be broken down in to separate linear causal links in a longer chain of events to facilitate 651 

understanding and analysis. Of course, we need to appreciate the crucial difference between the 652 

ecological and selective environment (Levins and Lewontin 1985; Brandon 1990), but this 653 

conceptual challenge should not hinder the development of operational research tools in 654 

empirical studies.   655 

 656 

Reciprocal causation is already deeply embedded in many – perhaps the majority – of 657 

evolutionary processes, and should therefore be a natural and major research focus. Although 658 

broader appreciation of the role of reciprocal causation is unlikely to lead to a new paradigm 659 

shift (Laland et al. 2013) and is probably not a sufficient reason to call for  major revision of 660 

evolutionary theory (Laland et al. 2015), reciprocal causation is nevertheless a good example 661 

of how Marxist philosophy and dialectical thinking have had a positive influence on the 662 

development of our field. Early insights about reciprocal causation can of course also be traced 663 

from other research traditions than Engels dialectical methods, such as from cybernetics 664 
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(Wiener 1948) and from cyclical causal dependencies in early predator-prey models (Lotka 665 

1910; Volterra 1926). We should nevertheless not hesitate to embrace the concept of reciprocal 666 

causality and acknowledge the contributions of Levins and Lewontin and the dialectical method 667 

(Levins and Lewontin 1985). Engel’s surprisingly early insights and his dialectical method can 668 

– if they are applied critically as a method rather than being treated as natural laws – still provide 669 

important insights to understand evolutionary processes. For instance, the dialectical principle 670 

of the transformation of quantity in to quality can be understood as an early insight by Engels 671 

of phase transitions, non-linear changes, hysteresis, critical thresholds and tipping points and 672 

rapid (non-gradual) switches between alternative states in ecology and evolution. Such ideas 673 

have been successfully incorporated in models of human social evolution (Carneiro 2000; 674 

Gavrilets et al. 2008), reproductive isolation and speciation (Gavrilets and Gravner 1997; Nosil 675 

et al. 2017) and in ecosystem ecology (Scheffer et al. 2001). Likewise, it is tempting to interpret 676 

Maynard Smith’s interest later in life for major evolutionary transitions (Maynard Smith and 677 

Szathmary 1988) at least as partly influenced by his background in Marxist philosophy and 678 

appreciation of dialectics, as this is an excellent example of the transformation of quantity in to 679 

quality in evolutionary biology.  680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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Legend to figure 1033 

 1034 

Figure 1. Three examples of reciprocal causation and feedbacks in the evolutionary process. 1035 

A. Negative frequency-dependent selection (NFDS), exemplifies negative (regulatory) 1036 

feedback between genotype frequency and fitness. As a genotype increases in frequency, its 1037 

fitness declines, leading to the preservation of genetic diversity and genetic polymorphisms 1038 

locally. The genotype thus “constructs” its own selective environment by regulating its own 1039 

fitness, and the selection coefficient on the genotype changes dynamically with changing 1040 

frequency. B. Positive frequency-dependent selection (PFDS), exemplifies positive feedback 1041 

between a genotype’s frequency and its fitness, leading to fixation of the most common 1042 

phenotype. C. Enemy-victim coevolution is an example of a negative feedback, that can either 1043 

lead to stable equilibria or co-evolutonary cycles (e. g. “Red Queen” evolutionary dynamics). 1044 

The enemy and the victim can belong to different species (e. g. predators or prey, parasites or 1045 

hosts) or the same species (e. g. males and females).  1046 

 1047 

 1048 
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