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ABSTRACT

Each individual cell produces its own set of transcripts, which is a combinatorial result of genetic, transcriptomic and post-
transcriptomic variations. Due to this combinatorial nature, obtaining the exhaustive set of full-length transcripts for a given
species is a never ending endeavor. Yet, each RNA deep sequencing experiment turns out a variety of transcripts that depart
from reference transcriptomes and should be properly identified. To address this challenge, we introduce a k-mer-based
software protocol for capturing local transcriptional variation from a set of standard RNA-seq libraries, independently of a
reference genome or transcriptome. Our software, called DE-kupl, analyzes k-mer contents and detects k-mers with differential
abundance directly from the sequencing files, prior to assembly or mapping. This enables to retrieve the virtually complete set
of unannotated variation lying in an RNA-seq dataset. This variation can be subsequently assigned to lincRNAs, antisense
RNAs, splice and polyadenylation variants, retained introns, expressed repeats, chimeric or circular RNA, foreign RNA and
SNV-harbouring RNA. We applied DE-kupl to a published differential RNA-seq experiment carried on a human cell line, and
were able to discover highly significant unannotated transcript variations. We propose that DE-Kupl could be a valuable tool for
extracting in full the untapped transcript information contained in large scale transcriptome projects.

Introduction

cDNA sequencing' and massively parallel RNA sequencing (RNA-seq) revealed that organisms produce a variety of RNAs
that is far larger than previously expected. Due to the combination of two major phenomena, pervasive transcription and
variable RNA processing, modern transcript catalogues such as Gencode may harbor ten times more transcripts than there are
protein-coding genes”. However, in spite of this apparently broad picture of the transcriptome enabled by high throughput
sequencing, we argue that a large segment of transcriptomic information is essentially disregarded.

To illustrate this point, let us consider the biological events that drive transcript diversity. Firstly, transcripts result from
transcription initiation events either at promoters of protein-coding and non-coding genes, or at multiple antisense or inter/intra
genic loci. Secondly, transcripts are processed by a large variety of mechanisms, including splicing and polyadenylation,
editing®, circularization* and cleavage/degradation by various nucleases™°. Thirdly, an essential, yet often overlooked, source
of transcript diversity, is genomic variation. Polymorphism and structural variations within transcribed regions produce RNAs
with single nucleotide variations, tandem duplications or deletions, transposon integration, unstable microsatellites or fusion
events. These events are major sources of transcript variation that can strongly impact coding potential in translated regions and
protein-binding abilities in untranslated regions.

Current bioinformatics protocols for RNA-seq analysis do not properly account for this vast diversity of transcripts.
Prevalent computing strategies can be roughly classified into two categories: reference-based tools’~!” rely on the alignment
(or pseudo-alignment) of RNA-seq reads to a reference genome or transcriptome, while de novo assembly tools!! reconstruct
full-length transcripts based on the analysis of RNA-seq reads. These protocols fail to account for true transcriptional diversity
in several respects: (i) they ignore small-scale variations such as SNP or indels (ii) they rely on full-length transcripts that
cannot represent the combinatorials of variations observed in actual populations and that are impacted by bias in alignment
procedures, and (iii) they misrepresent transcripts containing repeats due to ambiguity in alignment or assembly.

We propose a new approach to RNA-seq analysis that facilitates the discovery of all types of events occurring in an RNA-seq
library, independently of alignment or reconstruction. Our approach relies on k-mer indexing of sequence files, a technique that
recently gained momentum in NGS data analysis® '%12-14_ In order to focus on biologically meaningful events, we focus on
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differentially expressed k-mers, hence the name of our method, DE-kupl. Using published human RNA-seq datasets, we show
that a large amount of RNA variation can be captured that is not represented in existing transcript catalogues. As a proof of
concept, we applied DE-kupl to a published Epythelial-Mensenchymal Transition (EMT) model dataset and characterized a
large number of novel events.

Results

Reference datasets are an incomplete representation of actual transcriptomes

First, we analyzed k-mer diversity in different human references and high-throughput experimental sequences. To this aim, we
extracted all 31-nt k-mers from sequence files using the Jellyfish program!>. Figure 1A-B compares k-mers from Gencode
transcripts, the human genome reference and RNA-seq libraries from 18 different individuals'® corresponding to three primary
tissues (6 RNA-Seq libraries/tissue). To minimize the risk of including k-mers that contain sequencing errors, we retained for
each tissue only the set of k-mers that appear in 6 or more individuals.

Measures of k-mer abundance show that k-mers are overwhelmingly associated to Gencode transcripts (Fig 1B1). However,
when considering k-mer diversity, a large fraction of k-mers are tissue-specific and not found in the Gencode reference (Fig
1A). These tissue-specific k-mers may result from sequencing errors, genetic variation in individuals or novel, or non-reference
transcripts. The majority of RNA-seq k-mers that do not occur in Gencode are found in the human genome reference (Fig 1B,
1B2), suggesting polymorphisms and errors represent a minor fraction of tissue-specific k-mers and a lot of k-mers results
from expressed genome regions that are not represented in Gencode. Further scrutiny of tissue-specific k-mers shows that a
significant fraction can be mapped to the transcriptome with one substitution. However, for each tissue there is an average of 1
million k-mers that cannot be mapped to either reference (1B3).

Non-reference k-mers classify samples as accurately as reference transcripts. We performed a Principal Component Analysis
(PCA) of the above human tissue samples using conventional transcript counts and k-mer counts. PCA based on 20,000
randomly selected unmapped k-mers was able to differentiate tissues as well as PCA based on estimated gene expression or
transcript expression (Fig 2). This illustrates how a shadow”, non reference transcriptome that is not incorporated in standard
analyses comprises biologically relevant expression data.

When comparing RNA-seq and whole genome sequence (WGS) data from the same individual'”, library-specific k-mers
represent a much larger fraction of RNA-seq than of WGS k-mers (Fig 3). This shows that non-reference sequence diversity
is larger in RNA-seq than in WGS. Altogether these results point towards the existence of a significant amount of untapped
biological information in RNA-seq data.

Non-reference k-mers may result from three classes of biological events. First, they may stem from genetic polymorphism
in the studied sample. Second, they may result from RNA processing, notably, but not limited to, splicing and polyadenylation.
A predominant source of k-mers in this category is intron retention, whose products are not usually incorporated into reference
databases and are mostly by-products of regular gene expression. A third, major source of k-mer “innovation” is intergenic
expression (eg. lincRNA, antisense RNA, expressed repeats or endogenous viral sequences). Altogether, the combination of
these genetic, transcriptional and post-transcriptional events may have a profound impact on transcript function.

A new k-mer based protocol for deriving transcriptome variation from RNA-seq data
We designed the DE-kupl computational protocol with the aim to capture all k-mer variation in an input set of RNA-seq libraries.
This protocol is composed of four main components (Figure 4):

1. Indexing: index and count all k-mers (k=31) in the input libraries

2. Filtering: delete k-mers representing potential sequencing errors or perfectly matching known transcripts

3. Differential Expression (DE): select k-mers with significantly different abundance across conditions

4. Assembly and annotation: build contigs of assembled k-mers and annotate contigs based on sequence alignment.

DE-kupl departs radically from all existing RNA-seq analysis procedures in that it does neither “map-first” (a la Tuxedo
suite) or “assemble-first” (a la Trinity) but instead directly analyzes contents of the raw fastq files, displacing assembly and
mapping to the final stage of the procedure. In this way, DE-kupl guarantees that no variation in the input sequence (even at the
level of a single nucleotide) is lost at the initial stage of the analysis. Even unmappable k-mers such as sequences from repeats,
low complexity regions or exogeneous organisms, are retained up to the final stage and can be analyzed.

The DE-kupl protocol is detailed in Methods. We highlight here some of its key features. First, DE-kupl must deal with the
large size of the k-mer index. A single human RNA-seq library has in the order of 10® k-mers and an index for 50 individual
samples can reach 10' k-mers (not shown). We selected the Jellyfish tool for counting k-mers'> as it presents very fast
computing times and allows to store the full index on disk for further query. Other key steps of the procedure (k-mer table
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merging, DE tests, k-mer assembly) were written in C, enabling the whole procedure to run on a relatively standard computer
in a reasonable amount of time.

The central process in DE-kupl is k-mer filtering. Filtering out unique or rare k-mers is relatively straightforward and
considerably reduces k-mer diversity and the amount of sequence errors. Another stringent filter is the removal of k-mers
matching reference Gencode transcripts. The rationale for this is that the bulk of k-mers in RNA-seq data comes from expressed
exons, and we are not interested in this canonical exon expression, as it can be easily captured by conventional, reference-based
protocols® 1. Discarding these k-mers enable us to ignore the very strong signal caused by known transcripts and focus on
expressed regions harboring differences from the reference transcriptome.

To demonstrate the capacity of DE-kupl to discover novel biological events, we applied the procedure to 12 RNA-samples
from an EMT cell-line model'®. EMT was induced in NSCLC cells by ZEB1 expression over a 7-day time course. We
compared 6 RNA-seq libraries from the "Epythelial” stage of the time course (uninduced and Day 1) with 6 libraries from the
”Mesenchymal” stage (Day 6 and 7, Table 1).

DE-kupl discovers and assembles unannotated differentially-expressed events

The full DE-Kupl procedure was completed in less than 10 hours using 4 computing cores, 16 GB RAM and 60 GB of hard
disk space (Table 2). Recurrence filters efficiently reduced k-mer counts from 707M to 92.5M and the Gencode filter further
reduced counts to 40.3M. Differential analysis eventually retained 3.6M k-mers that were assembled into 128k contigs (Table
3). The resulting contigs range in size from 3 1nt (corresponding to an “orphan” k-mer) to 3.6kb, with a major peak of short
31-40nt contigs and a minor peak around 61nt (Fig SA). 61nt-contigs are formed by 31 overlapping k-mers harboring a single
nucleotide variation (SNV) at every position of the k-mer. This phenomenon also causes a higher mismatch ratio for contigs
around 61nt (Fig 5B). Therefore 61nt contigs are predominantly associated to SN'Vs.

Contigs that do not map onto the human genome are generally shorter than mapped contigs (Fig SA), indicating a lower
signal-to-noise ratio in the former class. Expectedly, shorter mapped contigs tend to map at multiple loci more often than longer
ones (Fig 5C), however 80% of all contigs are uniquely mapped (data not shown).

Contig locations reveal distinct classes of biological events. Most contigs are located in annotated introns and exons (Fig 6),
however intronic contigs are predominantly exact matches while exonic contigs predominantly carry one mismatch. This effect
is due to Gencode filtering : contigs with exact matches to introns are usually not filtered, as they do not pertain to a Gencode
transcript, while contigs that match exons are filtered out unless they differ from the reference. This difference might be in the
form of SN'Vs, or through exons extending in flanking intergenic or intronic regions. Under the same rationale, contigs mapping
to intergenic and antisense regions are depleted in SNVs (Fig 6), consistent with their location in unannotated IncRNAs and
antisense-RNAs, while contigs overlapping exon-exon junctions behave like exonic contigs (high rate of SNV). However, a
significant fraction of exon junction contigs are exact matches, indicating they may correspond to novel junctions.

Annotating new EMT events from mapped and unmapped contigs

Almost all (99.2%) the 128k DE contigs mapped to the human genome, at 1633 different loci (Table 4). Our annotation
procedure decomposed DE contigs into eight classes of biological events using the rule set described in Table 4. We describe
below the different classes of events. We grouped contigs into "loci”, here defined as independent annotated genes or intergenic
regions. We remind that all the reported contigs are both differentially expressed and composed of k-mers that are absent from
Gencode transcripts.

Alternative splicing. Analysis of split-mapped contigs found evidence of potentially novel, differential splice variants at
338 loci derived from a set of 371 contigs. (Table 4, Fig 7A,B,C). We purposedly excluded SNV-containing splice sites, and
splice events in genes described as differentially expressed by the conventional DE procedure. Therefore differential splicing at
these sites may not be a consequence from DE of the whole gene. Remarkably, these novel events include a number of subtle
variations at 5” and 3’ splice sites with 3-15 nt difference from the annotated reference, which escaped prior annotation (see eg.
Fig S1).

Alternative polyadenylation. We extracted all contigs aligned with 5 or more clipped (e.g. non-reference) bases at their
3’ end, and containing 5 or more trailing As. Out of 166 such poly-A terminated contigs, 125 (75%) contain an AATAAA
or variant polyadenyalation signals, indicating they result from actual polyadenylated transcripts. Although 95 such “polyA
contigs” come from genes predicted as differentially expressed by the standard procedure, 30 come from previous non-genic
regions or genes not predicted as differentially expressed, thus suggesting the occurrence of differential polyadenylation at
these sites (Table 4, S1, S2).

LincRNA. We identified a subset of 927 DE contigs corresponding to potential long intergenic non-coding RNAs (Table 4).
Criteria for lincRNAs were contigs of size > 200nt and mapped to an intergenic locus. These potential lincRNAs were found
in 220 distinct intergenic regions. Visual inspection reveals clear lincRNA-like patterns at these loci, whith contigs clustered
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into well defined transcription units with abundant read coverage and abundant splicing (Fig 7C, Fig S2). DE-kupl is thus an
effective tool for the identification of novel DE lincRNAs.

Antisense RNAs. When DE-kupl is applied to stranded RNA-seq libraries (as with the EMT libraries used in this study), the
resulting contigs are strand-specific and can be used for disambiguating sense/antisense expression. We identified 400 contigs
from 173 loci mapping to the reverse strand of an annotated gene (Table 4). These antisense RNAs include very strong cases of
differential expression (Fig 7D), sometimes combined to apparent repression of the sense gene (Fig S3).

Allele-specific expression. As DE-kupl quantifies every SNV-containing k-mer, we set out to exploit this capacity to identify
potential allele-specific expression events. We extracted all contigs including an SNV and mapping to an exon whose host gene
was not measured as differentially expressed. This was a less than perfect procedure, as we did not explicitly tested for a switch
in allelic balance among the two conditions. Yet, among the 732 contigs identified (Table 4), some display strong apparent
changes in allelic balance between the E and M conditions (eg. Fig S4).

Intron retention.  As highly expressed transcripts often carry intronic byproducts, we expected DE-kupl to turn out a lot of
“parasitic” intronic contigs. To mitigate this artifact, we focused on intronic k-mers from genes that were not DE. This filter
identified 547 intronic contigs from 200 different genes (Table 4). This included cases of strong localized intronic expression
suggesting novel exons (Fig S5) as well as cases where a specific short intronic region was differentially expressed, reminiscent
of the pattern observed at intronic processed miRNAs and snoRNAs'? (Fig S6).

Expressed repeats. Assessing the expression of human repeats by conventional RNA-seq analysis protocols is difficult,
as mapping ambiguities render repeat regions “unmappable”?’. Since DE-kupl first measures expression independently of
mapping, we were able to collect and analyze differential contigs with multiple genome hits. 7243 contigs of size 50nt or
larger have multiple hits, and 1111 are repeated more than 5 times. RepeatMasker?! found 747 out of these 1111 sequences
to match known repeats, mostly LINEs, LTRs and SINEs (Fig S8). Further inspection showed that most of the remaining
multiple-hit contigs correspond to unannotated repeats or low complexity regions. One of the most striking differential repeats
is an unannotated 22x66nt tandem repeat, located about 2Mb from the chromosome 8 telomere. This repeat is found about
50-fold overexpressed in the Mesenchymal condition (Fig 7B, S7).

Unmapped contigs. Unmapped contigs may result from transcripts produced by highly rearranged genes or by exogenous
viral genomes and could thus be highly relevant biologically. In principle, DE-kupl is able to detect such events when analyzing
samples with varying levels of foreign RNA. However, here we compared samples from the same cell line, thus we did
not expect to observe such phenomena. Indeed, out of 112 unmapped contigs of size > 50nt (Table 4), the vast majority
(76%) correspond to vector sequences overexpressed in the ”"M” condition (not shown), indicating these contigs come from
the expression vector used for EMT induction. The remaining unmapped contigs are low complexity sequences or align to
non-human primate sequences, indicating they result from yet incorrectly assembled regions of the human genome.

Discussion

K-mer decomposition followed by filtering and differential expression analysis is a novel way of analysing RNA-seq data that
is capable of detecting a wider spectrum of transcript variation than previous protocols. Contrarily to popular RNA-seq analysis
software, DE-kupl does not attempt full transcript recognition or reconstruction but focuses instead on local transcript variations.
In some way it is closer in spirit to methods analyzing local RNA-seq coverage such as RNAprof?? and DERfinder??, with the
notable exception that DE-kupl does not involve mapping and thus avoids mapping-related pitfalls and simplifications. In fact,
we do not consider full-length transcript reconstruction to be a realistic, or even desirable goal when all levels of variation are
considered, as the combinatorial nature of genomic, transcriptomic and post-transcriptomic variations would create indefinitely
expanding transcript catalogues.

DE-kupl explores all k-mers in the input RNA-seq files (vs. only k-mers from annotated transcripts in existing protocols)
which potentially entails heavy computational time and memory requirement. Using the Jellyfish k-mer indexing software and
C-programming code for key table manipulation, we achieved time/memory requirements on par with popular mapping-based
protocols for similarly sized datasets. Another key aspect of our protocol that rendered the full k-mer” approach tractable was
applying successive filters for rare k-mers, Gencode transcripts and Differential Expression, which altogether resulted in a
200-fold reduction in k-mer counts. These filters are not only useful for technical reasons (they reduce runtimes and enable to
get rid of most sequence errors), but they allow to focus on k-mers which (i) vary significantly between the conditions under
study, and (ii) would not be captured by conventional reference-based protocols.

Using an RNA-seq dataset from a human cell line, we showed that DE-kupl is able to detect events caused by alternative
transcription and alternative RNA processing, as well as SNVs in DE genes and potential allele-specific expression events.
This ability to identify transcriptome differences linked to genetic variation is an important benefit of the DE-kupl approach.
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Furthermore, DE-kupl takes advantage of read direction in oriented RNA-seq libraries, which facilitates the disambiguation of
sense and antisense transcription units at complex loci, as illustrated in some of the events shown.

In this proof of concept study, we applied DE-kupl to RNA-seq libraries from a single cell line, with no expected
polymorphism among samples. The next step will be application to libraries from multiple individual organisms. Although
K-mer diversity is much higher in a set of individuals than in a cell line, our initial tests with with RNA-seq data from
60 individual tumors were completed successfully on a medium size server (data not shown). The capacity of DE-kupl to
simultaneously detect genetic variation and RNA processing events opens exciting perspective for the analysis of patient
samples. Finally, it did not escape our notice that k-mers of interest uncovered by DE-kupl can be used for the efficient querying
of large scale RNA-seq repositories such as the Cancer Genome Atlas in order to retrieve similar events.

Methods

Characterization of k-mer diversity in human RNA-seq libraries

RNA-seq data for bone marrow, skin and colon where retrieved from the human protein atlas project (10.1126/science.1260419,
E-MTAB-2836). A total of 18 datasets from different individuals, corresponding to 6 replicates per tissue, were downloaded
from EBI/ENA (bone marrow: ERR315469, ERR315425, ERR315486, ERR315396, ERR315404, ERR315406, colon:
ERR315348, ERR315403, ERR315357, ERR315484, ERR315400, ERR315462, skin: ERR315401, ERR315464, ERR315460,
ERR315372, ERR315376, ERR315339). The reference GRCh38 genome and Ensembl 86 transcripts were downloaded from
Ensembl.

First we counted k-mers in each RNA-Seq and references sequence set using Jellyfish (2.2.0) count, with options k = 32
and -C (canonical k-mers). The k-mer list for each tissue (Fig 1A and B) was produced by merging counts for all 6 samples and
conserving only those found in all replicates.

For mapping statistics (Fig 1B3), we extracted k-mers specific of each tissue and mapped them to the Ensembl 86 transcript
reference using Bowtie 1 (version 1.1.2). Unmapped k-mers were mapped a second time with Bowtie 1 to the GRCh38 genome
reference. Reads with 3 or more mismatches are not mapped by Bowtie 1 and, therefore, are considered as unmapped.

The intersection of k-mers between RNA-Seq and WGS data (Fig 1C), is based on the transcriptome and genome of
lymphoblastoid cell lines'”. K-mers were counted in these libraries with the same procedure as described before. In order to
reduce bias from sequencing errors, k-mers with only one occurrence were filtered out.

DE-kupl Implementation

The DE-kupl pipeline (Fig 4) is implemented using the Snakemake®* workflow manager. A configuration file is filled up by the
user with location of FASTQ files, the condition of each sample, as well as global parameters such as k-mer length, cpu number,
maximum memory and other parameters for each step of the pipeline which will be described hereinafter.

K-mer counting

Raw sequences (FASTQ files) are first processed with the “jellyfish count” command of the Jellyfish software, which produces
one library (a dump of the Jellyfish hash-table) for each sample. For stranded RNA-seq libraries, reads in reverse direction
relative to transcript are reverse-complemented, ensuring proper orientation of k-mers. At this point, for each library, only
k-mers having at least 2 occurrences are recorded (user-defined parameter). Once a jellyfish index has been constructed, we use
the “jellyfish dump” command to output the raw-counts in a two column text file, that contains at each line a k-mer and its
number of occurrences. These raw counts are sorted alphabetically by k-mer sequence with the Unix “sort” command.

K-mer filtering

All samples counts are then joined together with “dekupl-joinCounts” binary to produce a single matrix will all k-mer and their
abundances in all samples. During this step, the user can set two parameters: “min_reccurence” which define the minimum
number of samples to have counts for a given k-mer and “min_reccurence_abundance” which define the minimum count value
for one sample to be considered for the “min_reccurence” filter. Given n samples, k; the count for the k-mer k in the i™" sample,
and a the value of “min reccurence_abundance”, the recurrence is computed with reccurence(k,a) = Y., k; > a;. Usually
“min_reccurence’ is set to the number of replicates in each conditions, and “min_reccurence_abundance” is set to 5. In order to
remove known transcripts sequences from our set of experimental k-mers, we also use our Jellyfish-based procedure to create
the set of k-mers appearing in the reference transcriptome and we subtract this set from the experimental k-mer. The final
matrix we obtain from this subtraction will be later referred as the “raw counts”.

Differential gene expression
In parallel to the k-mer counting and filtering procedure, we analyze the RNA-Seq data with a more conventional pipeline. First
reads are processed with kallisto to estimate transcripts abundances. The transcripts estimated counts are then collapsed to the
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gene-level and processed with DESeq?2 statistical framework in order to produce a set of differentially expressed genes (DEGs)
and normalization factors (NF) for each sample.

Differential k-mer expression

In order to identify k-mers having differential expression between two conditions, we apply a T-test on the log transformed
counts previously normalized with the NF produced from the differential gene expression procedure. Since conventional DE
statistical procedure (DESeq2, EdgeR) cannot be used for millions of k-mers, we use a t-test on log transformed counts to
approach a normal distribution, similar to the procedure used in other studies>. The p-values obtained from the T-test are then
corrected with the Benjamini-Hochberg procedure and k-mers not rejecting the null hypothesis (FDR > 0.05) are filtered-out.
This procedure has been implemented in C in the “dekupl-TtestFilter” binary, for performance purposes. It should be noted that,
since the DE statistics are computed on a very large number of k-mers, multiple testing correction strongly affects the resulting
P-values. Pending improved DE statistics, we recommand using DE-kupl for designs with at least 5 vs 5 libraries. Our tests
with fewer libraries often yield no DE contig.

K-mer assembly

DE k-mers are assembled de novo in order to group k-mers that potentially overlap the same event (ie. all k-mer overlapping
a new differential splice junction or SNV). To this aim, we developed our own procedure called “mergeTags”, which works
as follows: first we try to merge k-mers having non-ambiguous k — 1 prefix-suffix overlap. For example, given the set of
k-mers : ATG,TGA,TGC,CAT, the following contigs are produced : contigs = CATG,TGA,T GC. We repeat this assembly
step using assembled k-mers until no overlap is found. We then repeat the assembly process with k — 2 prefix-suffix overlaps,
using as input the assemblies produced at the previous step, and so forth. Finally, a set of DE contigs is produced and each
contig is labelled by the assembled k-mer having the lowest p-value. This assembly procedure is implemented in C in the
“dekupl-mergeTags” binary. By default the assembly process stops after assembling sequences with 15nt overlaps.

Annotation

Finally, DE contigs are annotated to facilitate biological inference. Annotated features, summarized in Table S3, are reported
in a contig summary table. First, contigs are aligned with BLAST?® against Illumina adapters. Contigs matching adapters
are discarded. Retained contigs are further mapped to the reference genome using the GSNAP short read aligner?’, which
showed the best speed/sensitivity ratio for aligning both short and long contigs. GSNAP is used with option -N 1 to enable
identification of new splice junctions. Contigs not mapped by GSNAP are collected and re-aligned using BLAST. Alignment
characteristics are extracted from GSNAP and BLAST alignments. Alignment coordinates are then compared with Ensembl
(v86) annotations (in GFF3 format) using BEDTools® and a set of locus-related features is extracted. Finally we generate two
supplementary files, one containing a “’per locus” summary of contigs, and a BED file of contig locations that can be used as a
display track in genome browsers. In the “’per locus” table, a locus is defined as either an annotated gene, the genomic region
located on the opposite strand of an annotated gene, or the genomic region separating two annotated genes. The table records
the number of contigs overlapping each locus as well as the contig with lowest FDR for this genomic interval.

Availability
The DE-kupl pipeline software is available at https://github.com/Transipedia/dekupl.
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Table 1. EMT experience design.

Condition 1 Condition 2 Total
. Day(0+Day1 Day6+ Day7
Experiments (triplicates) (triplicates)
Files number
k kS
(paired-end gzip-compressed fastq) 273 2%3 24 files (R1+R2)
Sizes 612G 56.7G 1179 G

Table 2. DE-kupl parameters and ressource used for the EMT experiment

Parameter/Ressource value
nb_threads 4
min_recurrence 6
min_recurrence_abundance 5
pvalue_threshold 0.05
Max memory usage 23 GB
Running time 9h 47m
Max disk used 59 GB

Table 3. DE-kupl pipeline results for EMT experience. Description of output files sequentially generated by DE-kupl.
Number of kmers/contigs, correspond to the number of lines in each file.

Files Description Nb of kmers or contigs Sizes

Matrix of k-mers counts

raw_counts (no filter) from all libraries 707,067,278 (not generated)
Matrix of k-mer counts from all

raw-counts.tsv.gz libraries with recurrence filters 92,525,450 19GB

noGENCODE-counts.tsv.gz  Couns filtered with 40,398,848 728 MB
Gencode k-mers

. Counts with differential
diff-counts.tsv.gz expression test, filtered on FDR 3,642,688 177 MB
merged-diff-counts.tsv.gz Db K-mers assembled 128,275 8.4 MB

into contigs
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Table 4. Classes of annotated DE contigs. Each class of contigs is described by the set of conditions applied to select
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annotated contigs. Column ”Other condt” refers to the following criteria: 1. Contig ends with AAAAA, 2. Mean counts in both
conditions > 20, 3. Mean counts > 20 in at least 1 condition & mapped region < 1kb, 4. Mean counts in cond1+cond2 > 70 &
mapped region < 1kb. Column ”Contigs” indicates the number of contigs of each class found in the EMT experiment. Column
”Loci” is the number of loci implicated by these contigs (see Methods).

Conditions
Q

= 2 5 % 5

5 5 8 o & % . 5

228 235 §E.2ts o2 ¢

= = (=% o o = = Q

§0 2 g § S i % d 2 2 § % Contigs Loci
Alternative Splicing F >0 T T 371 338
Alternative polyA >=5 T 1 166 144
lincRNA F F T >200 2 927 330
asRNA F T T >200 2 400 173
Allele specific expression F T F T T T 1 3 732 525
Intron retention F T F T T 1 4 547 200
Expressed Repeats T >4 >50 1111 587
Unmapped F >50 112
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Figure 1. The diversity of 31nt k-mers in RNA-Seq exceeds that of reference sequences. A. Intersections of k-mers
between Gencode transcripts and RNA-Seq data from three tissues: bone marrow, skin and colon. The set of k-mers for each
tissue was defined as the common k-mers shared by all six individuals. B. Intersections of k-mers between Gencode transcripts,
the reference human genome (GRCh38) and RNA-Seq data (same as in A). B1. Repartition of k-mers abundances for each
tissue represented in A and B. K-mers shared with Gencode are labelled as "GENCODE”, then k-mers shared with the human
genome are labelled as "GRCh38”, other k-mers are labelled as “tissue-specific”’. The same procedure was applied in B2 and
B3. B2. Repartition of k-mer diversity for each tissue. B3. Mapping statistics of k-mers labeled as “’tissue-specific” in B2.
These k-mers were first mapped to Gencode transcripts, and unmapped k-mers were then mapped to the GRCh38 reference,
using Bowtiel. Bowtiel allows up to 2 mismatches in a 3 1nt k-mer.
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Figure 2. Principal Component Analysis on non-reference k-mers discriminates tissues. Samples are labeled according
to their tissues (bone marrow, colon, skin). PCA were produced with normalized, log transformed, counts. For genes, and
transcripts, counts were generated with Kallisto based on Gencode V25. Genomic k-mers correspond to 20k random k-mers
not mapped to Gencode transcripts but successfully mapped to GRCh38.
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Figure 3. The diversity of non-reference k-mers is greater for RNA-Seq than for whole genome sequencing (WGS).
Intersection of k-mers between Gencode transcripts, the human genome (GRCh38), RNA-Seq and WGS data. RNA-Seq and
WGS data originate from the same lymphoblastoid cell line (HCC1395).

11/15


https://doi.org/10.1101/122937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122937; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

RAW FASTQS REFERENCE TRANSCRIPTOME GTF

condition A condition B

Y 5

K-MER COUNTING GENE QUANTIFICATION ”

jellyfish count jellyfish dump sort kallisto index kallisto quant trans-to-gene
T r T
JOIN COUNTS gencode gene counts
k-mers

I
FILTER-OUT LOW ’

\

RECCURRENCE

FILTER-OUT GENCODE

GENE DIFFERENTIAL TEST

- DESeq2
K-MERS ’ €4
K-MER DIFFERENTIAL TEST Normalizat DE Genes
TtestFilter
I FILTER DIFFERENTIAL
K-MERS
Conditon A Condition B Ioggé?:tispt_i\(/:;ue +
kmer 1
kmer 2
Kmer 3 K-MER MERGING
= mergeTags
kmer N
T
FILTER-OUT SMALL
kmer 1 CONTIGS
kmer 2 ] kmerN-1 [ +
kmer 3 ] kmer N [
contigA  —— contig B K-MER ANNOTATION
-
BLAST+GSNAP PEI computation GTF Annotation
Intergenic splice  Indel  wm—————— = contig A Annotated
new splicing .
contigs
anti-sens intron polyA

Figure 4. The DE-kupl pipeline for the discovery and analysis of differentially expressed k-mers. Raw FASTQ files are
processed with two independent quantification procedures. On the left side, we use Jellyfish to count k-mers in all libraries.
K-mers counts are then joined into a count matrix and filtered for low-recurrence and matching to the reference transcriptome.
On the right side, FASTQs are processed with Kallisto to estimate gene counts based on the reference transcriptome. Gene
counts are then processed with DESeq?2 to compute normalization factors (NF) and differentially expressed genes. K-mer
counts from the left side procedure are then normalized with NF computed from gene counts and the DE procedure is applied.

Finally overlapping DE k-mers are merged into contigs and annotated based on their alignment to reference and overlap with
annotations.
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Figure 5. Specificity of differentially expressed contig. A. Density estimation plot of contigs length between mapped and
unmapped contigs. The red line indicates contigs assembled from k k-mers and likely corresponding to SNVs. B. Mismatch
ratio (number of mismatch / contig size) as a function of contig length. C. Number of hits in the reference genome as function
of contig length. The B and C curves were obtained using a smoothing function.
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Figure 6. Genomic location of differentially expressed contigs. Contigs are separated by genomic location as follows.
Exons: alignment overlaps a known exon. Intron: alignement overlaps an intron of an annotated gene. Junction: alignement is
splitted (at least once). Antisense: alignment overlaps an annotated gene located on the opposite strand. Intergenic: mapped
elsewhere in the genome. Contigs with a single location are labeled according of their number of mismatches: 0 as “perfect
match”, 1 as “one mismatch”, > 1 as ”multi mismatches”. Contigs having multiple locations on the genome are labeled as

“multi-map”
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Figure 7. Examples of DE contigs. Sashimi plots generated from IGV using

BAM alignments produced with STAR?.

Sample SRR2966453 from condition DO is labed as "E” (epithelial). Sample SRR2966474 from condition D7 is labeled as "M”
(mesenchymal). Annotations from Gencode and DE-kupl DE contigs are shown at the bottom of each frame. A. New splicing
variant involving an unannotated exon, overexpressed in condition ”E”. B. Tandem repeat at chr8:143,204-870-143,206,916
(red region) that is overexpressed in condition "M” vs. ”E”. Note that the overexpressed tandem repeat is part of a larger
overexpressed unannotated locus. C. A novel IncRNA overexpressed in condition ”E”. D. A novel antisense RNA. RNA-seq
reads are aligned in the forward orientation while the gene at this locus is in the reverse orientation. Note that the annotated

gene is not expressed.
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