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ABSTRACT: An outstanding challenge in the design of synthetic biocircuits is the development of a robust and efficient 
strategy for interconnecting functional modules. Recent work demonstrated that a phosphorylation-based insulator (PBI) 
implementing a dual strategy of high gain and strong negative feedback can be used as a device to attenuate retroactivity. 
This paper describes the implementation of such a biological circuit in a cell-free transcription-translation system and the 
structural identifiability of the PBI in the system. We first show that the retroactivity also exists in the cell-free system by 
testing a simple negative regulation circuit. Then we demonstrate that the PBI circuit helps attenuate the retroactivity 
significantly compared to the control. We consider a complex model that provides an intricate description of all chemical 
reactions and leveraging specific physiologically plausible assumptions. We derive a rigorous simplified model that captures 
the output dynamics of the PBI. We performed standard system identification analysis and determined that the model is 
globally identifiable with respect to three critical parameters. These three parameters are identifiable under specific 
experimental conditions and we performed these experiments to estimate the parameters. Our experimental results suggest 
that the functional form of our simplified model is sufficient to describe the reporter dynamics and enable parameter 
estimation. In general, this research illustrates the utility of the cell-free expression system as an alternate platform for 
biocircuit implementation and system identification and it can provide interesting insights into future biological circuit 
designs.	
	
Introduction 
The successful design and implementation of the inaugural biocircuits, such as the genetic toggle switch and the repressilator, 
have demonstrated the possibility of modularity in synthetic biological circuits [1, 2]. The recognition of functional modules 
makes building large and complicated biological circuits possible. Basic modules can be studied and tested in isolation and 
then can be connected with other modules to perform certain functions. However, the modularity of biological circuits can 
change when interconnections are made. This effect is called retroactivity and is a fundamental issue in systems  
engineering [3, 4]. This means that when a downstream system is connected to another system, the downstream system will 
affect the behavior of upstream component. As a result, the signal generated by the upstream component may not be 
effectively transferred to other components. 

Retroactivity can be divided into two types based on which signal it affects, the retroactivity to the input and the 
retroactivity to the output. Based on previous theoretical studies, an operational-amplifier-like orthogonal biomolecular 
device could help attenuate retroactivity [3]. An electronic operational amplifier absorbs little current from upstream; as a 
result, there is almost no voltage drop to upstream output. At the same time, the retroactivity to the output is attenuated 
because of a large amplification gain and an equally large negative feedback loop. Based on these ideas and previous  
work [5], we tested an insulator design using nitrogen regulation proteins [6] in a cell-free transcription-translation (TX-TL) 
system. 

The TX-TL system developed in [7, 8] is an attractive candidate platform for such rapid prototyping. The system 
facilitates DNA-based expression on plasmids and linear DNA, and since linear and plasmid DNA can be synthesized and 
expressed in the TX-TL system in a single day’s time [9], the time required to iterate over designs is considerably reduced. 

Another powerful aspect of the TX-TL system is the ability to directly modulate the concentration of different pieces 
of DNA encoding different biocircuit components. The ability to rapidly synthesize and test the effect of different promoter 
sites, ribosome binding sites and other components, and simultaneously vary the DNA encoding these parts, permits a degree 
of freedom typically absent in cell-based assays. In this setting, iterating of prototypes can be assisted by predictive modeling 
of biocircuit dynamics. It is the ability to control DNA concentrations and rapidly vary structural properties of the biocircuit 
that allow us to address the problem of parameterizing a predictive model. 
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Cell-free systems have long been used to characterize fundamental parameters in biological systems [10]. In a synthetic 
biology context, especially for the phosphorylation-based insulator circuit, it is unclear what parametric information can be 
extracted from a series of systematic tests in an in vitro system, specifically the TX-TL system. With additional degrees of 
freedom in the experimental conditions, the TX-TL system may be able to provide insight into model parameters that in 
vivo studies could not. Moreover, it is unclear what systematic tests should be carried out in order to retrieve this information. 
This paper investigates these issues using the phosphorylation-based insulator as a case study. 

In general, a parametric model is globally structurally identifiable only under certain mathematical  
conditions [11]. These conditions are valid as long as the control variables enter the dynamical system as a multiplicative 
perturbation. However, as we will see with the phosphorylation-based insulator, even if the model retains this structure the 
model may not be globally identifiable because of the large number of parameters it contains, despite having only a couple 
output variables. As is often the case, a first principles model may be physically representative of the intricate reactions 
happening in the system, but carry a complexity that far exceeds the information present in the data. Thus, simplified models 
that are reflective of the low-dimensional output data, while also retaining the (controllable) experimental variables in the 
TX-TL system, are desirable. 

In this work, we successfully implement the PBI circuit in TX-TL and further propose a complex model based on the 
fundamental processes of transcription, translation, and phosphorylation. The model is unwieldy to analyze so we rigorously 
derive a simplified model based on a series of physically realistic assumptions, show that it is globally identifiable with 
respect to the data, and perform a series of experimental perturbation tests to back out the simplified model parameters. 

The main contributions of this work are: 1) we demonstrate that the TX-TL system can be used to prototype relatively 
complicated synthetic biocircuits, such as the PBI circuit that involves not only transcriptions, translations and protein-DNA 
interactions but also post-translated interactions like phosphorylation and dephosphorylation; 2) we show that by utilizing 
the TX-TL system that has extra degrees of freedom compared to cell-based systems, we can systematically identify the 
parameters of our mathematical models using actual experimental data, which subsequently guide us to achieve more 
efficient circuit prototyping and better future circuit designs [12, 13]. 
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Figure	1	Demonstration	of	the	retroactivity	in	the	TX-TL	system.	A:	Circuit	diagram	of	a	negative	regulation	circuit.	B:	Time	
traces	of	the	GFP	fluorescence	in	presence	of	different	concentrations	of	RFP	DNA.	As	RFP	DNA	concentrations	increase,	more	
GFP	fluorescence	can	be	detected	as	a	result	of	the	retroactivity.	Error	bars	are	standard	deviations	from	3	repeats.	C:	Titration	
of	TetR	repressor	aTc	in	presence	of	different	concentrations	of	RFP	DNA.	X	axis	is	the	final	concentrations	of	aTc	in	each	sample	
and	Y	axis	 is	 the	end	point	GFP	fluorescence	of	 the	corresponding	 samples.	Data	were	collected	using	a	plate	reader	with	
settings	for	excitation/emission:	485	nm/525	nm. 
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Demonstration of Retroactivity in TX-TL 
Firstly, we wanted to demonstrate retroactivity in the TX-TL system. The example we used is a simple negative regulation 
circuit, in which constitutively expressed TetR proteins repress the transcription of downstream components pTet-GFP and 
pTet-RFP DNA unless an inducer aTc is added (Figure 1A). Here, we considered pTet-GFP as the reporter and pTet-RFP 
as the load. When there is no inducer present, the reporter will remain off because of the repression by TetR. However, if 
we added significant amount of load into the system, the load sequesters the TetR proteins from pTet-GFP, resulting in the 
activation of GFP transcription (Figure 1B). This is a result of retroactivity, in which downstream components affect the 
behavior of the upstream system output. We next tested this effect in the presence of different inducer concentrations  
(Figure 1C). At low aTc concentrations (less than 0.5 µg/mL), as load concentration increased, GFP expression increased 
because of retroactivity. However, if too much aTc was added, GFP expression actually decreased as load increased. This 
is because resources in TX-TL, such as ribosomes, RNA polymerase, are limited. 

This simple circuit demonstrates that there is retroactivity in biological circuits in the TX-TL system. To address this 
problem, we implement an insulator component to compensate for the retroactivity. 
 
Demonstration of the Insulation Capability of the PBI Circuit 
Based on the insulator design in [5], we adapted a simpler form to implement an insulator in the TX-TL  
system (Figure 2A). The insulator design is based on a well-known two-component signal transduction system regulating 
the transcription of genes encoding metabolic enzymes and permeases in response to carbon and nitrogen status in E. coli 
and related bacteria [14]. There are two essential proteins in the system: NRII and NRI (NtrB-NtrC). NRI can be 
phosphorylated into NRIP by NRII (kinase form). Only NRIP is able to activate the s54-dependent promoter glnA and trigger 
the transcription of downstream genes [15]. NRII is both a kinase and phosphatase, regulated by the PII signal transduction 
protein, which, on binding to NRII, inhibits the kinase activity of NRII and activates the NRII phosphatase activity [16]. 
NRII is known to form dimers and will autophosphorylate itself to become a kinase. Previous studies suggested that when 
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Figure	2	 Implementation	of	 the	PBI	circuit	 in	 the	TX-TL	system.	A:	Circuit	diagram	of	 the	PBI	circuit.	pCon	 is	a	constitutive	
promoter.	B:	 Transfer	 function	 curves	 for	 controls	 and	 insulators	with	or	without	 load	DNA.	Raw	GFP	 fluorescences	were	
normalized	using	the	highest	GFP	fluorescences	from	controls	and	insulators,	respectively	(highest	GFP	=	1).	Compared	to	the	
control	with	load,	which	only	had	40%	signal	left,	the	insulator	with	load	was	able	to	preserve	80%	of	the	signal,	significantly	
attenuating	the	retroactivity.	C:	Fold	changes	of	the	samples	without	load	over	the	ones	with	load.	The	insulator	samples	have	
significantly	smaller	fold	changes	compared	to	those	of	the	control	samples. 
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NRII has a mutation of leucine to arginine at residue 16, it loses its phosphatase activity but shows normal 
autophosphorylation. In contrast, NRII with a H139N mutation is not able to transfer the phosphoryl group from NRI [14]. 
As a result, NRIIL16R only acts as a kinase and NRIIH139N only functions as a phosphatase. 

In our circuit design, proteins NRI, NRIIL16R and NRIIH139N are all constitutively expressed. Reporter GFP is 
controlled by the s54-dependent promoter glnA, which will be activated by phosphorylated NRI. By virtue of the fast 
timescale of phosphorylation and histidine to an aspartate side chain of dephosphorylation loop, this circuit enjoys its active 
site a large amplification gain and an equally large negative feedback mechanism as mentioned in the introduction, which 
makes it a promising insulation device. 

To test the insulation capability of our insulator, we compared the behaviors of the insulator circuit with a control circuit 
that does not have a large amplification gain, neither a negative feedback loop. As mentioned in previous theoretical  
studies [3], the insulator circuit requires abundant substrate NRI to achieve high gain. So, we added 47.5 nM NRI linear 
DNA in the insulator circuit and only 5 nM in the control circuit. But to take resource limitations into account, we balanced 
the insulator and control by adding 42.5 nM of extra DNA (pTet-RFP) in the control circuit. Then we varied the amount of 
downstream glnA promoters by adding 0 nM (without-load) or 20 nM (with-load) pGlnA-RFP linear DNA, which would 
introduce retroactivity. We then titrated with different concentrations of NRIIL16R (kinase) linear DNA. After data were 
collected using a plate reader, the GFP relative fluorescence unit of the control and insulator circuits were normalized using 
their highest without-load fluorescence readings, respectively. As shown in Figure 2B, when the control circuit was added 
with load DNA, the GFP expression dropped significantly (about 60% at the highest kinase DNA concentration). In contrast, 
the insulator circuit only showed about 20% decrease in the GFP expression when the load was added at the highest kinase 
DNA concentration. Figure 2C simplifies the four curves into two curves by looking at the fold changes of without-load 
samples over with-load samples. As we can see, the insulator samples have much smaller fold change between without-load 
and with-load samples compared to the control samples, indicating the attenuation of the retroactivity by the PBI circuit. 
These results suggest that the insulator does help attenuate the retroactivity in biological circuits in TX-TL platform. 

Besides, we also investigated the temperature sensitivity of this circuit in TX-TL. We performed the same experiments 
at 29°C, 33°C, 37°C, respectively (Supplementary Figure 1). At 29°C, the PBI circuit was able to limit retroactivity to about 
20%; however, as temperature increased, the efficiency of insulation decreased to about 40% and 50%; while the control 
circuit had the same signal reduction among all three temperatures. The results suggested that the PBI circuit is sensitive to 
reaction temperature in TX-TL and its performance is affected by the temperature. Previous TX-TL characterization 
experiments suggested that relatively higher temperature would accelerate the molecular reactions involved in transcription 
and translation, resulting in faster GFP production rate [17]. However, because of the resource limitation in TX-TL, there 
could be more intensive competition on resources at higher temperature. As a result, the downstream load might have a 
better chance to sequester the NRI proteins away from the reporter at higher temperature, which would lead to less 
attenuation of the loading effect. 
 
Estimation of Constitutively Expressed Protein Concentrations 
In this section, our goal is to derive a simplified model that can be uniquely parameterized from a set of characterization 
experiments in the bimolecular breadboard system [7, 8]. We base our model on the general phosphorylation-based insulator 
model posed in [3], but adapt our notation and augment input variables that are present in the biomolecular breadboard 
system. Because it is an in vitro system, the total DNA and inducer concentration in solution are adjustable experimental 
variables or variables that can be modeled as inputs. It is the freedom of these inputs that allows us to perform experiments 
and collect data that parameterizes the model. 

We begin by introducing a chemical reaction model for the system: 
 

Equation	1	

	 	 	 	 												𝑁𝑅𝐼 + 𝐾	
'()

	𝑁𝑅𝐼* + 𝐾, 

           𝑁𝑅𝐼* + 𝑃ℎ	
'-.()

	𝑁𝑅𝐼 + 𝑃ℎ, 
       𝑁𝑅𝐼* 	

'/012 	𝑁𝑅𝐼, 

            𝑝4 	
'56,8 	𝑚4 	

'5:,8 𝐾; 	
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'56,>) 	𝑚*= 	

'5:,>) 𝑃ℎ; 	
'<,>)

	𝑃ℎ, 

            𝑝? 	
'56,@ 	𝑚?AB 	

'5:,@ 𝑁𝑅𝐼; 	
'<,@

	𝑁𝑅𝐼, 
          𝑚4 	

CD 	∅,  𝑚*= 	
CD 	∅,  𝑚?AB 	

CD 	∅, 
       𝑁𝑅𝐼* +	𝑝FGHI 	 '0

'J 	𝑁𝑅𝐼*: 𝑝FGHI 	
'L/1 	𝑁𝑅𝐼* + 	𝑝FGHI + 𝐺𝐹𝑃, 

                     𝑁𝑅𝐼* +	𝑝FGHI,O 	 '0
'J 	𝑁𝑅𝐼*: 𝑝FGHI,O 	

'L/1 	𝑁𝑅𝐼* + 	𝑝FGHI,O + 𝑅𝐹𝑃, 
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where 𝐾, 𝑃, 𝑁𝑅𝐼, 𝑁𝑅𝐼* denote the kinase, phosphatase, unphosphorylated NRI and phosphorylated NRI protein, pGlnA is 
the GlnA promoter, pGlnA,L is the GlnA promoter encoding for other competing genes, 𝑁𝑅𝐼; is the unfolded form of NRI 
protein, 𝐾; is the unfolded form of kinase, 𝑃ℎ; is the unfolded form of phosphatase, and ∅ represents a macro state of all 
degraded mRNA. We also use the notation 𝑋QRQ  when needed to denote the total amount of protein 𝑋  where  
𝑋	 = 	𝐾, 𝑃ℎ, 𝑁𝑅𝐼. This notation will be convenient for our analysis in the sequel. 

Since 𝑝T represents a constitutive promoter for 𝑋	 = 	𝐾, 𝑃ℎ, 𝑁𝑅𝐼, the total kinase, phosphatase, and NRI protein are 
produced constitutively. An assay with GFP shows that without additional proteases added into the bimolecular breadboard 
system, protein degradation is negligible [9]. Thus, we can approximate the total amount of NRI protein at a particular time 
𝑡 expressed under the pCon promoter using GFP expression expressed under the same promoter and ribosome binding site 
(RBS) as a proxy. This total amount of NRI, we will denote as 𝑁𝑅𝐼QRQ. 

We also note that an alternative approach to estimate 𝑁𝑅𝐼QRQ(𝑡) is to assay the expression of a NRI-GFP fusion protein. 
However, this approach may significantly alter the phosphorylation dynamics of the NRI protein, since it acts as a substrate 
for the kinase. Therefore, we will express GFP separately on the pCon promoter with the same RBS and use it to estimate 
concentration from arbitrary units of fluorescence. 

Because there are differences in the transcription and translation rates and folding of GFP and NRI, we do not expect 
the estimated concentration of GFP at time 𝑡 will be identical to the concentration of the NRI protein at time 𝑡. We can 
account for these differences dynamically in a mass action model of NRI and GFP dynamics. If we consider NRI constitutive 
expression in a simple isolated system with no kinase or phosphatase activity 𝑁𝑅𝐼QRQ, e.g. with the chemical reaction system 

             𝑝? 	
'56,@ 	𝑚?AB 	

'5:,@ 𝑁𝑅𝐼; 	
'<,@

	𝑁𝑅𝐼,  
we see that 
          X?AB

XQ
= 	 𝑘Z,?𝑁𝑅𝐼;, 

        X?AB
0

XQ
= 	 𝑘[O,?𝑚?AB, 

        X\@]^

XQ
= 	 𝑘[T,?𝑝_RH 	− 	𝛿\𝑚?AB. 

The total NRI protein at time 𝑡 is ultimately a function of 𝑚?AB(𝑡). Since the dynamics of 𝑚?AB can be viewed as a 
scalar linear system with static step input pCon, we can solve analytically for 𝑁𝑅𝐼QRQ(𝑡) to obtain: 

 
Equation	2	

𝑁𝑅𝐼 𝑡 = 𝑁𝑅𝐼 𝑡c + 𝑘Z,? 𝑁𝑅𝐼;𝑑𝜏
Q

c
	

= 𝑁𝑅𝐼 𝑡c + 𝑘Z,? 𝑁𝑅𝐼; 𝑡c + 𝑘[O,?𝑚?AB 𝑑𝜉
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c
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Q

c
	

= 𝑁𝑅𝐼 𝑡c + 𝑘Z,? 𝑁𝑅𝐼; 𝑡c + 𝑘[O,?𝑚?AB 𝑡c + 𝑘[O,?𝑘[T,?𝑝_RH
1 − 𝑒jCDk

𝛿\
𝑑𝜉
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Q

c
	

= 	
𝑘Z,?𝑘[T,?𝑘[O,?

𝛿\
𝑝_RH

𝑡l

2
−
1
𝛿\l

𝑒jCDQ ,	

whenever 𝑁𝑅𝐼(𝑡c) 	= 	𝑚?AB(𝑡c) 	= 	𝑁𝑅𝐼;(𝑡c) 	= 	0 . To reflect the experimental conditions of our system, we have 
assumed that the initial mRNA, unfolded and folded kinase, phosphatase and NRI concentrations are zero. Notice that in 
deriving this expression, we have made no assumption about time-scale separation. While such arguments are valid since 
the folding dynamics proceed at a much slower rate than the transcription and translation dynamics, they are unnecessary 
for estimating NRI at time 𝑡. Finally, it is worth noting that we assume the transcription and translation reactions proceed as 
first order reactions, which is valid as long as our DNA concentrations (typically in the nM range) are much less than the 
concentrations of RNA polymerases, ribosomes, chaperone proteins, etc. (typically in the µM range [8]). 

It is worth noting that model for the mRNA species 𝑚?AB is qualitatively consistent with our experimental studies of 
mSpinach expression in the transcription-translation system. To demonstrate this, we consider a model of the same 
functional form as equation 2, but with a constitutive promoter and coding sequence of the same length as the mSpinach 
transcript. This yields 
        𝑚o 𝑡 = 	 '56pq2r

CD
(1 − 𝑒jCDQ),  

where 

𝑘[T = 	
𝑘s,tp
𝐿(𝑚o)

𝑘vwR\ 

is estimated with 𝑘s,tp 	= 	60	𝑏𝑝/𝑠  (the approximate mean of a variety of media-dependent rates found in [18]),  
𝐿 𝑚o = 	98	𝑏𝑝/𝑛𝑀 is the length of mSpinach aptamer without a tRNA scaffold [19], and 𝑘vwR\ 	= 	6.3´10jl	𝑠j� is the 
forward rate of open complex formation from the closed complex. 
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From this, it is possible to estimate the rate of mRNA degradation,  
     𝛿\ = 	 '56pq2r

\�(Q��lc)
= 3×10jl𝑠j�, 

where 𝑚o(𝑡 = 120) is the expression of mSpinach at time 𝑡	 = 	120	minutes and is an approximation of 𝑚o steady state 
expression if the system were to continue to run indefinitely. The time point 𝑡	 = 	120	minutes, is critical to consider for our 
biomolecular breadboard system. Previous results generated with the TX-TL system [9, 20] suggest that protein production 
rates typically maintain as a constant within 120 minutes of the reactions. After 120 minutes, we can see a decrease in mRNA 
concentration accordingly (Figure 3A) as well as slower protein production (Figure 1B). Thus, an empirical upper bound on 
time horizon for our model is approximately 120 minutes after the reaction is initiated. 

It is also important to mention that with the exception of the mRNA species 𝑚?AB of NRI protein in our model, the 
species associated with NRI do not settle at a stable steady state. This aspect of our model is consistent with the behavior of 
biocircuit expression for an initial window of time in the biomolecular breadboard system. In this in vitro system, the 
auxiliary proteins NRI, K, Ph and even GFP (expressed by pGlnA) do not achieve a steady state in the traditional manner 
(due to detailed balance of production and a combination of degradation and dilution effects). Rather, they continue to 
increase in resources are exhausted. Thus, because we are interested in the dynamic behavior of the phosphorylation-based 
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Figure	3	A:	Data	featuring	mSpinach	expression	on	linear	DNA	with	100	bp	of	protection.	The	transcriptional	unit	consists	of	an	
OR1-OR2-pR	 promoter,	 followed	 by	 the	mSpinach	 (no	 scaffold)	 RNA	 aptamer	 coding	 sequence	 and	 the	 T500	 terminator.	
Arbitrary	fluorescence	units	of	mSpinach	expression	is	plotted	against	time.	Subtracting	the	background,	we	see	that	mSpinach	
expression	nearly	doubles	as	DNA	concentration	doubles.	Past	t	=	120	minutes,	mSpinach	expression	decreases,	presumably	
because	linear	DNA	template	has	degraded	or	 transcriptional	resources	are	exhausted.	Our	time	horizon	of	 interest	for	the	
model	will	thus	be	in	the	interval	of	t	Î	(0,	120).	B:	Data	featuring	mSpinach	expression	driven	by	the	OR1-OR2-pR	promoter	at	
13.5	nM	and	6.8	nM	concentration	 from	the	time	 interval	of	0	 to	120	minutes.	mSpinach	expression	dynamics	 in	 the	 time	
horizon	of	interest	feature	a	phase	of	steep	linear	growth	and	then	saturation	towards	an	asymptotic	limit.	C:	A	simulation	of	
mSpinach	expression,	driven	by	a	constitutive	promoter	at	6.8	nM	and	13.5	nM	DNA	concentration.	Notice	that	the	model	is	
able	to	capture	the	qualitative	effects	of	mSpinach	expression. 
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concentration until all transcriptional and translation insulator and drawing comparisons of its in vitro behavior to in vivo 
behavior, we will focus our subsequent modeling efforts in the time window 𝑡	Î	(0,120) minutes where fuel, energy and 
other transcriptional and translational resources are still abundant. In doing so, we do not preclude the possibility of genes 
competing with each other for the finite resources available in the in vitro system. Our time frame of interest is thus when 
transcriptional and translational machinery is available and functional, but in finite supply (mimicking in vivo conditions). 

Using the parameters that we have calculated, we plot the outcome of a simulation against expression data for mSpinach 
in Figure 3. The output of the simulation is simulated with additive white noise, replicating the measurement noise present 
in the plate reader (refer to the trajectory of the negative control). We use a biocircuit expressing mSpinach with the 
constitutive promoter (pOR1-OR2 from the l regulatory operon). Notice that the functional form of 𝑚?AB(𝑡) adequately 
describes the qualitative behavior of mRNA expression in the breadboard system until 𝑡	@	120 minutes. The rate at which 
mSpinach saturates is determined by the d\ parameter and its steady state value is given as 𝑘[T𝑝_RH/𝛿\. These experiments 
with the mSpinach RNA aptamer show that our model, while simple in its formulation, is sufficiently complex to describe 
transcriptional dynamics in the transcription-translation system for the first two hours. Thus, we will not attempt to model 
system expression when the transcription-translation system depletes it resources; at this point gene expression is strongly 
competitive, production and degradation rates are largely determined by the available ATP, rNTP, amino acids, etc. in the 
system. 

We also know that the folding rates of the GFP protein are different from those of NRI protein. Thus, to estimate the 
ratio in folding rates, we use the K-fold protein folding simulation software developed in [21]. Based on previous  
studies [22], we use the following equations to estimate the mRNA transcription rate and the protein translation rate: 

𝑑𝑚T

𝑑𝑡
= 𝛼 − 𝛿𝑚T,

𝑑𝑋
𝑑𝑡

= 𝜅𝑚T − 𝛾𝑋, 
where 𝑚T  is the concentration of mRNA for protein 𝑋 (𝑋	 = 𝑁𝑅𝐼, 𝐺𝐹𝑃), 𝛼 is the rate of production of the mRNA for 
protein	𝑋, 𝛿 the rate of degradation of the mRNA, 𝜅 is the rate of translation of mRNA and 𝛾 is the rate of degradation of 
protein	𝑋. The value of 𝛼 increases with the strength of the promoter while the value of 𝜅 increases with the strength of the 
RBS [22]. Because we are using the same promoter and RBS for both NRI and GFP genes, they should share the same 
mRNA transcription rate and protein translation rate, despite their differences in gene length. 

We express the rates of transcription, translation, and folding for NRI in terms of GFP rates of transcription, translation, 
and folding (respectively) as follows: 

𝑘[T,? = 𝑘[T,F ≡ 𝛼[T𝑘[T,F, 𝑘[O,? = 𝑘[O,F ≡ 𝛼[O𝑘[O,F, 𝑘Z,? =
0.85𝑠j�

1.23𝑠j�
𝑘Z,F ≡ 𝛼Z𝑘Z,F, 

where “º” denotes a definition of 𝛼�. Our model for GFP expression under the pCon promoter is similarly expressed as 

𝑝_RH
'56,� 𝑚F�*

'5:,� 𝐺𝐹𝑃;
'<,�

𝐺𝐹𝑃QRQ. 
The model derived for 𝐺𝐹𝑃(𝑡) follows an analogous derivation as the model for 𝑁𝑅𝐼QRQ 𝑡 . Thus, using equation 2, it 

is straightforward to show that 𝑁𝑅𝐼QRQ 𝑡  concentration can be expressed as 
 

Equation	3	

	 	 	 	 𝑁𝑅𝐼QRQ 𝑡 = 𝛼𝑇𝑋𝑘𝑇𝑋,𝐺𝛼𝑇𝐿𝑘𝑇𝐿,𝐺𝛼𝑓𝑘𝑓,𝐺𝑝𝐶𝑜𝑛
𝛿𝑚

𝑡2

2
− 1

𝛿𝑚
2 𝑒𝛿𝑚𝑡 	

	 	 	 	 	 			= 𝛼[T𝛼[O𝛼Z𝐺𝐹𝑃(𝑡). 
We see that by scaling the GFP concentration by the appropriate ratios at time 𝑡, we can obtain an estimate for 𝑁𝑅𝐼QRQ. 

The above formula holds as long as the concentration of pCon promoter expressing GFP is the same as the concentration of 
pCon promoter expressing NRI protein with the same RBS. Otherwise, a ratio to account for the scaling between the two 
should also be incorporated into the above relation. 

To summarize, we have posed a basic model for constitutive expression of NRI protein; the model has a closed form 
analytical expression that allows estimation of total NRI protein as a function of time. Our model relies on a basic set of 
chemical reactions describing the processes of transcription and translation. To justify our model at the transcriptional level, 
we have performed an experimental assay using the mSpinach RNA aptamer to ascertain the dynamics of mRNA expression 
in the biomolecular breadboard system. Our simulations and experimental data appear to match for up to the first two hours 
of the experiment, based on parameters extracted from various references, suggesting that our model is accurate in a time 
horizon of interest. We thus restrict our attention to this time horizon, as it represents the horizon in which transcription and 
mRNA degradation proceed unperturbed. Further, evidence in [17] suggests that ribosomal activity proceeds unhindered in 
the first two hours. 

We also observe that an analogous line of reasoning can be applied to estimating 𝑃ℎQRQ and 𝐾QRQ. We do not repeat the 
derivation here, as it only requires a change in notation. However, we emphasize that because of these observations, in the 
sequel we will refer to 𝑃ℎQRQ(𝑡), 𝐾QRQ(𝑡), and 𝑁𝑅𝐼QRQ 𝑡  as additional input variables (so long as we are modeling the 
appropriate time horizon). Additionally, it is the ratio of 𝑃ℎQRQ  and 𝐾QRQ  that matter as a functional input in the system 
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identification process and not the individual concentrations that matter. Further, it is by levering the inputs 𝑃ℎQRQ/𝐾QRQ, and 
𝑁𝑅𝐼QRQ we are able to identify the parameters of a simplified model uniquely. 
 
Derivation of A Simplified Model for the PBI 
In this section, we derive a simplified model of the phosphorylation-based insulator using the chemical reaction system 
(equation 1). Examining the full chemical reaction system (equation 1), we obtain the following state space model from the 
law of mass action: 
 
Equation	4	

	 	 	 									
X?AB>

XQ
= 𝑘𝑝ℎ𝑁𝑅𝐼 ∙ 𝐾 − 𝑘𝑑𝑒𝑝ℎ𝑁𝑅𝐼

𝑃𝑃ℎ − 𝑘𝑏𝑁𝑅𝐼
𝑃 𝑝𝐺𝑙𝑛𝐴 + 𝑝𝐺𝑙𝑛𝐴𝐿𝑜𝑎𝑑 − 𝑘𝑎𝑢𝑡𝑜𝑁𝑅𝐼

𝑃	

	 	 	 	 	 + 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHI + 𝑁𝑅𝐼*: 𝑝FGHIOR�X , 
𝑑𝑁𝑅𝐼
𝑑𝑡

= 𝑘X�p=𝑁𝑅𝐼*𝑃ℎ − 𝑘p=𝑁𝑅𝐼×𝐾 + 𝑘Z,?𝑁𝑅𝐼; + 𝑘�;QR𝑁𝑅𝐼*, 
𝑑𝑁𝑅𝐼;

𝑑𝑡
= 𝑘[O,?𝑚?AB, 

𝑑𝑚?AB

𝑑𝑡
= 𝑘[T,?𝑝?AB − 𝛿\𝑚?AB, 

𝑑𝐾
𝑑𝑡

= 𝑘Z𝐾;, 
𝑑𝐾;

𝑑𝑡
= 𝑘[O,4𝑚4, 

𝑑𝑚4

𝑑𝑡
= 𝑘[T,4𝑝4 − 𝛿\𝑚4, 

𝑑𝑃ℎ
𝑑𝑡

= 𝑘Z𝑃ℎ;, 
𝑑𝑃ℎ;

𝑑𝑡
= 𝑘[O,*=𝑚*=, 

𝑑𝑚*=

𝑑𝑡
= 𝑘[T,*=𝑝*= − 𝛿\𝑚*=, 

𝑑𝑁𝑅𝐼*: 𝑝FGHI
𝑑𝑡

= 𝑘t𝑁𝑅𝐼*𝑝FGHI − 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHI , 
𝑑𝑁𝑅𝐼*: 𝑝FGHIOR�X

𝑑𝑡
= 𝑘t𝑁𝑅𝐼*𝑝FGHIOR�X − 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHIOR�X , 

𝑑𝐺𝐹𝑃
𝑑𝑡

= 𝑘��Q𝑁𝑅𝐼*: 𝑝FGHI, 
𝑑𝑅𝐹𝑃
𝑑𝑡

= 𝑘��Q𝑁𝑅𝐼*: 𝑝FGHIOR�X. 
The dimension of the state-space model is 14 and because of the presence of bimolecular reactions, it is nonlinear in 

the state of the system. Thus, it is difficult to obtain a closed form expression for the solution to the system. However, we 
will systematically impose a series of modeling assumptions that are physiologically plausible, but which greatly reduce the 
complexity of the model. 

First, notice that the total concentration of K, Ph and NRI, denoted as 𝐾QRQ, 𝑃ℎQRQ and 𝑁𝑅𝐼QRQ, depends only on the 
transcription and translation reactions. Thus, if we consider the transcription and translation dynamics of K, Ph and 

𝑁𝑅𝐼QRQ = 𝑁𝑅𝐼* + 𝑁𝑅𝐼 + 𝑁𝑅𝐼*: 𝑝FGHI + 𝑁𝑅𝐼*: 𝑝FGHIOR�X 
= 𝑘Z,?𝑁𝑅𝐼;, 

in isolation, we can use the results of the previous section to obtain a closed form expression for their total concentration as 
follows: 

𝑁𝑅𝐼QRQ 𝑡 =
𝑘Z,?𝑘[T,?𝑘[O,?

𝛿\
𝑝?AB

𝑡l

2
−
1
𝛿\l

𝑒jCDQ ,	

𝐾QRQ 𝑡 =
𝑘Z,4𝑘[T,4𝑘[O,4

𝛿\
𝑝4

𝑡l

2
−
1
𝛿\l

𝑒jCDQ ,	

𝑃ℎQRQ 𝑡 =
𝑘Z,*=𝑘[T,*=𝑘[O,*=

𝛿\
𝑝*=

𝑡l

2
−
1
𝛿\l

𝑒jCDQ .	

These total concentrations can be viewed as time varying parameters. If we had a way of quantifying the rate of 
transcription, translation, and folding of the individual proteins in the transcription-translation system, we could predictively 
estimate the trajectories of 𝑁𝑅𝐼QRQ, 𝐾QRQ and 𝑃ℎQRQ over time. However, we do not have these parameters, and thus it is 
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advantageous to employ the previous section’s approach. With similar arguments, we can argue that the total concentration 
of these proteins can be expressed as the total concentration of a reporter molecule multiplied by a scaling constant (see 
equation 3). Thus, using a separate assay to quantify constitutive expression of a reporter molecule under a given constitutive 
promoter (and a calibration curve to convert fluorescence to molar concentration), we can use the reporter molecule as a 
proxy for estimating the true molar concentration of NRI, kinase or phosphatase. Therefore, we can avoid the problem of 
estimating transcriptional, translational and folding rates of heterogeneous proteins while obtaining an estimate of the 
functional protein concentrations. Moreover, the result holds for all t in which RNA expression increases linearly (𝑡	£	120).  

We formalize this assumption as follows: 
Assumption 1: We suppose that for all 𝑡	Î	[0,120] , 𝐾QRQ(𝑡) , 𝑃ℎQRQ(𝑡) , and 𝑁𝑅𝐼QRQ(𝑡)  are known parameters. This 
assumption thus allows us to eliminate the dynamics of folded kinase, unfolded kinase, folded NRI, unfolded NRI, folded 
phosphatase, unfolded phosphatase and all mRNA dynamics. 

The remaining dynamics of the system are thus given as: 

           
X?AB>

XQ
= 𝑘𝑝ℎ𝑁𝑅𝐼 ∙ 𝐾 − 𝑘𝑑𝑒𝑝ℎ𝑁𝑅𝐼

𝑃𝑃ℎ − 𝑘𝑏𝑁𝑅𝐼
𝑃 𝑝𝐺𝑙𝑛𝐴 + 𝑝𝐺𝑙𝑛𝐴𝐿𝑜𝑎𝑑 − 𝑘𝑎𝑢𝑡𝑜𝑁𝑅𝐼

𝑃 
     + 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHI + 𝑁𝑅𝐼*: 𝑝FGHIOR�X , 

𝑑𝑁𝑅𝐼
𝑑𝑡

= 𝑘X�p=𝑁𝑅𝐼*𝑃ℎ − 𝑘p=𝑁𝑅𝐼×𝐾 + 𝑘Z,?𝑁𝑅𝐼; + 𝑘�;QR𝑁𝑅𝐼*, 
𝑑𝑁𝑅𝐼*: 𝑝FGHI

𝑑𝑡
= 𝑘t𝑁𝑅𝐼*𝑝FGHI − 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHI , 

𝑑𝑁𝑅𝐼*: 𝑝FGHIOR�X
𝑑𝑡

= 𝑘t𝑁𝑅𝐼*𝑝FGHIOR�X − 𝑘; + 𝑘��Q 𝑁𝑅𝐼*: 𝑝FGHIOR�X , 
𝑑𝐺𝐹𝑃
𝑑𝑡

= 𝑘��Q𝑁𝑅𝐼*: 𝑝FGHI, 
𝑑𝑅𝐹𝑃
𝑑𝑡

= 𝑘��Q𝑁𝑅𝐼*: 𝑝FGHIOR�X. 
Next, we assume that the phosphorylation and dephosphorylation reactions occur at a much faster time scale then 

production of GFP or RFP and the binding (and unbinding) reactions of NRI� to DNA to form (or disintegrate) activator-
DNA complex. We justify the latter assumption through experimental observations that observe phosphorylation rates on 
the order of 10�	𝑚𝑖𝑛j�. Transcription factor binding rates are less characterized but typically binding and unbinding rates 
of a transcription factor (e.g. LacI) are 𝑂(10j�)	𝑚𝑖𝑛j� and 𝑂(10)	𝑚𝑖𝑛j� respectively [23].  

We formalize these assumptions as follows: 
Assumption 2: We suppose that 𝑘p=, 𝑘X�p= ≫ 𝑘;, 𝑘��Q, 𝑘t, 𝑘�;QR. 

Next, we suppose that the amount of DNA bound NRI� is smaller than the amount of free NRI� and unphosphorylated 
NRI and that total NRI can be approximated as the sum of unbound NRI� and NRI. Put another way, we assume that the 
molar concentration of unbound NRI protein is substantially larger than the molar concentration of DNA-bound NRI protein. 
This will certainly be the case since the pGlnA and pGlnAload DNA concentration will be in the nM range while the protein 
concentration of NRI will be in the µM range (refer to the arguments in the previous section and Figure 3). From the above 
reactions and assumptions, we then can write the dynamics of NRI� using the approximate conservation law  

𝑁𝑅𝐼QRQ ≅ 𝑁𝑅𝐼* + 𝑁𝑅𝐼 
as follows: 

𝑑𝑁𝑅𝐼*

𝑑𝑡
= 𝑘p= 𝑁𝑅𝐼QRQ − 𝑁𝑅𝐼* 𝐾QRQ − 𝑘X�p=𝑃ℎQRQ𝑁𝑅𝐼*. 

Since phosphorylation and dephosphorylation occurs at a much faster rate than GFP and RFP production (our ultimate 
time-scale of interest) and reasonably faster than the binding dynamics of the NRI� transcriptional activator, we can solve 
the fast dynamics of NRI� to obtain an analytical expression for the equilibrium point 𝑁𝑅𝐼�*. At steady state, we have 

0 =
𝑑𝑁𝑅𝐼*

𝑑𝑡
 

= 𝑘p= 𝑁𝑅𝐼QRQ − 𝑁𝑅𝐼* 𝐾QRQ − 𝑘X�p=𝑃ℎQRQ𝑁𝑅𝐼*, 
which implies 

𝑁𝑅𝐼�* =
𝑘p=𝑁𝑅𝐼QRQ𝐾QRQ

𝑘p=𝐾QRQ + 𝑘X�p=𝑃ℎQRQ
 

=

𝑘p=
𝑘X�p=

𝑁𝑅𝐼QRQ

𝑘p=
𝑘X�p=

+ 𝑃ℎ
QRQ

𝐾QRQ

≡ 𝜃 𝑁𝑅𝐼QRQ, 𝐾QRQ, 𝑃ℎQRQ , 

where “º” denotes the definition of the function 𝜃(𝑁𝑅𝐼QRQ, 𝐾QRQ, 𝑃ℎQRQ).  
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In this assumption, we also assume that 𝑘�;QR is negligible compared to other rates. This is a reasonable assumption 
since spontaneous dephosphorylation proceeds at a slow rate — the DG of spontaneous dephosphorylation is very large [24].  

The final assumption we leverage is that the rates of GFP and RPF production, relative to the binding dynamics of NRI� 
are much slower. Specifically, we suppose that: 
Assumption 3: 𝑘t, 𝑘; ≫ 𝑘��Q. 

This assumption can be justified, since the production of a folded protein such as GFP takes at least ten to fifteen 
minutes [25] while the binding and unbinding rates are typically on the order of hundredths of seconds and seconds, 
respectively [23]. Thus, we can solve for the steady state of the DNA-activator complexes NRI�: pGlnA  and 
NRI�: pGlnALoad . The result is analogous to the classical Michaelis–Menten model, with 𝑉\�¯ = 𝑁𝑅𝐼�*  and  
𝐾° 	= 	 (𝑘; 	+ 	𝑘��Q)/𝑘t. We omit the derivation, as it follows the standard derivation for a two-substrate one-enzyme model: 

 
Equation	5	

𝑑𝐺𝐹𝑃
𝑑𝑡

= 𝑘��Q

𝜃𝑝FGHIQRQ

𝐾°

1 + 𝑝FGHI
QRQ + 𝑝FGHIOR�XQRQ

𝐾°

,
𝑑𝑅𝐹𝑃
𝑑𝑡

= 𝑘��Q

𝜃𝑝FGHIOR�XQRQ

𝐾°

1 + 𝑝FGHI
QRQ + 𝑝FGHIOR�XQRQ

𝐾°

, 

where 𝜃 denotes 𝜃(𝑁𝑅𝐼QRQ, 𝐾QRQ, 𝑃ℎQRQ). This completes the derivation of our simplified model. In the next section, we will 
explore the analyze the structure of the model, determine which of the parameters are globally identifiable, and under what 
circumstances identifiability holds.  
 
System Identification of the Simplified PBI Model 
A. Theoretical Analysis 
In the derivation of our model we have made a point to retain the experimental parameters 𝑁𝑅𝐼QRQ, 𝐾QRQ, 𝑃ℎQRQ, 𝑝FGHIQRQ  and 
𝑝FGHIOR�XQRQ . These parameters can be viewed as experimentally controllable, in that we can directly control the DNA 
concentration of promoters 𝑝FGHIQRQ  and 𝑝FGHIOR�XQRQ . Additionally, by adjusting the underlying constitutive promoters driving 
the expression of NRI, K, and Ph we can effectively tune the quantities 𝑁𝑅𝐼QRQ, 𝐾QRQ and 𝑃ℎQRQ. We note this type of control 
over the concentration of DNA as well as total protein concentrations is not typically achievable in vivo, unless inducers are 
employed or different replication origins are cloned into a plasmid (which introduces variability in copy number from cell-
to-cell). However, this advantage in the biomolecular breadboard is precisely the capability required to explore the problem 
of parameter estimation and determine if our simplified model is globally identifiable. 

Since our calibration curves allow us to estimate GFP concentration from arbitrary fluorescence units, we will focus 
our attention on the GFP dynamics. Furthermore, notice that the forms of dynamics of both reporter molecules are identical. 
Thus, it suffices to analyze the identifiability of parameters with respect to the output dynamics of the GFP reporter molecule, 
since it will yield the same result as studying identifiability with respect to RFP output dynamics. Recalling our assumptions 
from the previous section, we will also make a point to study the behavior of the system within the time horizon of interest 
captured by our model, 𝑡	Î	[0, t\�¯) where t\�¯  is the initiation of the resource depletion phase in our transcription-
translation system. 

Our goal is to determine whether this model is globally structurally identifiable with respect to the parameters 𝐾°, 𝑘��Q, 
𝑘p=, and 𝑘X�p=, given the inputs 𝑁𝑅𝐼QRQ, 𝐾QRQ, 𝑃ℎQRQ, 𝑝FGHIQRQ , and 𝑝FGHIOR�XQRQ . Notice that the inputs do not enter the dynamics 
of the system in a linear fashion. Indeed, the simplified system (equation 5) is of the form: 𝑥 = 𝑓(𝑈, Θ), where 𝑓 is nonlinear 
with respect to 𝑈 and Θ, in which 𝑈 = (𝑁𝑅𝐼QRQ, 𝑃ℎQRQ, 𝐾QRQ, 𝑝FGHIQRQ , 𝑝FGHIOR�XQRQ ) and Θ = (𝐾°, 𝑘��Q, 𝑘p=, 𝑘X�p=). 

Furthermore,  
𝑓(𝑈, Θ) = 𝑓�(𝑈�, Θ�)𝑓l(𝑈l, Θl), 

where  
𝑈� = 𝑁𝑅𝐼QRQ, 𝑃ℎQRQ, 𝐾QRQ , Θ� = 𝑘p=, 𝑘X�p= , 
𝑈l = 𝑝FGHIQRQ , 𝑝FGHIOR�XQRQ ,															Θl = 𝐾°, 𝑘��Q . 

Notice that 𝑓� = 𝑁𝑅𝐼�* = 𝜃(𝑁𝑅𝐼QRQ, 𝑃ℎQRQ, 𝐾QRQ) takes the form of a Hill function with Phtot/Ktot as its substrate and 

𝑓l = 𝑘��Q

𝑝FGHIQRQ

𝐾°

1 + 𝑝FGHI
QRQ + 𝑝FGHIOR�XQRQ

𝐾°

. 

This multiplicative decomposition provides a key insight: our system dynamics is the product of two Hill functions 
with distinct inputs for each Hill function. This suggests that from a system identification standpoint, we can attempt a series 
of experiments that perturb one of the Hill functions while holding the other constant and vice versa to tease out the 
parameters for each. 

To obtain insight into the what parameters in the Hill functions are identifiable, we invert the system dynamics to obtain 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2017. ; https://doi.org/10.1101/122606doi: bioRxiv preprint 

https://doi.org/10.1101/122606
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

𝑑𝑡
𝑑𝐺𝐹𝑃

=
1
𝑓�𝑓l

=
𝑝FGHIQRQ + 𝑝FGHIOR�XQRQ + 𝐾°

𝜃𝑘��Q𝑝FGHIQRQ , 

which indicates that the parameter identification is a linear regression problem and after some arrangement, we obtain that 
𝐺𝐹𝑃 𝑝FGHIQRQ + 𝑝FGHIOR�XQRQ

𝑝FGHIQRQ = −𝐾°𝑓�
𝐺𝐹𝑃
𝑝FGHIQRQ − 𝑓�𝑘��Q. 

Thus, when the experimental input 𝑝FGHIOR�XQRQ  is set to 0 nM, we obtain a linear regression problem in estimating slope 
𝐾°𝑓�  and intercept 𝑘��Q𝑓� . Further, if we enforce that 𝑃ℎQRQ = 0, then 𝑓�  reduces to 𝑁𝑅𝐼QRQ , a known input value that 
completes the decomposition. Thus, by enforcing these two input constraints, we obtain a linear regression problem that 
effectively estimates 𝑘��Q and 𝐾°. By varying the total DNA concentration 𝑝FGHIQRQ  we can thus vary the rate of change of 
GFP, 𝑑𝐺𝐹𝑃/𝑑𝑡, and obtain data to optimize 𝑘��Q and 𝐾°. Once 𝑘��Q and 𝐾° are estimated, we can then use a similar line of 
arguments to back out an estimate for the ratio 𝑘p=/𝑘X�p=. 

In particular, we consider a nominal operating concentration of 𝑝FGHIQRQ , 𝑝FGHIOR�XQRQ  and write 𝛾 = (𝑈l, Θl)/𝑓l  and  
𝑘s = 𝑘p=/𝑘X�p=, then taking the reciprocal of 𝑑𝐺𝐹𝑃/𝑑𝑡 we obtain 

𝑑𝑡
𝑑𝐺𝐹𝑃

=
1
𝛾
(
𝑘´ +

𝑃ℎQRQ
𝐾QRQ

𝑘´𝑁𝑅𝐼QRQ
) 

and define 𝑌 = 𝛾𝑁𝑅𝐼QRQ/(XF�*
XQ
) we see that  

𝑌 = 1 + �
'¶

*=121

4121
. 

Therefore, by transforming the problem into the reciprocal space, we see that 𝑘s = 𝑘p=/𝑘X�p=  is a uniquely identifiable 
parameter. That is, the problem of estimating 𝑘´ can be expressed as a linear regression problem with 𝑘´ as the reciprocal 
of the slope and an intercept of unity. The fact that we can write the parameter estimation problem for (𝑘��Q, 𝐾°, 𝑘p=/𝑘X�p=) 
as a solution to a system of linear equations thus shows that the model is globally structurally identifiable with respect to  
(𝑘��Q, 𝐾°, 𝑘p=/𝑘X�p=).  

In summary, we have derived a simplified model for the phosphorylation-based insulator and shown it is globally 
identifiable with respect to the output trajectory of GFP. We have shown that in the theoretical scenario where a continuous 
trajectory of GFP can be obtained to estimate its derivative 𝑑𝐺𝐹𝑃/𝑑𝑡 , the parameters 𝑘��Q , 𝐾°  and  
𝑘s = 𝑘p=/𝑘X�p= can be estimated. These parameters are only estimated through a series of carefully designed experiments 
in which specific TX-TL controllable experimental variables are tuned. In the next section, we discuss the results of these 
experiments and numerical estimation of this data from time-series data. 
 
B. Experimental Analysis: Systematic Perturbations of the Phosphorylation-Based Insulator for System Identification 
To identify the parameters 𝑘��Q, 𝐾° and 𝑘´, we needed to perturb the phosphorylation-based insulator with the experimental 
variables designated in our model. In particular, we first needed to perturb the amount of pGlnA promoter producing GFP 

0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600A B
d(
GF

P)
/d
t(
nM

/s
)

d(
GF

P)
/d
t(
nM

/s
)

pGlnA DNA2concentration2(nM) Phtot/Ktot

Figure	4	A:	A	plot	of	the	resulting	Hill	function	𝑑𝐺𝐹𝑃/𝑑𝑡	against	varying	pGlnA.	We	see	the	curve	follows	the	form	of	a	
Michaelis	Menten	function	which	is	consistent	with	our	model.	B:	A	plot	of	the	resulting	Hill	function	𝑑𝐺𝐹𝑃/𝑑𝑡	against	
varying	𝑃ℎQRQ/𝐾QRQ.		Again,	the	empirical	data	(starred)	matches	the	functional	form	of	our	model.	
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in the absence of phosphatase 𝑃ℎQRQ or NRIIH139N protein. Varying the amount of pGlnA promoter in the system in the 
absence of phosphatase would enable the estimation of 𝑘��Q and 𝐾°. 

Intuitively, 𝑘��Q  and 𝐾°  characterize the enzyme-substrate relationship that the activator protein NRIP has with the 
pGlnA promoter — coincidentally, to reveal these parameters we need to eliminate any negative feedback imposed on the 
activator protein by NRIIH139N phosphatase and vary the substrate concentration 𝑝FGHIQRQ  to reveal the kinetic parameters. 

Accordingly, we ran a set of TX-TL reactions in which the DNA concentration of pCon promoter driving NRIIH139N 
expression was 0 nM. We varied the concentration of pGlnA promoter from 0 to 57 nM, expressed on plasmid. From the 
time series data, we extracted the first thirty minutes of expression dynamics — this time horizon constituted the time frame 
when amino acids, CoA, NADH, ATP, etc. were far away from the stage of complete depletion in the TX-TL system. In 
this time horizon of interest, the expression of GFP is linear with respect to time; therefore, the derivative of GFP is constant 
and can be fitted using the slope of a linear regression. The results of our linear regression are plotted against the time series 
data of the experiment in Supplementary Figure 2. The estimates of the 𝑑𝐺𝐹𝑃/𝑑𝑡 in the time horizon of interest at varying 
concentrations of pGlnA were used to fit the Hill function parameters 𝑘��Q and 𝐾°: 

𝑘��Q = 2.33×10jl	𝑚𝑖𝑛j�,   𝐾° = 1.58	𝑛𝑀. 
We emphasize that the key to estimating 𝑘��Q  and 𝐾°  is the additional freedom afforded by a control input 𝑝FGHIQRQ  in 
perturbing the system. 

The final parameter to estimate was 𝑘s = 𝑘p=/𝑘X�p= . In order to estimate 𝑘´ , we needed to fix the pGlnA 
concentrations, i.e. the concentrations driving expression in the downstream module and, and perturb the phosphorylation-
based insulator. Specifically, we varied the ratio of kinase (NRIIL16R) to phosphatase (NRIIH139N) in the system by 
varying the ratio of DNA concentrations for the promoters driving their expression. Doing this, we obtained a series of time-
lapse curves of GFP expression over a range of 𝑃ℎQRQ/𝐾QRQ values. Again, we extracted estimates for 𝑑𝐺𝐹𝑃/𝑑𝑡 using a 
linear regression over the first thirty minutes of gene expression. The resulting estimates for 𝑑𝐺𝐹𝑃/𝑑𝑡 were then plotted 
against varying 𝑃ℎQRQ/𝐾QRQ to fit a Hill function, see Figure 4. Using standard linear regression techniques, we then obtained 
the following estimate: 

𝑘´ =
𝑘p=
𝑘X�p=

= 9.81×10jl. 

The ratio 𝑘p=/𝑘X�p=  characterizes the balance of power between phosphorylation and dephosphorylation reactions — 
although we are unable to infer the individual parameters 𝑘p= and 𝑘X�p= we are able to conclude that dephosphorylation 
occurs at roughly an order of magnitude faster than phosphorylation (all other variables equal). Notice this parameter 
characterizes the intrinsic chemical reaction rates, rather than the flux or mass action rates that are dependent on kinase and 
phosphatase concentrations. Thus, to tune the phosphorylation-based insulator we can vary the amount of kinase and 
phosphatase concentrations, bearing in mind that phosphorylation is slightly slower than dephosphorylation in the TX-TL 
system.  

Further, it is consistent with our intuition that only the ratio of 𝑘p= and 𝑘X�p= is identifiable and not the individual 
parameters. Because the individual parameters characterize processes that are much faster than the time-scales of production 
of our observer molecule GFP and the imaging system in the plate reader, the only information that can be passed onto the 
observer molecule is the net outcome of NRI protein’s phosphorylated state. Phosphorylation and dephosphorylation are 
processes that compete against each other to increase the amount of NRIP and NRI concentration in the system, respectively. 
Thus, by observing the amount of NRIP in the system and knowing the concentration of 𝑁𝑅𝐼QRQ, we can deduce the net 
outcome of the battle, i.e. the ratio 𝑘p=/𝑘X�p=. Notice that without knowledge of 𝑁𝑅𝐼QRQ, we would be unable to estimate 
𝑘p=/𝑘X�p=. This again illustrates the importance of having additional experimental inputs for perturbing the system. Even 
though there is only one output molecule GFP, we are able to infer three distinct parameters that represent processes from 
three different time-scales: catalytic synthesis of protein, formation and disassociation of the DNA-activator complex, and 
phosphorylation/dephosphorylation of NRI protein. 

Finally, it is worthwhile to note that the functional form of our model is consistent both quantitatively (small output 
residual error) and quantitatively. This suggests that our simplified model will serve as a suitable starting point for simulation 
studies and theoretical analysis. 
 
Simulations 
Having all the parameters identified, we first repeated the results in Figure 2 in simulation. As shown in Figure 5A and 5B, 
the control circuit suffered from the retroactivity when the load was added. In contrast, the insulator circuit could attenuate 
the retroactivity significantly. Both the transfer curves and the fold-change comparison are consistent with the experimental 
results.  

Then we wanted to know how would different initial conditions affect the output. We swept different initial conditions 
for the reporter pGlnA-GFP, the load pGlnA-RFP and phosphatase over kinase ratio (𝑃ℎQRQ/𝐾QRQ) and results were shown 
in Figure 5C and 5D. In Figure 5C, we swept [pGlnA-GFP] and [pGlnA-RFPload]. As we can see in expression. And more 
load DNA brings down the GFP level, which is a result of retroactivity as load DNA competes with reporter DNA for 
transcription and translation resources, such as RNA polymerases and ribosomes. Load the surface plot, more reporter DNA 
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results in more GFP DNA or mRNA sequesters those resources away from reporter DNA or mRNA, ending up with less 
reporter protein made. In Figure 5D, we changed the concentration of the load pGlnA-RFP and the ratio of 𝑃ℎQRQ/𝐾QRQ. As 
we mentioned above, when certain amounts of phosphatase and kinase are added, the PBI circuit will have a high gain 
because of phosphorylation and an equally large negative feedback by dephosphorylation. As a result, retroactivity from 
downstream load will be attenuated. The simulation results in Figure 5D just showed the exact same idea. By tuning the 
ratio, we can effectively achieve the same absolute GFP expression level with different absolute load amount. Through this 
mechanism, the retroactivity is largely attenuated. 
 
Conclusion 
In this work, we investigated the structural identifiability of the phosphorylation-based insulator when implemented in a 
transcription-translation cell free expression system. We showed that the retroactivity exists in the TX-TL system and the 
PBI circuit can attenuate the retroactivity significantly. Then we considered a complex model that provided an intricate 
description of all chemical reactions involved in the PBI circuit. Next, leveraging specific physiologically plausible 
assumptions, we derived a rigorous simplified model that captures the output dynamics of the phosphorylation-based 
insulator. We performed standard system identification analysis and determined that the model is globally identifiable with 
respect to three critical parameters: the catalytic rate associated with the downstream system 𝑘��Q, an internal parameter in 
the downstream system characterizing formation of the activator-DNA complex 𝐾° and 𝑘p=/𝑘X�p=, a ratio describing the 
intrinsic balance of phosphorylation and dephosphorylation in the PBI circuit. Specifically, we showed that these three 
parameters were identifiable only when the system was subjected to specific perturbations. We performed these experiments 
and estimated the parameters. Our experimental results suggest that the functional form of our simplified model is sufficient 
to describe reporter dynamics and enable parameter estimation. Besides, our simulations results based on the parameters 
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Figure	5	Simulation	results	of	the	PBI	circuit	based	on	the	parameters	identified	above.	A:	Simulation	results	of	the	transfer	
function	curves	for	controls	and	insulators	with	or	without	load	DNA	are	consistent	with	the	experimental	results.	B:	Simulation	
results	of	the	fold	changes	of	 the	samples	without	load	over	the	ones	with	 load	are	also	consistent	with	the	experimental	
results.	C:	Simulation	results	of	GFP	expressions	as	 functions	of	 two	DNA	 inputs.	 Initial	condition:	DNA	pGlnA-GFP	ranging		
from	 0	 to	 40	 nM	 and	 DNA	 pGlnA-RFP	 (load)	 ranging	 from	 0	 to	 40	 nM,	with	 68	 nM	 protein	𝑁𝑅𝐼QRQ 	and	𝑃ℎQRQ/𝐾QRQ = 0.	
Simulation	time	is	120	min.	D:	Simulation	results	of	GFP	expressions	as	functions	of	DNA	load	and	𝑃ℎQRQ/𝐾QRQ.	Initial	condition:	
DNA	pGlnA-RFP	(load)	ranging	from	0	to	80	nM	and	𝑃ℎQRQ/𝐾QRQ	varying	between	0	and	1,	with	20	nM	DNA	pGlnA-GFP	and	
68nM	protein𝑁𝑅𝐼QRQ .	Simulation	time	is	120	min.	
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estimated using above methods confirmed our conclusions from experimental data and previous theoretical predictions. 
These in silico results also showed the power of computational biology and its future applications in guiding biological 
experiments and synthetic biocircuits design. In general, this research illustrates the utility of the TX-TL cell free expression 
system as a platform for system identification, as it provides extra control inputs for parameter estimation that typically are 
unavailable in vivo. Future work will investigate the theoretical utility of the TX-TL system as a platform for system 
identification, parameterization of more complex systems, and the robustness and sensitivity of the phosphorylation-based 
insulator using our derived model. 
 

ASSOCIATED CONTENT  

Materials and Methods 
Plasmids and linear DNAs: 
DNA and oligonucleotides primers were ordered from Integrated DNA Technologies (IDT, Coralville, Iowa). Plasmids in this 
study were designed in Geneious 8 (Biomatters, Ltd.) and were made using standard golden gate assembly (GGA) protocols and 
maintained in a KL740 strain if using an OR2- OR1 promoter (29°C) or a JM109 strain for all other constructs. Plasmids were mini 
prepped using Qiagen mini prep kit. BsaI-HF (R3535S) enzyme used in GGA was purchase from New England Biolabs (NEB). 
Linear DNAs were made by PCRing protein expression related sequences out of GGA constructs using Phusion Hot Start Flex 2X 
Master Mix (M0536L) from NEB. Rapid assembly procedures were based on [9].Before use in the cell-free reaction, both plasmids 
and PCR products underwent an additional PCR purification step using a QiaQuick column (Qiagen), which removed excess salt, 
and were eluted and stored in deionized water at 4°C for short-term storage and −20°C for long-term storage. All the plasmids used 
in the work can be found on https://www.addgene.org/. 
 
TX-TL reactions and fluorescence measurements: 
TX-TL reaction mix was prepared and set up according to previous JOVE paper [7]. TX-TL reactions were conducted in a volume 
of 10 µL in a 384-well plate (Nunc) at 29°C, using a three-tube system: extract, buffer, and DNA. For deGFP, samples were read 
in a Synergy H1 plate reader (Biotek) using settings for excitation/emission: 485 nm/525 nm, gain 61. All samples were read in the 
same plate reader, and for deGFP relative fluorescence units (RFUs) were converted to nM of protein using a purified deGFP-His6 
standard. Unless otherwise stated, end point measurements are after 2 h of expression at 29°C. 
 
Computational models and simulations: 
Data analysis and fitting, model building and simulations were conducted in MATLAB (R2015b, The MathWorks, Inc.) software. 
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Supplementary	Figures	

	
Figure	S1	Test	the	temperature	sensitivity	of	the	PBI	circuit	at	three	different	temperatures,	29°C,	
33°C	and	37°C.	A,	B,	C:	Transfer	function	curves	for	controls	and	insulators	with	or	without	load	
DNA	at	three	different	temperatures.	D,	E,	F:	Fold	changes	of	the	samples	without	load	over	the	
ones	with	load	at	three	different	temperatures.	

	
	

Figure	S2	Linear	regression	to	estimate	the	GFP	production	rate.	A:	Plot	of	GFP	expression	while	
varying	the	𝑃ℎ/𝐾	ratio.	Curves	from	t	=	0	to	t\�¯	 = 	30	min	were	used	to	estimate	the	slope	of	
GFP.	B:	 Expression	dynamics	of	GFP	 for	 varying	amounts	of	pGlnA	with	𝑝𝐿𝑎𝑐 − 𝑃ℎ	 = 	0	𝑛𝑀.	
These	curves	enable	the	estimation	of	𝑑𝐺𝐹𝑃/𝑑𝑡	for	𝑡	£	t\�¯ = 	30	𝑚𝑖𝑛.	
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