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Abstract 
Motivation: Machine learning (ML) is a powerful tool to create supervised models that can distinguish between classes 
and facilitate biomarker selection in high-dimensional datasets, including RNA Sequencing (RNA-Seq). However, it is vari-
able as to which is the best performing ML algorithm(s) for a specific dataset, and identifying the optimal match is time 
consuming. blkbox is a software package including a shiny frontend, that integrates nine ML algorithms to select the best 
performing classifier for a specific dataset. blkbox accepts a simple abundance matrix as input, includes extensive visuali-
zation, and also provides an easy to use feature selection step to enable convenient and rapid potential biomarker selec-
tion, all without requiring parameter optimization.  
Results: Feature selection makes blkbox computationally inexpensive while multi-functionality, including nested cross-fold 
validation (NCV), ensures robust results. blkbox identified algorithms that outperformed prior published ML results. Apply-
ing NCV identifies features, which are utilized to gain high accuracy.  
Availability:	The software is available as a CRAN R package and as a developer version with extended functionality on 
github (https://github.com/gboris/blkbox). 
Contact:	b.guennewig@garvan.org.au 
 

1 Introduction  
Transcript expression is the most informative high throughput modality 
for predicting clinical phenotype (Ray et al., 2014). Transcriptomic data 
is high dimensional, with very large numbers of transcripts (features or p 
> 10,000), but a comparatively small number of biological replicates (n = 
2 to 1000). Although transcriptional data can be highly predictive of 
biological state, extracting robust and informative insights from such 
complexity is a longstanding challenge in data analysis (Capobianco, 
2014). Machine Learning (ML) algorithms are statistical methods that 
leverage this data complexity through ‘learning’ from data (James et al., 
2013).  By identifying highly predictive features, ML can identify tran-
scripts useful to robustly diagnose patients or identify pre-symptomatic 
individuals (Iizuka et al., 2003; Klöppel et al., 2009). Unfortunately, ML 
methods are computationally demanding and currently underutilized 
(Libbrecht and Noble, 2015) due to the large number of known human 
transcripts. The computational requirements of ML methods can be 
reduced by restricting analysis to only the most informative transcripts, 
with little loss of accuracy (Fig. 1) (Xing et al., 2001).  However, the 
process of selecting informative transcripts, termed feature selection, is 
complex: no single best method exists, and it is known that optimal input 
features can differ between ML algorithms (Suppl. Fig. 1b). This diversi-
ty explains the varying performance of ML algorithms on different input 
data. In machine learning the biggest challenge is selecting the best 
algorithm (James et al., 2013), which highlights the necessity to test 
multiple algorithms to obtain the most accurate model for a specific 
dataset. This need to explore multiple algorithms can be time-
consuming, computationally challenging and hinders the application of 
ML approaches (Ray et al., 2014). Here we describe blkbox, a tool to 
simplify the exploration of ML algorithms. blkbox is simple to use (in-
cludes a shiny interface; (Suppl. Fig. 2).), provides comparative output 
over nine relevant ML algorithms, provides enhanced efficiency in po-
tential biomarker selection through scored feature lists, reduces computa-

tional cost through optional feature selection, uses accepted standards in 
the ML field, is under constant development, and provides publication 
ready graphical results to the user.  With a consistent interface, blkbox 
provides multiple high-performance ML algorithms to users without 
expertise in the ML field, streamlining access to these methods for re-
searchers. 

2 Workflow 
blkbox implements nine representative high-performance ML algorithms 
(Fig. 1A and Suppl. Methods) as well as functions for a range of ML 
workflows including standard training and testing (blkbox), cross fold 
validation (blkboxCV), and nested cross fold validation (blkboxNCV) 
(Fig. 1B). blkbox provides the functionality to plot different metrics (e.g. 
AUC), allowing comparison of algorithm effectiveness for a given da-
taset (Suppl. Fig. 3 & 4). The intersection of selected features in each 
testing holdout can be visualized in a Venn diagram or heatmap to identi-
fy commonly used features and assess variance among holdouts (Supp. 
Fig. 5). Importance of each feature can be found for each fold, tables 
present the values weighted by their performance on holdouts, enabling 
feature exploration and additional calculations of feature stability across 
holdouts (Vignette: blkbox).  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/123430doi: bioRxiv preprint 

https://doi.org/10.1101/123430
http://creativecommons.org/licenses/by-nc/4.0/


B. Guennewig et al. 

 
Fig. 1. A): Schematic workflow and pipeline of blkbox. B) Schematics of the three model 
types implemented in blkbox.  

3 Performance 
blkbox was benchmarked against a published cancer transcription dataset 
(Suppl. Fig. 3) of 7070 features to determine running speed and accura-
cy. blkbox identified a combination of feature selection and machine 
learning algorithms (PamR-GLM) that outperformed the published re-
sults (red line in Suppl. Fig. 3). The identified combinations can be a 
starting point for further parameter optimization to achieve increased 
accuracy and/or robustness. Extraction of well performing features sub-
sets provides both potential biomarker discovery and insights into under-
lying biological mechanisms. blkbox can operate without feature selec-
tion/reduction (Fig. 1A/B) but, based on the high computational re-
sources required (Suppl. Fig. 3), this may only be possible on smaller 
datasets, under exclusion of cross fold validation, or without using re-
source hungry algorithms (Suppl. Fig. 3). Due to these constraints and 
the large size of most RNA-Seq datasets, a feature reduction step can be 
used in blkbox based on the rationale that not every feature contributes 
an importance to the statistical model and some can therefore be discard-
ed. The cumulative sum of each feature’s relative importance (Fig. 1A 
upper right) provides an approximate area under the curve (AUC). Mul-
tiplication of the AUC by an AUC cutoff (0.0 – 1.0) can determine a 
threshold; features with a relative importance below the threshold are 
removed, and those retained are referred to as surviving features and 
used in the subsequent analysis. 

4 Applications 
blkbox is designed for transcriptomics analysis and exploration for bi-
omarkers although its application can be applied to any question with a 
binary outcome. The heavily weighted transcripts identified by blkbox 
identify biomarker candidates to be tested, individually or in combina-
tion, for their capacity to robustly distinguish healthy individuals from 
patients or to identify pre-symptomatic patients. Analysis of the biologi-
cal function of these transcripts can additionally provide mechanistic 
insights into the basis of the disease that may in turn lead to new thera-
pies. 

5 Conclusions 
blkbox provides an intuitive and easy to use interface for the exploration 
of numerous ML algorithms. Performance metrics on each algorithm are 

presented in a clear and publication ready format and allows identifica-
tion of top performing combinations. Feature lists of importance in accu-
rate classification models enables the extraction of feature subsets, which 
in turn are promising biomarker candidates as well as providing potential 
insights into mechanisms underlying disease. The three functions (train 
& test, cross-fold validation, and nested cross fold validation) address 
pitfalls including over fitting and cope with real world heterogeneity. 
blkbox provides both an entry level capacity for new ML users due to its 
clear and simple syntax as well as providing advanced running scenarios. 
Feature selection methods reduces computational cost and enable head-
to-head comparisons of algorithms, which would otherwise be impossi-
ble due to their exponential computational cost with large p.  
The combination of those functions makes blkbox unique in the ML 
landscape and promises to find broad application in multiple scenarios 
beyond those discussed here. 
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Suppl. Figure 1: Exemplary benchmark on a 7070 features gene expression set (Iizuka et al., 
2003), using 5/8 implemented features selection methods (columns) over AUC thresholds 0.1-1 
and determining the AUROC with the included algorithms (rows) against the published result 
(red line from Statnikov et al., 2008). 

Iizuka,N. et al. (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence 
of hepatocellular carcinoma after curative resection. The Lancet, 361, 923–929
Statnikov,A. et al. (2008) A comprehensive comparison of random forests and support vector 
machines for microarray-based cancer classi�cation. BMC Bioinformatics, 9, 319.
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GLM

xgb

bart

PamR

SVM

AUC cutoff 0.2 AUC cutoff 0.5

Suppl. Figure 2: Partial heat maps of feature importance at two AUC cut o�s (0.2 and 0.5) indica-
ting more common feature importance with a higher AUC cuto�.
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Suppl. Figure 3: blkbox provides a shiny interface that will enable a "code-free" approach. To 
begin using the shiny interface run blkboxUI. 
The interface will allow the submission of a model directly to the current R session, however it will 
also have the capacity to provide the code used to generate the model. By providing the code as 
a text output one can easily paste this into any exisitng scripts (e.g. running blkbox on a high 
performance computing cluster as a submitted job).
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Suppl. Figure 4:  a) Performance measure. blkbox currently supports �ve di�erent performance metrics; error rate, 
area under the receiver operating characteristic curve, Matthews correlation coe�cient and F-score. Metrics can 
be applied using the Performance function which will allow one more of the metrics to be speci�ed. cv.plot has the 
Performance function embedded within it and therefore will not require calling Performance manually.
b) Venn Diagrams. When comparing multiple algorithms it can be insightful to visualise the overlap between 
them, therefore cv.venn and ncv.venn allow comparison of what features were found to be important in each algo-
rithm. cv.venn can be used if more than one Method and a singular AUC were speci�ed when generating a 
blkboxCV model. cv.venn will compare and intersect the features that survived the AUC cuto� in the speci�c algo-
rithms (Methods). 
c) Receiver operating characteristic (ROC) curves are a measure of true positive and false positive rates, the area 
under this curve is often used as a metric for evaluating model performance. blkbox o�ers the blkboxROC function 
that uses the pROC package to calculate the curve and then feeds that to ggplot2 for an aesthetic overhaul. If repe-
atitions were run with blkboxCV for the models then the plot becomes faceted by repeat number. Similiarly when 
running blkboxNCV the plot can be generated for holdouts individually or combined, the former is faceted whilst 
the later is a singular ROC curve.

a) b)

c)
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Suppl. Figure 5: Di�erent metric output of the ncv.plot() and ncv.venn() function.
ncv.plot is similar to cv.plot but does not recalculate the performance and uses only the exisiting metrics 
within a blkboxNCV model.
ncv.venn varies from cv.venn in a major way, it doesnt directly compare algorithms but compares the 
features used in each holdout of blkboxNCV. This can be a measure of feature stability and be informative 
to adjustments made on the AUC and other parameters.
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Supplementary Methods

Function description:
The standard Blkbox() function allows the user to partition the data on their own and then train a model for various algorithms 
before testing it on the holdout data partition. 
The BlkboxCV() function extends the training and testing function to a cross validation workflow. It uses k-fold cross validation 
to partition the input data into k subsets, training the algorithms on k-1 subsets and then evaluating on the remaining subset. 
Once the data is split into k folds and then k models are generated where the holdout fold is rotated through all possibilities. 
After the successful completion of k-fold cross validation it may be specified to repeat the process n times, if this option is 
chosen the data will be shuffled with a pre-determined seed to avoid the same folds as in prior iterations. Blkbox writes a table 
of the classification of each sample in each algorithm facilitating the extraction of any information desired, such as the 
consensus of one algorithm over all samples. This consensus is the basis for a confusion matrix, which facilitates robust 
evaluation according to a chosen performance metric (see above). 
BlkboxNCV() wraps around both functions mentioned before to determine the success of a feature selected dataset (based 
on the training set) on the external holdout. This procedure was necessary to implement since we discovered high accuracy 
even on randomized negative datasets. The high performance on randomized negative data can be facilitated through undis-
covered subsets of features providing perfect classification and is supported by the problematic inherent in p>>n datasets 
(Grate, 2005).
A key component of the BlkboxNCV is the feature selection based on the area under the curve (AUC) of the combined feature 
importance. A measure of feature importance can be calculated for all of the algorithms except the kNN method. The individu-
al feature importance measure is calculated for every fold of each repeat, averaged and then scaled between 0 and 100. The 
calculated metric directly represents a feature’s relative importance to resolve classes and facilitates comparison between 
algorithms; continuing with features of non-zero relative importance dramatically reduces the computational time whilst main-
taining accuracy. (AUC over AUROC figure)

The concatenation of all unique non-zero features is a robust feature selection method that maintains every feature of import-
ance. The matrix of relative feature importance can then be weighted by the models average performance and consistently 
strong features are both excellent biomarker candidates as well as potentially providing mechanistic insights into the basis of 
the disease.
blkbox implements nine representative high-performance ML algorithms: Random Forests (rf) (Breiman, 2001), Support Vector 
Machines (SVM) (Cortes and Vapnik, 1995), neural networks (nnet) (Naylor, 1996), k-Nearest Neighbors (kNN) (Hechenbichler 
and Schliep, 2004), shrunken centroid (pamR) (Tibshirani et al., 2002), conditional inference trees (party) (Hothorn et al., 2012), 
Bayesian additive regression trees (bart) (Chipman et al., 2010), extreme gradient boosting (xgb) (Chen and Guestrin, 2016) 
and lasso or elastic-net (glm) (Friedman et al., 2010). 
We applied different stringency to the feature selection (AUC cutoffs) in step one to assess the affect of increasing feature size 
over runtime and accuracy. The number of surviving features as a function of decreasing AUC cutoffs follows a decreasing 
trend line. The distribution of relative importance remains consistent for each algorithm across the multiple datasets; the relati-
ve importance distribution is therefore dependent on the ML algorithm itself. The rate at which the number of surviving featu-
res reduces  as a function of AUC cutoff remains is consistent for algorithms between datasets.

To measure predictive performance (also referred to as ‘‘predictivity’’), we used the area under the ROC curve (AUC). The ROC 
curve is the plot of sensitivity versus 1- specificity for a range of threshold values on the outputs/predictions of the classificati-
on algorithms. AUC ranges from 0 to 1, where AUCROC 1 corresponds to a perfectly correct classification of samples, 
AUCROC 0.5 corresponds to classification by chance, and AUC ROC 0 corresponds to an inverted perfect classification. We 
chose AUC as the standard predictive performance metric because it is insensitive to unbalanced class prior probabilities, it 
is computed over the range of sensitivity-specificity tradeoffs at various classifier output thresholds, and it is more discrimina-
tive than metrics such as accuracy (proportion of correct classifications), F-measure, precision, etc.

Breiman,L. (2001) Random forests. Mach Learn, 45, 5–32.
Chen,T. and Guestrin,C. (2016) Xgboost: A scalable tree boosting system. arXiv.
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