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Abstract

Identifying which orthologs share functions from sequence alone can be chal-
lenging, notably in case of paralogous genes families. We hypothesised that
co-expression network will help predict functional orthologs amongst complex
homologous gene families. To explore the use of transcriptomic data available
in public domain to predict functionally equivalent orthologs, we collected
genome wide expression data in mouse and rat liver from over 1500 exper-
iments with varied treatments. We used a hyper-graph clustering method
to identify clusters of orthologous genes co-expressed in both mouse and
rat. We validated these clusters by analysing expression profiles in each
species separately, and demonstrating a high overlap. We then focused on
genes in 18 homology groups with one-to-many or many-to-many relation-
ships between two species, to discriminate between functionally equivalent
and non-equivalent orthologs.

Keywords: gene function, transcriptomics, liver, orthologs, paralogs,
co-expression, gene networks

1. Introduction1

Annotation of gene function is a crucial step to understand the DNA2

sequencing data currently generated at an unprecedented rate. The lack of3

functional annotation forms a major bottleneck in analyses across diverse4

fields, including de novo genome sequencing [1], Genome Wide Association5

Studies (GWAS) in model and non-model organisms [2], and metagenomics6
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[3]. An experimental validation of each gene is impractical to this end as7

it demands high financial and time cost. It is estimated that only one per-8

cent of proteins have experimental functional annotations [4]. Bioinformatic9

approaches therefore provide an attractive alternative [5]. The most widely10

used and successful gene annotation strategy has been the annotation transfer11

between homologous genes. Automated annotation pipelines from sequence12

alone are widely used, including GOtcha [6] and BlastGO [7]. They allow13

fast annotation of thousands of genes for newly sequenced genomes [8]. This14

approach can be used within a species, where gene families (paralogs), might15

share common functions, or across species, where known function(s) of a16

gene in one species are used to infer functions of the homologous gene(s) in17

another species.18

Despite being widely used, fast computational annotation comes at a cost19

of misannotation, which is present at high levels (over 10 percent) and is be-20

lieved to be increasing [9] due to misannotation transfer. The most common21

misannotation is over-annotation, where a gene is assigned a specific but in-22

correct function [10]. This is partly because one of the major challenges in23

functional annotation transfer across species is that the orthology relation-24

ships are not always one-to-one. Specifically, a single gene in one species can25

be homologous to multiple paralogs in another (one-to-many homologies),26

after gene duplication or gene loss event(s). After a gene duplication, the27

two paralogs can have redundant functions, and thus would share similar28

functional annotations, or one copy might diverge (lose functionality, or gain29

new functionalities, or change cellular localisation or tissue specificity), and30

thus paralogs should have different functional annotations despite their ho-31

mology. Similarly, multigene families (with many-to-many homologies) are32

highly prone to over-annotation errors.33

Protein structure information can act as source for functional distinction34

within multigene family proteins [4]. Protein-protein interaction networks35

have also been successfully used to identify functional orthologs [11]; two36

orthologs interacting with the same proteins in each species are likely to37

share similar functions. Similar strategy has been applied to biochemical38

pathway information [12]. We here explore the use of co-expression gene39

networks in this context, as they offer two main advantages over protein-40

protein interactions and biochemical pathways. First, they can be inferred41

from transcriptomic datasets, which are more abundant than protein-protein42

interaction datasets. Second, they allow functional annotation of the var-43

ious classes of RNA genes. We have previously shown that multi-species44
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information improves gene network reconstruction [13].45

In order to explore the potential of co-expressed gene networks to identify46

functional equivalents in complex homologous families, we collected tran-47

scriptomic data from mouse and rat liver samples. To minimise technical48

variation, we collected datasets generated using a single microarray platform49

in each species, resulting into 920 experiments in mouse and 620 experiments50

in rat. We firstly identified clusters of co-expressed genes using hierarchical51

clustering and found biologically relevant clusters. We applied a hyper-graph52

clustering method, SCHype [14] to simultaneously cluster co-expressed or-53

thologous genes between species. We then focussed on 18 complex (one-to-54

many or many-to-many) homologous groups, where at least one member in55

mouse and in rat where present in similar co-regulated gene clusters. This al-56

lowed the identification of functional homologs in complex homologous fam-57

ilies. Our results show the potential of this method to predict functional58

orthologs and limit over-zealous annotation transfers.59

2. Methods60

2.1. Data collection and normalisation61

Microarray data for liver samples in mouse and rat were collected from62

GEO, where data for mouse was generated using Affymetrix Mouse Genome63

430 2.0 Array, and data for rat was generated using Affymetrix Rat Genome64

230 2.0 Array as they were the platforms with a large number of experiments65

available for each species. Experiments came from 62 (mouse) and 28 (rat)66

independent studies or GEO series. The GEO accession numbers for indi-67

vidual studies are provided in supplementary table 1. Processed data was68

not directly comparable between studies, as different studies used different69

normalisation methods, leading to different distribution of values (supple-70

mentary figure 1, A and B). As some datasets had a trimmed lower quartile71

for reduction in noise by limiting the variability of lowly expressed genes,72

we applied lower quartile trimming on all datasets (supplementary figure73

1, C and D). Specifically, we set the expression value of all probes belong-74

ing to the lower quartile to the value of the 25 percentile. We then ap-75

plied quantile normalisation resulting into a uniform distribution of values76

for each experiment. To facilitate the comparison between mouse and rat77

data, we used mouse data as a target for quantile normalisation in rat,78

using preprocessCore functions normalize.quantiles.determine.target79

and normalize.quantiles.use.target [15]. Mouse data was selected as80
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the target because it contained more experiments than the rat dataset. Thus,81

after our normalisation steps, the distribution of values was identical for each82

experiment in both species.83

2.2. Data clustering84

We selected genes with variable expression across experiments by select-85

ing probes with a standard deviation greater than one across experiments.86

As shown in figure 1, such probes included genes of low as well as high expres-87

sion levels, and largely excluded probes showing very low expression in all88

experiments. Microarray data being already log-transformed, log fold change89

over the average values were obtained by subtracting the mean expression of90

each probes.91

Hierarchical clustering was done on the log fold change matrices using92

R functions dist ad hclust with default parameters (euclidean distance,93

complete linkage). Dendrogram branches were reordered using the function94

order.optimal from the cba package [16]. Both rows (probes) and columns95

(experiments) were clustered using this approach.96

Gene homology information was retrieved from the Homologen database97

[17], and probe orthology information was obtained using the R package an-98

notationTools [18]. Due to one-to-many homologs, rat probes and mouse99

probes intersections resulted into slightly different numbers for each species.100

Average of the two numbers was used to obtain Jaccard indexes. Jaccard101

index significance was obtained using the hypergeometric test, and p-values102

were corrected for multiple testing using Bonferroni correction. Gene ontol-103

ogy enrichment analyses were done using pantherdb [19], using either genes104

analysed by the microarray or our list of variable genes as a background.105

SCHype takes as input a list of conserved interactions which was gen-106

erated as follows. First Spearman correlation coefficient between each pair107

of probes was obtained independently for both Mouse and Rat expression108

data. Pairs of probes with a correlation coefficient greater or equal to 0.5109

were selected. Then if orthologs of two connected probes were connected in110

the other species, they were kept as an SCHype input. SCHype was run with111

a minClustsize of 10, otherwise using default parameters. SCHype identi-112

fied 132 clusters of homologous genes co-expressed both in mouse and in rat,113

which included 825 nodes in mouse and 778 nodes in rat. SCHype allows114

probes to be included in multiple clusters. The different number of probes115

in mouse and rat is due to the presence of one-to-many and many-to-many116
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Figure 1: Identification of variable probes in mouse (A) and rat (B) datasets. Each dot
represent a single probe. X axis: standard deviation across experiments. Y-axis: mean
expression value across experiments (arbitrary units from micro-array processing). In
black are the probes with a standard deviation ≥ 1, in grey the probes with a standard
deviation < 1. Orange lines: 2D kernel density.

orthologs, as well as the presence of gene measured by multiple probes on117

the array.118

2.3. Scripts and data availability119

R scripts used for this analysis are available in a Github repository https:120

//github.com/gdevailly/liver_mouse_rat. Normalised expression ma-121

trices, fold change matrices, as well as probe clusters (hierachical clustering122

and SCHype clustering) are available through a Zenodo collection https:123

//zenodo.org/record/439483.124

3. Results125

3.1. Identification of variable genes across datasets126

We downloaded 920 and 620 experiments for gene expression data in127

rat and mouse liver from the GEO database. We firstly normalised the128

data using lower quartile trimming (supplementary figure 1, C and D) and129

quantile normalization (supplementary figure 1, E and F) independently for130

each species. We then selected the probes with dynamic expression across131

samples (standard deviation ≥ 1). This resulted into 3777 probes in mouse132
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Species Category Term Gene FE P-value
Mouse Reactome Synthesis of (16-20)-hydroxyeicosatetraenoic

acids (HETE)
11 4.78 4.29E-02

Activation of gene expression by SREBF
(SREBP)

15 4.34 5.18E-03

Regulation of cholesterol biosynthesis by
SREBP (SREBF)

17 3.94 4.36E-03

Cytochrome P450 - arranged by substrate type 27 2.72 7.78E-03
Phase 1 - Functionalization of compounds 37 2.55 7.58E-04

GO slim BP fatty acid metabolic process 52 2.26 2.95E-05
steroid metabolic process 50 2.18 1.31E-04

Rat Reactome Synthesis of bile acids and bile salts via 24-
hydroxycholesterol

7 8.63 2.95E-02

Endosomal/Vacuolar pathway 10 7.93 1.15E-03
Striated Muscle Contraction 11 6.78 1.48E-03
ER-Phagosome pathway 10 6.53 6.29E-03
Activation of gene expression by SREBF
(SREBP)

10 6.53 6.29E-03

Antigen Presentation: Folding, assembly and
peptide loading of class I MHC

13 6.27 3.84E-04

Regulation of cholesterol biosynthesis by
SREBP (SREBF)

10 5.55 2.51E-02

Biological oxidations 25 2.95 3.58E-03
Metabolism of lipids and lipoproteins 68 2.13 1.15E-05

GO slim BP response to biotic stimulus 12 4.16 1.12E-02
fatty acid metabolic process 22 2.52 2.52E-02

Table 1: Variable genes are enriched for categories and pathways relative to liver functions.
FE: Fold enrichment between actual over expected number of genes. GO: gene ontology.
BP: biological process. Only category with a fold change higher than 2 are shown. All
P-values were corrected for multiple testing with the Bonferroni method.

(8.4%) and 2116 probes in rat (6.8%), with a wide range of expression values133

(figure 1). 735 mouse variable probes out of 3777 had a homologue in rat134

variable probes, and 624 rat variable probes out of 2116 had a homologue135

in mouse variable probes. Variable genes were enriched for pathways and136

functions relative to liver biology (table 1), including metabolism of lipid an137

protein (rat, adjusted P value ≤ 10−4), regulation of cholesterol biosynthesis138

by SREBP (mouse and rat, respectively adjusted P value ≤ 0.01 and ≤ 0.03),139

synthesis of bile acid and salt via 24-hydroxycholesterol (rat, adjusted P140

value ≤ 0.03), and fatty acid metabolic process (mouse and rat, respectively141

adjusted P value ≤ 10−4 and ≤ 0.03). As the biological processes enriched142

in variable genes reflected functions associated with liver, we concluded that143

the expression variability across samples was reflecting biological variability,144

and not only technical variations, and therefore was of significance for further145

investigation.146
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3.2. Independent hierarchical clustering of mouse and rat data147

Hierarchical clustering was applied to the mouse and rat expression ma-148

trices independently (figure 2, A and B). We defined 7 major clusters of149

variable probes, while the experiments were grouped in 4 clusters. The two150

major clusters of experiments in mouse showed broadly opposite expression151

patterns (figure 2A). Two major experimental groups were also noted in rat,152

albeit to a lesser extent compared to mouse (figure 2B). Experiments were153

annotated according to their series of origin (figure 2A and B, bottom of154

the heatmap), revealing that most experiments from the same series grouped155

together (including cases and controls). Notably, no series of experiments156

were split in the two main experiment clusters.157

We characterised the main experiment clusters by looking at the most158

different non-trivial terms in the element-term matrix build from the meta-159

data retrieved from GEO (characteristic field, figure 2, C and D). No clear160

difference between experiment clusters was observed in mouse. Experiment161

cluster 3 in rat seems to be composed mostly of F344 strains of rat and/or of162

rat treated with the microcystinlr toxin. To note, this cluster is dominated163

by experiments from a single GSE (figure 2B). Since experiment clustering164

matched series of origin of the data, this hinders the discrimination of batch165

effects from biological differences.166

Given that mouse and rat probes formed two major clusters anti-correlated167

with each other despite diverse experimental set ups in each species, we inves-168

tigated whether the mouse and rat probe clusters were composed of probes169

measuring similar genes (figure 2E). We calculated the overlap between genes170

in each cluster in mouse with genes in each cluster in rat. Cluster 2 in mouse171

(golden color, figure2A) and cluster 2 in rat (golden color, figure 2B) showed172

a very high overlap with the highest Jaccard index across all clusters. Neither173

mouse cluster 2 nor rat cluster 2 were enriched for any gene ontology term174

or reactome pathways, when using the set of variable probes as background.175

Most clusters did not show a very high genes overlap across species, though176

the functional enrichment analysis were suggestive that observed gene vari-177

ations reflected differences in the liver physiology. Specifically, cluster 1 in178

mouse (claret red color, figure 2A) was enriched for generation of precursor179

metabolites and energy (adjusted P value ≤ 10−6), steroid metabolic process180

(adjusted P value ≤ 0.001), fatty acid metabolic process (adjusted P value181

≤ 0.001), and Cytochrome P450 - arranged by substrate type (adjusted P182

value ≤ 10−6). Cluster 3 in mouse (green color) was enriched for arachi-183

donic acid metabolic process (adjusted P value ≤ 0.01), icosanoid metabolic184
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Figure 2: Hierarchical clustering of variable probes in mouse (A) and in rat (B). Four clus-
ters were defined for experiments and seven for probes. Bellow the heatmaps, localisation
of experiments from each series were shown in black, one line per series. FC: fold change.
C and D. Metadata term frequencies of the two biggest experiment clusters were compared
for mouse (C) and rat (D). Colour-code matches the experiments trees in panels A and B.
E. Homology relationship between probe clusters between rat (x-axis) and mouse (y-axis).
Cell colour: jaccard index. Cell label: Bonferonni adjusted p-values: *** ≤ 0.0001, ** ≤
0.001, * ≤ 0.01, + ≤ 0.05.
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process (adjusted P value ≤ 0.05), fatty acid derivative metabolic process185

(adjusted P value ≤ 0.05), and Cytochrome P450 - arranged by substrate186

type (adjusted P value ≤ 0.05). Cluster 6 in rat (blue) was enriched for187

proteolysis (FE 10, adjusted P value ≤ 0.01). More term relative to the liver188

matabolism were enriched when the same analysis was used using all genes189

as a background (supplementary table 2).190

3.3. Co-clustering of Mouse and Rat expression data191

To identify clusters of homologous probes between mouse and rat, we192

used the hyper-graph clustering tool SCHype [14]. SCHype uses a recursive193

spectral clustering algorithm to identify sets of nodes in each species with a194

greater than expected number of conserved interactions between them (figure195

3A). Input data for SCHype was built using three graphs: a mouse probe196

graph built from pairs of probes with a Spearman correlation coefficient ≥197

0.5 (supplementary figure 2A), a rat probe graph with pairs of probes with198

a Spearman correlation coefficient ≥ 0.5 (supplementary figure 2B), and a199

probe to probe homology graph between rat and mouse built using the Ho-200

mologene database [17] and the annotationTools package [18]. SCHype iden-201

tified 132 clusters of homologous genes co-expressed both in mouse and in rat,202

which included 825 nodes in mouse and 778 nodes in rat (figure 3B). SCHype203

allows probes to be included in multiple clusters resulting into 474 unique204

probes in mouse and 425 unique probes in rat. It identified four clusters205

with over 30 homologous genes in each species, eighteen clusters with over206

10 probes in each species, thirty-five clusters with only 2 co-expressed probes207

in each species (figure 3B). We further focussed on the first four (c1-c4)208

SCHype clusters (figure 3C). We firstly compared SCHype clusters with re-209

sults obtained by clustering data from each species independently. SCHype210

cluster c3 highly overlapped with the previous cluster 2 in mouse (golden211

color, figure 2A) and the cluster 2 in rat (golden color, figure 2B). These two212

clusters were shown to share a high number of homologous probes (figure213

2E). Gene ontology analysis of the four biggest SCHype clusters, both over214

the set of variable probes or over the full set of probes, did not lead to any215

significant results, most likely due to small number of genes in each cluster.216

Importantly, the series experiments in each series no longer clustered together217

after restricting the data to each of the four biggest SCHype clusters (figure218

3C). Individual experiments from each series nevertheless belonged to the219

same large experiment cluster (figure 3C) highlighting the need for building220

an expression compendium to obtain these results.221
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Figure 3: Co-clustering of rat (middle) and mouse (right) data using SCHype. A. SCHype
is a clustering tool for hyppergraphs, built here from two co-expression graphs and an
homology graph. B. Number of mouse (dark grey) and rat (light grey) probes for the
SCHype clusters with more than 10 probes for each species. C. The biggest four SCHype
clusters are shown. Genes in mouse and rat in each cluster are homologous to each other.
The results of hierarchical clustering for each species is shown as a color bar on the left.
Colour-code matches the experiments trees in figure 1. Under the heatmap, clustering
localisation of experiments from each series are shown in black, one line per series.
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Homology group Species Gene name SCHype cluster
137229 cluster 69

mouse Anp32a X
rat Anp32a X
rat LOC100909983

68982 cluster 7 cluster 30
mouse Ccnb1 X X
mouse Gm5593

rat Ccnb1 X X
10699 cluster 2 cluster 118

mouse Cd248 X X
rat Cd248 X X
rat LOC100911932
rat LOC100911882

3938 cluster 1
mouse Ppp1r3c X

rat Ppp1r3c X
rat LOC100910671

14108 cluster 2
mouse Rasl10b X

rat Rasl10b X
rat LOC100912246

Table 2: SCHype clustering of homologous groups: predicted functionality is following
gene names. Homology group is from the Homologene database. Tick mark indicates the
inclusion of the gene in the corresponding SCHype cluster.

3.4. Co-clustering across species identifies functionally equivalent orthologs222

SCHype clustering successfully identified clusters of homologous genes223

co-expressed in both mouse and rat datasets. This information adds an in-224

dependent evidence in support of a functional annotation transfer for pairs225

of orthologous genes across species found in the same SCHype cluster(s),226

as functionally equivalent orthologs would be co-expressed with the same227

set of genes in both species, and therefore would be included in the same228

SCHype cluster(s). We investigated if SCHype clusters could help identify229

functionally equivalent orthologs amongst complex homology groups. Eigh-230

teen homology groups of three members or more had at least one member231

of each species in the same SCHype cluster(s). For example, for homology232

group 137299 (table 2), Anp32a in mouse and Anp32a in rat were in the233

same SCHype cluster 69, while LOC100909983, another homologue of rat234

Anp32a, was not. This suggests that indeed Anp32a in rat is the functional235

equivalent of Anp32a in mouse, but LOC100909983 is not. In this case, our236

method found back a functional equivalent already known [20]. Similar ob-237

servations were made for homology groups 68982 (Ccnb1 ), 10699 (Cdc248 ),238

3938 (Ppp1r3c), and 14108 (Rasl10b) (table 2). In five cases, all members of239
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Homology group Species Gene name SCHype cluster
128630 cluster 9 cluster 12 cluster 45

mouse Ceacam1 X
mouse Ceacam2 X X X

rat Ceacam1 X X X
11456 cluster 5

mouse Elovl6 X
rat Elovl6 X
rat LOC102549542 X

20277 cluster 35
mouse Rrm2 X

rat Rrm2 X
rat LOC100359539 X

55991 cluster 1 cluster 119
mouse Tmed2 X X
mouse Gm21540 X X

rat Tmed2 X X
11890 cluster 10 cluster 43 cluster 81

mouse Tnks2 X X X
rat LOC100910717 X X X
rat Tnks2 X X X

Table 3: SCHype clustering of homologous groups: all member of the homology groups
share predicted functionalities. Homology group is from the Homologene database. Tick
mark indicates the inclusion of the gene in the corresponding SCHype cluster.

the homology groups were included in the same SCHype clusters (table 3),240

suggesting that all orthologs are likely to share the same function(s). Finally,241

eight homology groups showed more complex situations, where neither only242

one nor all the homologs where present in the same groups (table 4 and sup-243

plementary table 3). For example, in homology group 117945, Cyp2c7 in rat244

had three homolous genes in mouse but only Cyp2c38 in mouse belonged to245

the same SCHype cluster (table 4) predicting that mouse Cyp2c38 (and not246

mouse Cyp2c29 or mouse Cyp2c39 ) is a functional ortholog of rat Cyp2c7.247

4. Discussion248

Here we have shown that transcriptomic data can be used to help pre-249

dict functionally orthologous genes, using co-expression networks built from250

mouse and rat liver samples. We identified 18 complex homologous groups251

(i.e. with paralogs in at least one of the species), including 54 genes in mouse252

and 46 genes in rat, with at least one gene in mouse and one gene in rat in253

the same SCHype cluster(s). Lowering the correlation threshold and the254

standard deviation threshold will likely increase the number of homologous255

groups, potentially with a higher false positive rate. In this study, we fo-256

cussed on a single tissue as a proof of concept. Addition of data from various257
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Homology group Species Gene name SCHype cluster
117948 cluster 102

mouse Cyp2c38 X
mouse Cyp2c29
mouse Cyp2c39

rat Cyp2c7 X
104115 cluster 33

mouse Hsd3b5 X
mouse Gm10681
mouse Hsd3b4
mouse Gm4450

rat Hsd3b5 X
rat LOC100911116 X

137425 cluster 2
mouse Lce3c X

rat LOC100361951 X
rat LOC100911982 X
rat Lce3d

129514 cluster 17
mouse Rdh9 X
mouse Rdh1
mouse Rdh16
mouse Rdh19
mouse BC089597

rat Rdh16 X
rat LOC100365958 X

Table 4: SCHype clustering of homologous groups: non-trivial functional relations. Ho-
mology group is from the Homologene database. Tick mark indicates the inclusion of
the gene in the corresponding SCHype cluster. Four additional, more complex, homology
groups are shown in supplementary table 3.
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other tissues might lead to co-expressed gene networks of many more genes,258

but they may lack the fine resolution that is needed to improve functional259

annotation inference due to lack of a tissue specific context. We used microar-260

ray data in this study as it is by far the most abundant dataset. However,261

consortia like GTEx [21] have generated large amount of RNA sequencing262

data, and we envisage application of the method described here to RNA se-263

quencing data in the future. The greater sensitivity of RNA sequencing over264

microarray [22] might allow the identification of more co-expressed genes.265

Despite rigorous data normalisation, experiments from the same series266

tended to cluster together, cases and controls included. While this could267

be a sign of technical biases, gene ontology analysis of the variable genes268

demonstrated that they are related to liver functions. Thus it appears that269

the gene expression variability we observed is, at least partially, reflecting270

biological variations impacting the liver physiology. Importantly, individual271

experiments from series did not cluster together in SCHype clusters. We272

applied various approaches but could not identify the biological origin(s) of273

the observed variations. This is in part due to the lack of standardised ex-274

periment metadata fields in GEO (not all datasets even had a strain or a sex275

information, for example), and the lack of controlled vocabulary used to de-276

scribe experiments. It is a possibility that better annotation of the metadata277

would have allowed the identification of critical confounding factors.278

SCHype clustering was able to find some known as well as some yet to279

be experimentally validated orthologous functional relationships. For exam-280

ple, only mouse and rat Ccnb1 where in the same SCHype cluster, and not281

Gm5593. While mouse Ccnb1 and rat Ccnb1 are annotated as protein coding282

genes, Gm5593 in mouse is annotated as a processed pseudogene [20].283

Finally, we note that co-expression of orthologous genes is not a valida-284

tion of shared functionality, but it can be used as another source of evidence.285

While protein-protein interaction networks could be used for the same aim,286

transcriptomic data are more easily generated and therefore widely available287

for many species. Thus the method described here shows a promise to en-288

hance functional gene annotation transfer across species. It can provide an289

experimental support for one-to-one ortholog annotation transfer, and can290

help identify functionally similar and non similar orthologs in one-to-many291

and many-to-many orthology groups.292
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