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Abstract

For monoclonal antibodies, mathematical models of target mediated drug disposition (TMDD) are
often fit to data in order to estimate key physiological parameters of the system. These parameter
estimates can then be used to support drug development by assisting with the assessment of whether
the target is druggable and what the first in human dose should be. The TMDD model is almost
always over-parameterized given the available data, resulting in the practical unidentifiability of
some of the model parameters, including the target receptor density. In particular, when only PK
data is available, the receptor density is almost always practically unidentifiable. However, because
practical identifiability is not regularly assessed, incorrect interpretation of model fits to the data
can be made. This issue is illustrated using two case studies from the literature.
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Introduction

When characterizing the pharmacokinetics of monoclonal antibodies (mAbs), mathematical models
of target mediated drug disposition (see the Full Model and its Michaelis-Menten approximation
in Figure 1) are often fit to preclinical and clinical data in order to estimate key physiological
parameters of the system. These parameters (listed in Table 1) can then be used to build a deeper
understanding of the underlying physiology, which can guide predictions about the druggability of
the target and the minimally effective dose for first in human trials [1, 2, 3].

A challenge in fitting these models to data is that although these models have been shown to
be structurally identifiable [4], they are often practically unidentifiable. A model is defined to be
structurally identifiable (also referred to as a priori or theoretically identifiable) if there is a one-to-
one mapping between the model parameters and the measured variables (e.g. drug concentration).
For a structurally identifiable model, it is possible for the investigator to collect sufficient data
to estimate all model parameters as long as the assay is of sufficient sensitivity and a range of
dosing regimens can be explored. A model parameter is defined to be practically identifiable (also
referred to as deterministic, a posteriori, or numerically identifiable) with respect to a particular
experimental design; a model parameter is practically identifiable if the confidence intervals on
that parameter are finite on a log-scale [5]; i.e. the lower confidence limit of a parameter must be
greater than zero and the upper confidence limit must be less than infinity. A non-zero lower limit
is required because there can be a big difference between a binding affinity of 1 pM, 1 nM and 1
µM.

An example of a practically identifiable system is when one fits an Emax model E(C) =
EmaxC/(EC50 + C) to a limited dataset. If only low concentration data is available such that
E(C) looks linear, then Emax will be practically unidentifiable with with no upper bound. On the
other hand, if only large concentration data is available such that the measured effect ranges from
70%-100% of Emax, there may not be sufficient data to identify a lower bound for the EC50, making
EC50 practically identifiable.

For target mediated drug disposition models for mAbs, the data that is collected is often rich,
with intravenous and subcutaneous dosing over a 100x dose range; however, the data is almost never
rich enough to identify all model parameters. In particular, PK sampling just after intravenous
dosing is usually not frequent enough to estimate the rate of binding (kon). The assay is also often
not sensitive enough to estimate the receptor density (R0) or drug-receptor complex internalization
rate (keCR). The mathematical analysis from Peletier and Gabrielsson [6] highlights the conditions
under which each parameter is identifiable for a one-compartment model though to our knowledge,
an analysis of the two-compartment system has not been published.

One example of practical unidentifiability that is well understood is that even when the binding
rate (kon) and unbinding rate (koff) are difficult to estimate, a lumped parameter such as Kd =
koff/kon or Kss = (koff + keCR)/kon may still be identifiable. Thus the pharmacometrics community
makes frequent use of the quasi-equilibrium or quasi-steady-state approximations [7, 8].

Another example of practical unidentifiability that is less widely understood is that for membrane-
bound targets, the data is often not rich enough to allow for identification of the receptor den-
sity at baseline and steady state (R0, Rtot,ss) and the bound and unbound receptor elimination
rates (keCR, keR). Instead, only lumped parameters are identifiable such as Vm ≈ ksyn · Vc =
keCR ·Rtot,ss · Vc and Km ≈ Kss · (Rtot,ss/R0). While this issue has been explored in the literature
[8, 9], the pharmacometrics community does not regularly employ this insight. In particular, two
recent manuscripts make use of TMDD models to estimate the baseline receptor density (R0) to
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Figure 1: The Michaelis-Menten model and the full target mediated drug disposition model
(TMDD) for characterizing monoclonal antibody pharmacokinetics. Parameter descriptions are
provided in Table 1.

support physiological understanding of the system for romosozumab [10] or to make PK predic-
tions in humans based on cynomolgus monkey data [11]. However, as will be shown here, R0 was
practically unidentifiable in both instances and only an upper bound for R0 could be identified.

Methods

Models

The following models, derived previously in [8, 12] were explored in this analysis:

Full model

Input Absorption Distribution Binding Elimination

dCdep

dt
= Insc(t)/Vc − kaCdep

dC

dt
= Iniv(t)/Vc + kaFCdep − k12C + (k21Vp/Vc)CP − konC · R + koff(CR) − keCC (1)

dCp

dt
= (k12Vc/Vp)C − k21CP

dR

dt
= ksyn − konC · R + koff(CR) − keRR (2)

d(CR)

dt
= konC · R − koff(CR) − keCR(CR) (3)

Following a single IV bolus dose, the initial conditions for this model are Cdep(0) = Cp(0) =
CR(0) = 0, C(0) = Dose/Vc and R(0) = ksyn/keR.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2017. ; https://doi.org/10.1101/123240doi: bioRxiv preprint 

https://doi.org/10.1101/123240
http://creativecommons.org/licenses/by/4.0/


Parameter Type Description Units

Insc(t) Amount Subcutaneous dosing function nmol
Iniv(t) Amount Intravenous dosing function nmol
C Conc. free drug concentration nM
R Conc. free receptor concentration nM
(CR) Conc. complex concentration nM
Ctot Conc. total drug conc. = C + (CR) nM
Rtot Conc. total receptor conc. = C + (CR) nM
ka Dose subcutaneous absorption rate 1/d
F Dose subcutaneous bioavailability -
Vc PK central volume L
keC PK drug elimination rate= CL/Vc 1/d
k12 PK central → peripheral distribution 1/d
k21 PK peripheral → central distribution 1/d
CL PK clearance = keC · Vc L/d
Q PK inter-compartmental clearance = k12Vc L/d
Vp PK peripheral volume = k12Vc/k21 L
ksyn Receptor receptor synthesis rate nM/d
Vm Receptor/PK maximum saturable elimination rate ≈ ksynVc nmol/d
keR Receptor receptor elimination rate 1/d
keCR Receptor complex elimination rate 1/d
R0 Receptor initial receptor concentration = ksyn/keR nM
Rtot,ss Receptor steady state total receptor conc. after large dose = ksyn/keCR nM
koff Binding disassociation rate 1/d
kon Binding association rate 1/(nM d)
Kss Binding quasi-steady-state (QSS) const = (koff + keCR)/kon nM
Km Binding/PK Concentration of half saturable elimination for MM nM

Table 1: Model parameter descriptions.
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Quasi-steady-state model (QSS)

For drugs with membrane-bound targets, binding and complex internalization generally happen
quickly and it is assumed that RC is in a quasi-steady-state such that

d(CR)

dt
= konC ·R− koff(CR)− keCR(CR) ≈ 0

Rearranging the above equations for C ·R/(CR) gives the equation below, where now the differential
equation above for RC has been replaced with this algebraic expression.

Kss = C ·R/(CR) = (koff + keCR)/kon

The differential equations can then be written in terms of total drug and receptor levels giving:

dCdep

dt
= Insc(t)/Vc − kaCdep

dCtot

dt
= Iniv(t)/Vc + kaFCdep −k12C + (k21Vp/Vc)CP − keCC−keCR(CR) (4)

dCP

dt
= (k12Vc/Vp)C − k21CP

dRtot

dt
= ksyn − keRR−keCR(CR) (5)

The initial conditions following a single IV bolus dose are Cdep(0) = CP (0) = 0, Ctot(0) = Dose/Vc

and Rtot(0) = ksyn/keR. The concentrations C, R, and (CR) on the right hand side are given by
the equations below, which were derived by substituting C = Ctot − (CR) and R = Rtot − (CR)
into the equilibrium equations above and solving for (CR).

C =
1

2

(
(Ctot −Rtot −Kss) +

√
(Ctot −Rtot −Kss)2 + 4 ·Kss · Ctot

)
(6)

(CR) =
C ·Rtot

Kss + C
(7)

R = Rtot − (CR) (8)

Constant Turnover (CT)

The constant turnover approximation assumes that keCR = keR and thus that Rtot is constant.
A method was developed for replacing the differential equations and algebraic expressions for the
equilibrium models above with a single differential equation [13, 9], though in the simulations
performed here, the constant turnover assumption is applied simply by setting keCR = keR in the
QSS model.
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Michaelis-Menten (MM)

The Michaelis-Menten approximation is given by:

dCdep

dt
= Insc(t)/Vc − kaCdep

dC

dt
= Iniv(t)/Vc + kaFCdep −k12C + (k21Vp/Vc)CP − keCC−

ksynC

Kss + C
(9)

dCP

dt
= (k12Vc/Vp)C − k21CP

(10)

The initial conditions following a single IV bolus dose are Cdep(0) = CP (0) = 0 and C(0) =
Dose/Vc.

Estimating the baseline and large-dose receptor number

Consider Equation 5. When no drug is in the system, C = (CR) = 0 and

dRtot

dt
=
dR

dt
= ksyn − keRR

At steady state when dRtot/dt = dR/dt = 0 gives R0 = ksyn/keR in the absence of drug. For large
doses, almost all drug is bound, giving Rtot ≈ (CR) and dRtot/dt ≈ d(CR)/dt. Thus:

dRtot

dt
≈ d(CR)

dt
= ksyn − keCR(CR)

At steady state, d(CR)/dt = 0, giving Rtot,ss ≈ (CR)ss = ksyn/keCR following large doses. This
was previously demonstrated by Peletier and Gabrielsson [6].

Sensitivity analysis

To explore a larger range of models and parameter values and to build intuition for how the
parameters impact the PK profile, a sensitivity analysis was undertaken for the Michaelis-Menten,
QSS-CT, QSS, and full model. In this analysis, one parameter was varied while all other parameters
were held fixed. The parameters explored were: {dose, Vm, CL , Vc, Vp, Q, Km, Rtot,ss, R0, koff}.
To perform this sensitivity analysis in such a way that one lumped parameter could vary while the
others were held fixed, the other rate constants are calculated in terms of the lumped parameters,
as shown below.

ksyn = Vm/Vc

keR = ksyn/R0

keCR = ksyn/Rtot,ss

Kss = Km · (R0/Rtot,ss)

kon = (koff + keCR)/Kss

In this analysis, the equation Km = Kss · (Rtot,ss/R0) was used. This relationship was chosen
because it was found that varying Kss · (Rtot,ss/R0) for the QSS and full model gave comparable
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behavior to varying Km in the Michaelis-Menten model, as shown in the Results section. This
product of an equilibrium constant times the ratio of receptor density at steady state to baseline
also appeared in [14], where the AFIR metric (average free target to initial target concentration) was
defined for mAbs binding soluble targets. There, Kd was used instead of Kss because the elimination
rate of the drug-target complex is much slower for mAbs with soluble targets. Note that when the
constant turnover approximation is employed, Rtot,ss = R0 and Km = Kss. The parameters used
in the sensitivity analysis are provided in the caption of Figure 2 and were based on the fits to
the mavrilimumab sensitivity analysis. Because it will be shown that R0 is unidentifiable from the
mavrilimumab data, a large range of R0 and Rtot,ss is explored, from 0.01 nM to 100 nM.

Model fitting and likelihood profiling

To assess the identifiability of the TMDD model, the data for mAb#7 was digitized from [11] and
the data for mavrilimumab and romosozumab was digitized from [10], noting that the romosozumab
figure (Fig 9 in [10]) contained an error in that the doses tested were 1 mg and 5 mg [15] rather
than 1 mg and 10 mg.

Monolix 4.3.2 was used to fit the quasi-steady-state constant turnover (QSS-CT) model, which
makes the quasi-steady-state approximation (Kss = (koff + keCR)/kon) and the assumption of con-
stant receptor turnover (keR = keCR). Only mean data was fit (rather than population data) and no
random effects were included in the model. Thus Monolix used the Nelder-Mead simplex method
(using the Matlab fminsearch.m function) for finding the best-fit parameters, rather than Stochastic
Approximation Expectation Maximization (SAEM).

To characterize the practical identifiability of the model parameters, a likelihood profiling anal-
ysis was done where the receptor density (R0) was fixed at various values, and the model was refit
to the data, as described by Raue et al [5]. The change in −2× (Log Likelihood) was reported.

Results

Sensitivity analysis

The sensitivity analysis is shown in Figure 2. Each column of plots shows a different model ap-
proximation and each row shows a set of PK profiles as one parameter is varied while the rest are
held fixed. The top 7 rows of plots show dose, the linear PK parameters and the Michaelis-Menten
parameters. These plots show large changes in the PK profiles when the parameter is varied over
a 100-fold range. Changing these parameters have the same effect on all models explored.

The next row for Rtot,ss shows that for large steady state receptor densities (30-100 nM), a
distinct terminal elimination phase appeared, though note that this phase was not observed in the
case studies presented in Figure 3, where the upper bound for the receptor density was around 10
nM (see below). The final two rows are for parameters R0, and koff. These parameters have almost
no impact on the PK profiles for even a 10,000-fold change in parameters.

The key insight is that when describing TMDD when only nonlinear PK data is available, there
are two key parameters that characterize the profiles: Vm = ksyn ·Vc and Km = Kss ·Rtot,ss/R0. If a
terminal phase is detectable, then Rtot,ss may also be important. For the one-compartment TMDD
model (i.e. no peripheral compartment), it has previously been shown that the rate of decline of
the terminal elimination is equal to keCR = ksyn/Rtot,ss [6]. However, the mathematical analysis
has not yet been extended to the two-compartment model scenario.
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Figure 2: Sensitivity analyses in drug concentration profiles for four different models (MM =
Michaelis-Menten approximation, QSS-CT = quasi-steady-state with constant turnover, QSS =
quasi-steady state, and Full = Full Model). In this analysis, one parameter is changed through-
out the range shown in the y-label on the right, while all the rest are held fixed. Parameters
{Dose, Vm, CL, Vc , Vp , Q} were varied from 0.1x-10x (by increments 3.16x) from their baseline
value while parameters {Km, Rtot,ss, R0, koff} were varied from 0.01x-100x (by increments of 3.16x).
Note that varying Rtot,ss and R0 while keeping Km fixed had almost no effect on the PK profiles.
Parameters used in sensitivity analysis were: dose = 3 mg/kg (which is 210 mg for a 70 kg patient
or 1400 nmol for a 150 kDa drug), Vm = 7 nmol/d, Vc = 3 L, Vp = 6 L, CL = 0.3 L/d, Q = 2
L/d, Km = 1 nM, Rtot,ss = 1 nM, R0 = 1 nM, koff = 1/d. The other rate constants, calculated
from these lumped constants were ksyn = 2.3 nM/d, keR = keCR = 24/d, kon = 25/(nM · d),
Kd = koff/kon = 0.04 nM.
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Figure 3: Pharmacokinetics and Likelihood Profiles for mavrilimumab (anti-GM-CSF) [16] and
romosozumab (anti-sclerostin) in humans [15] and for un-specified mAb#7 in cynomolgus monkeys
[11]. For clarity, a subcutaneous dose of mAb#7 is excluded from the plot, but it was included in all
model fitting. Note that for all three drugs, the confidence interval is one sided; there is an upper
bound for the receptor number (about 10 nM) but the lower bound is zero. Thus for these datasets,
the PK data alone was not sufficient to estimate the receptor density. The 95% Confidence Interval
(CI) line was drawn at 3.84, based on a χ2 distribution with one degree of freedom.

Model fitting and likelihood profiling

The results of the model fits and likelihood profiling are shown in Figure 3 and the parameters are
summarized in Table 2. Note that in the likelihood profiles for all three drugs explored, the lower
bound on the receptor density is zero, making the parameter practically identifiable. This can also
be observed in the fits to the data where changing R0 by 1000-fold (from 0.01 nM to 10 nM) has
almost no impact on the individual fits.

In general, for likelihood profiling analyses, as one parameter is changed, the other parameters
may change as well. In this case, for R0 ≤ 10 nM, the other model parameters did not change
significantly. This can also be seen from the QSS-CT sensitivity analysis in Figure 2 which showed
that for the constant turnover model, when R0 = Rtot,ss ≤ 10 nM, there was almost no impact on
the PK profile when changing the receptor density while keeping all other parameters fixed.

Discussion

The implications of these results are that when a Michaelis-Menten model can adequately describe
the available PK data (as is often the case for membrane-bound targets) then PK data alone is not
sufficient for the receptor density to be identified. In [10], the authors estimate R0 = 19 nM for

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2017. ; https://doi.org/10.1101/123240doi: bioRxiv preprint 

https://doi.org/10.1101/123240
http://creativecommons.org/licenses/by/4.0/


mavrilimumab romosozumab mab7 units
target GM-CSF sclerostin unknown

species human human cyno
F - - 0.66 (4.9%) -

ka - - 0.23 (12%) 1/d
Vc 2.8 (17%) 2.4 (0%) 0.16 (6.3%) L
Vp 5.6 (17%) 2.6 (3.5%) 0.1 (6.3%) L
CL 0.3 (9.6%) 0.24 (4.4%) 0.019 (8.8%) L/d

Q 1.7 (12%) 0.54 (3.6%) 0.031 (6.7%) L/d
ksyn 2.4 (18%) 6.1 (9.4%) 16 (9.8%) nM/d
Kss 1.1 (2.2%) 12 (6.6%) 26 (12%) nM
R0 0.0064 (110%) 0.007 (52%) 0.0036 (23%) nM

keR 370 860 4400 1/d

Table 2: Parameter fit of equilibrium constant turnover model to digitized data

romosozumab which was much higher than the experimental measurements of 0.05 nM. This led the
authors to conclude that “low plasma sclerostin concentrations cannot adequately support a large
nonlinear clearance if sclerostin-mediated elimination is the reason for non-linear PK.” The authors
then concluded that it was more likely that most of the target was in tissue, rather than in the
central compartment. However, as shown in Figure 3, the 19 nM estimate is at best an upper bound
and low receptor densities of 0.05 nM and below are also consistent with the available data and can
explain the PK nonlinearity. Even though the authors used a more complex minimal-PBPK model
to describe the data, these same results regarding the unidentifiability of R0 are expected to apply.
In [11], the authors use estimates for R0 based on model estimates of cynomolgus monkey data
to translate across species (assuming that R0 does not change across species). But as shown here,
R0 is not estimable, and what this analysis highlights is that to translate the TMDD model across
species, it is most important to understand how two parameters scale across species: Vm and Km

which can be related to the parameters of the TMDD model. One might assume that rate constants
scale by weight to the -0.25 power (keCR ∼WT−0.25 ), and absent other knowledge, one can assume
that receptor concentrations and the quasi-steady-state equilibrium constant (Rtot,ss, R0,Kss) is the
same across species. Assuming standard allometric scaling (CL ∼ WT 0.75 and V ∼ WT 1) gives
the scaling below, which was also used by Dong et al. [17].

Vm = ksyn · Vc = keCR ·Rtot,ss · Vc ∼WT−0.25 · 1 ·WT 1 ∼WT 0.75

Km = Kss ·Rtot,ss/R0 ∼WT 0 ∼ 1

Gibiansky et al., [8, 18] proposed an algorithm where by the full, QSS, MM, and rapid binding
model (which uses the assumption that the drug, target, and complex are in a quasi-equilibrium)
are all fit to the data and that one then selects “the simplest model that provides predictions
sufficiently similar to the predictions of the full model in the dosing/concentration range of interest.”
The analysis presented here further supports this recommendation. In particular, in the examples
presented here, when receptor concentration data is not available (as is often the case for membrane-
bound targets) and when the Michaelis-Menten model is sufficient to describe the data, then the
Michaelis-Menten model should be used and estimates for the receptor density should not be made,
though it is possible to identify an upper bound for the receptor density.
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It is also important to remember that the TMDD model analyzed here is a simplification that
leaves out many physiological processes.

1. Target synthesis and distribution in both peripheral tissue [3] and the target tissue (e.g. the
joint or tumor) [19, 20].

2. Competition for target binding sites between the drug and the target’s endogenous ligand
[21].

3. Feedback mechanisms [22] leading to either an increased synthesis of the target in the presence
of drug [23] or a decrease in target synthesis or expression [3, 24].

4. A drug binding multiple targets; the current model assumes implicitly that all the target is
measured, but for infliximab binding TNF-α, target exists in both membrane-bound and solu-
ble forms, and a model that only accounts for soluble TNF-α may considerably underestimate
the binding affinity [25].

Because the full TMDD model is a simplification of the true system, even in scenarios when the
receptor density is estimable, it will not necessarily be a reflection of the receptor density in the
serum. Rather it is a lumped parameter that may contain information about the receptor density
in all tissues. This is analogous to how the central and peripheral volumes of two compartment PK
models do not necessarily represent physiological volumes [26, chapter 4].

If the modeler desired information about the receptor density, the most straight forward way
would be to develop an assay to measure it directly. Alternatively, a highly sensitive PK assay that
allows for observation of the terminal elimination phase could help inform the Rtot,ss parameter
and a sensitive assay together with rapid PK sampling could be used to identify R0, as described
previously [6]. However, as the terminal elimination phase occurs at very low drug concentrations,
models that accurately describe this portion of the PK profile may not be needed in guiding drug
development of the compound.

Conclusions

The key insight from this analysis is that when fitting a model to PK data for biologics with
membrane-bound targets, often a Michaelis-Menten model is sufficient to describe the data. In
that scenario, the receptor density is practically unidentifiable and only an upper bound for the
receptor density can be identified. An additional insight is that it is the lumped parameter Km =
Kss ·Rtot,ss/R0 that is identifiable and the assumption that is frequently made of constant receptor
turnover (keR = keCR) is not needed for model fitting and interpretation of the Michaelis-Menten
approximation of the full target mediated drug disposition model. Thus even though the full TMDD
model is structurally identifiable, it is almost never the case that sufficient data is available for all
parameters to be practically identifiable, both because of coarse PK sampling and because of the
limit of quantification of the PK assay. The standard confidence intervals reported by Nonlinear
Mixed Effect (NLME) modeling software cannot always be used to assess this issue as they are often
based on a linear, asymptotic approximations in the neighborhood of the optimal set of parameters
for describing the data.

Thus we recommend that pharmacometricians regularly use bootstrapping or likelihood profiling
[5] as an additional check. New methods for assessing model parameter uncertainty may also be
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useful in assessing this issue [27, 28]. This analysis further supports the advice from Gibiansky et
al. [8], to fit the Michaelis-Menten (MM), QSS (with constant turnover) and the full model to the
data and then to only draw inferences and make predictions using the simplest model that describes
the data well.
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