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ABSTRACT
�e ability to predict pathways for biosynthesis of metabolites is

very important in metabolic engineering. It is possible to mine the

repertoire of biochemical transformations from reaction databases,

and apply the knowledge to predict reactions to synthesize new

molecules. However, this usually involves a careful understanding

of the mechanism and the knowledge of the exact bonds being

created and broken. �ere is clearly a need for a method to rapidly

predict reactions for synthesizing new molecules, which relies only

on the structures of the molecules, without demanding additional

information such as thermodynamics or hand-curated information

such as atom-atom mapping, which are o�en hard to obtain accu-

rately.

We here describe a robust method based on subgraph mining, to

predict a series of biochemical transformations, which can convert

between two (even previously unseen) molecules. We �rst describe

a reliable method based on subgraph edit distance to map reactants

and products, using only their chemical structures. Having mapped

reactants and products, we identify the reaction centre and its neigh-

bourhood, the reaction signature, and store this in a reaction rule

network. �is novel representation enables us to rapidly predict

pathways, even between previously unseen molecules. We also

propose a heuristic that predominantly recovers natural biosyn-

thetic pathways from amongst hundreds of possible alternatives,

through a directed search of the reaction rule network, enabling

us to provide a reliable ranking of the di�erent pathways. Our

approach scales well, even to databases with > 100, 000 reactions.

A Java-based implementation of our algorithms is available at

h�ps://github.com/RamanLab/ReactionMiner
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•Information systems →Data mining; •Applied computing
→Bioinformatics;
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1 INTRODUCTION
Metabolic networks have been curated for hundreds of organisms,

with varying degrees of detail and con�dence, in popular databases

such as the Kyoto Encyclopedia of Genes and Genomes (KEGG;

[15]), MetaCyc [5] and MetaNetX [11]. �ese curated biochemical

∗
Present address: Department of Computer Science and Engineering, IIT Delhi, New

Delhi – 110016, India

†
Corresponding author.

reaction databases represent the repertoire of biochemical con-

versions that known enzymes can catalyse. Enzymes, while being

remarkably speci�c, also demonstrate the ability to convert a family

of related substrates (e.g. alcohols), to a family of related products

(e.g. aldehydes). An important challenge in metabolic engineering

is the biosynthesis of novel molecules through heterologous expres-

sion of enzymes from other organisms. �e ability to perform this

retrosynthesis of novel molecules hinges on our ability to under-

stand and generalise the abilities of the enzymes, in terms of the

chemical reactions that they can catalyse and the substrates that

they can act on.

Further, a deeper understanding of the biochemical transforma-

tions happening in metabolic networks can shed light on various

fundamental questions in biology. For example, are there alternate

ways to synthesize common central metabolites such as pyruvate?

Why do cells prefer a particular pathway for the conversion of a

metabolite such as glucose, to say, pyruvate (glycolysis)? �ere

are also many knowledge gaps in our understanding of microbial

metabolism; for example, there are a number of compounds known

to be present in microbes, but the exact sequence of reactions and

intermediates involved in their biosynthesis remain unknown. It is

possible to bridge these knowledge gaps through a careful analysis

of the metabolic networks, as we describe herein.

Since the seminal work of Corey and Wipke [9], a number of

algorithms have been developed to analyse (bio)chemical reaction

networks, to predict pathways and novel routes for metabolite

synthesis [3, 4, 6, 13, 17, 20, 24, 29, 30]. For reviews, see [12, 23].

Despite the availability of a wide array of reaction prediction meth-

ods, all of them rely on the existence of query molecules in the

reaction knowledge-base (“known” molecules in training data). Re-

actionPredictor [6, 17] is one exception as it can predict reactions

for unknown molecules, but it is limited to speci�c classes of re-

actions due to its reliance on hand-curated rules. In this work, we

present for the �rst time to the best of our knowledge, a general

and fully-automated method for predicting reactions between un-

known (previously unseen) molecules. We do so by automatically

learning biochemical transformation rules involving substructures

of molecules from the reaction knowledge-base and searching for

matching substructures in the unseen query molecule, both via sub-

graph mining techniques. �e result is a scalable method that can

be e�ciently applied to predict novel metabolic routes in thousands

of organisms.

Notably, compared to previous methods, which use KEGG atom

types [26] or atom–atom mapping information [20, 29], we use

no more information than the metabolic reaction database and

the chemical structures of the participating molecules. We also
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demonstrate two important applications of our method: �rst, we

show how our method can be used to identify/recover biochemically

preferred pathways between metabolites. Second, we show how

pathways to known and novel/unseen compounds can be rapidly

predicted. Our approach is very e�cient, completely automated,

scalable and performs with a higher degree of accuracy compared

to state-of-the-art methods.

2 RELATED WORK
We now discuss how the previous approaches meet only a subset

of the challenges mentioned above. �e proposed technique is the

�rst to overcome all of the above challenges. �e earliest work [21]

focuses on using stoichiometric constraints to identify feasible

pathways, where reactions are classi�ed as either being allowed,

required or excluded from the pathways. Rahnuma [24] employs

a hypergraph model to represent a network between molecules

for the prediction and analysis of pathways. An edge connecting

two molecules denote that it is possible to convert one to the other.

Metabolic Tinker [22] is an open source web-server that uses the

entire Rhea database to rank possible paths, based on thermody-

namics. All the above techniques, however, fail to generalise for

unknown query molecules. PathPred [26] uses a limited number of

(Reactant, Product) pairs to predict pathways for a small subset of

molecules. However, these pairs and their structural transforma-

tions are hand-curated and consequently, the technique is limited to

a small collection of reactions. In our technique, we automatically

learn both the pairing and the structural transformations.

EC-BLAST [29] proposes an algorithm to automatically search

and compare enzyme reactions. �ough their approach charac-

terises reactions using pa�erns derived from atom–atom mappings,

they use additional chemical knowledge such as bond energies and

do not address our precise problem of predicting chemical reactions.

Furthermore, information on bond energies is not readily available.

Kotera and co-workers [18] developed a method to learn enzymatic

reaction likeness from metabolic reaction databases using chemical

�ngerprints. From Metabolite to Metabolite (FMM; [7]) is a tool

for predicting pathways based on the KEGG. RouteSearch [20] is

a recent method to predict pathways using the MetaCyc database.

�is technique uses atom–atom mappings to search a metabolic

network obtained from MetaCyc [5]. Another very recent tool is

Metabolic Route Explorer (MRE; [19]), which can rapidly predict

pathways in several organisms and rank the pathways via a nice

web interface. However, none of FMM, RouteSearch or MRE can

predict on unseen molecules.

3 METHODS
Fig 1 presents the pipeline of our reaction prediction algorithm.

We represent each molecule as a graph, where atoms correspond

to vertices and bonds correspond to edges. Given a database of

metabolic reactions, we use an e�ective mapping method based on

subgraph edit distance [14] to accurately map transformed metabo-

lites in a reaction. �rough graph mining, we then identify the

speci�c subgraph within a graph (molecule) that is critical for a re-

action to occur. We call these subgraphs the reaction signatures. For

example, consider an alcohol to aldehyde conversion (see Fig 2a),

Reac�on
Rule

Network

Figure 1: Pipeline of the reaction prediction algorithm. �e
�gure outlines both the o�line and online phases of the algo-
rithm. �e o�line phase involves graph mining of the reac-
tion database to identify reaction signatures, fromwhich re-
action rules are subsequently identi�ed and embedded in a
reaction rule network (RRN). In the online phase, we search
the RRN and predict suitable pathways, on the arrival of a
query A→ B.

where RCH2OH is converted to RCHO , by the enzyme alcohol de-

hydrogenase. We consider the subgraph corresponding to CH2OH
as the reaction signature, since the rest of the molecule remains un-

a�ected. We then analyze the reaction signatures and characterize

the changes they undergo during a reaction and summarize them

as reaction rules. Connecting back to our example, the reaction rule

in this case isCH2OH changing toCHO . All reaction rules that are

learned from the database are next consolidated in the form of a

reaction rule network (RRN). In the RRN, each node is a reaction

rule and two rules are connected by an edge if they can potentially

form a reaction pathway. �is completes the o�ine phase. In the

online phase, given a query to �nd a pathway from molecule A to

B, we analyze the structures of both A and B based on the reaction

signatures they contain. From this analysis, A is mapped to a set

of source nodes, and B is mapped to a set of destination nodes, in

the RRN. Consequently, the prediction problem reduces to �nding

(optimal) paths between the source and destination nodes in the

RRN.

3.1 Problem Formulation
In this section, we formulate our prediction problem and de�ne

the concepts and notations central to our work. We represent each

molecule as an undirected graph. A graph д(V ,E) is composed of

a set of vertices V = {v1, · · · ,vn } and a set of edges E = {e =
(vi ,vj ) | vi ,vj ∈ V }. Each vertex and edge have labels denoted l(v)
and l(e) respectively. �e size of a graph is |E |. Fig 2b shows the

graph representation of a molecule. Atoms correspond to vertices,

bonds correspond to edges and bond orders correspond to edge

labels.

�e input to our problem is a dataset of chemical reactions R.

A reaction R contains two sets of graphs (or molecules): the �rst

set contains the reactants and the second set contains the products
synthesized. We use RS(R) to denote the reactant set in R and

PS(R) to denote the products. A pathway P(A,B) from a molecule

2
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Figure 2: A simple illustration to motivate our approach. (a) Conversion of ethanol and propanol (alcohols) to ethanal and
propanal (aldehydes) respectively. Vertices without explicit labels represent Carbon atoms. Notice that although the reactions
involve di�erent molecules, the changes (highlighted in red and green boxes) are identical. (b) Representing D-Lactic acid
as a graph. Note that double bonds are indicated by a changed edge label, as are wedges and dashes that represent bond
stereochemistry.

A to B is a chain of reactions R1, · · · ,Rn such that A ∈ RS(R1),
B ∈ PS(Rn ), and there is at least one metabolite shared between

the product set of one reaction and the reactant set of the next. An

example of a pathway is from ethanol to ethanoic acid. Ethanol can

be oxidised to form ethanal, and then ethanal can be oxidised to

form ethanoic acid.

We now de�ne the pathway prediction problem as follows: Given

a training database of reactions (and the structures of the con-

stituent molecules), learn a prediction modelM.M should support

the prediction queryQ(S,T ), where S is a (set of) source molecule(s)

and T is the target molecule. Given this query,M should produce

a pathway P(A,T ) where A ∈ S. An important aspect of our formu-

lation is that we do not make any assumption of the source or the

target molecules being present in the reaction database. �e only

information we use to learn the prediction model are the structures

of the molecules, which is easily available.

3.2 Mining Reaction Patterns
Our goal in this section is two-fold. First, we identify the reaction
pa�erns existing in the training database. Second, for any given

molecule in the reactant set, we should be able to predict the pat-

terns that are applicable on the reactant. To understand what a

pa�ern is in our context, let us revisit Fig 2a. We claim that both

reactions follow the same pa�ern because: (i) in both the alcohol

molecules, the exact same subgraph (highlighted in red) is a�ected,

while the remaining portions remain unaltered, (ii) the a�ected

subgraphs undergo an identical change and (iii) the oxidising agent

undergoes an identical change to form a water molecule.

In other words, if the same structural change happens in one or

more reactions, then that is a pa�ern. To quantify the structural
change, we �rst need to construct a mapping between the graphs

in the reactant set to those in the product set. More speci�cally, the

alcohol molecules should be mapped to the aldehyde molecules and

the oxidizing agent should be mapped to water. �e comparison

in the structure of the mapped molecules allows us to quantify the

change. We call this operation reactant–product mapping (RPM) and

use the notation RPM(A,B) to denote that a reactant A has been

mapped to a product B of the reaction. Clearly, a wrong mapping

(such as mapping alcohol to water) would produce spurious results.

As we demonstrate later, our RPM allows us to reliably compute

meaningful pathways. �is is similar to the RPAIR concept used

in KEGG and by MRE, but we compute it only using the molecule

structures, without resorting to the use of atom–atom mapping

information, or even atom types.

Clearly, computing the structural change is possible only a�er

the RPM is constructed. To detect RPMs, we use subgraph edit
distance, as we discuss below.

3.2.1 Computing Reactant–Product Mapping. Intuitively,

we should map the pair that is most similar to one another. We

model this intuition using the idea of subgraph edit distance. Infor-

mally, the subgraph edit distance sed(д,д′) [14] is the minimum

number of edits performed on д to convert it to some subgraph of

д′. An edit is either addition or deletion of edges and vertices, or

replacement of vertex or edge labels. We need to match д to all pos-

sible subgraphs of д′ since in a decomposition reactionAB → A+B,

A (and B) maps to a subgraph of AB and not the entire molecule.

Delving into the subgraph space is necessary to accurately com-

pute the structural change due to the reaction. We �nd the �nal set

of RPM pairs using a greedy approach that chooses the reactant–

product pair with the best sed �rst, the pair with the second best sed
of the remaining pairs next, and so on until all products have been

mapped. Formal de�nition of sed, as well as our algorithm to com-

pute RPM, along with examples are presented in the Supplementary

Methods.

3.3 �antifying Structural Change
To quantify the changes due to the reaction, we �rst identify the

reaction centres. Subsequently, we identify the reaction signatures,
or the motifs we consider necessary for a reaction to occur.

3.3.1 Reaction Centres. �e reaction centre for an RPM pair

(A,B) is the set of vertices in the product B to which new edges are

added, or existing edges removed, during its transformation from A.

For instance, consider the reaction in Fig 3a, and particularly focus

on the pair (C00049, C00152). In this pair, the conversion involves

a removal of the OH group and addition of the NH2 group. �us,

we have one reaction centre, which is the carbon atom a�ached to

the bond involved with the change. �e reaction centre is explicitly

shown in Fig 3. �e reaction centre for (C00020, C00002) pair is

also shown in Fig 3. Note that we treat OH as a single vertex since

3
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(a)

(b)

Property (L-Asparagine, L-
Aspartate)

(ethanol,
ethanal)

(propanol,
propanal)

Subgraph Added C −OH C = O C = O
Subgraph Removed C − NH2 H −C −OH H −C −OH

(c)

Figure 3: Illustration of reaction signature. (a) An example reaction, illustrating the conversion of the amino acid
L-Asparagine (C00152) to L-Aspartate (C00049). �e other reactants/co-factors in this reaction include ATP (C00002),
AMP (C00020), Diphosphate (C00013) and Ammonia (C00014). (b) �e reaction centres and signatures (green circle) in the
reaction in (a). (c) �e structural changes in the reactant–product pairs, in terms of subgraphs added and removed.

OH chemically behaves as a single entity. �us, the reaction centre

is the vertex P and not O. Although it is more common to see one

reaction centre in a pair, multiple reaction centres are possible.

3.3.2 Reaction Signature. �e reaction centre only tells us the

location of change. It does not necessarily tell us the reason, or the

conditions necessary, for the change to occur. To predict pathways,

we need to identify the conditions required for a reaction to happen.

We build our prediction model based on the hypothesis that two

molecules would undergo a similar change in a reaction if they

contain a common “key” sub-structure that drives the forming or

breaking of chemical bonds. Our hypothesis is motivated by the

fact that many enzymes, such as alcohol dehydrogenases that con-

vert alcohols to aldehydes, show a speci�city towards the type of

subgraph, i. e. sub-structure present in the reactants [16, 28]. Since

the reaction centre is the location of the change, a straightforward

approach would be to assign the reaction centre as this “key” sub-

graph. However, a single atom (or vertex) does not capture all of

the atom-level interactions that take place. For instance, consider

the reaction centre in L-Asparagine (C00152; see Fig 3a), which is

a Carbon atom. Here, the Carbon is not only interacting with the

NH2 group that gets replaced with theOH group, but also with the

adjacent Oxygen and Carbon atoms. �e strength of theC = O and

C − C bonds, their charges, geometries etc. all play a role in the

breaking of the C − NH2 bond and its eventual replacement with

C −OH . To generalise, the direct neighbours of the reaction centre

in�uence the reaction. Based on this intuition, we de�ne a reaction
signature, S(VS ,ES ) as the immediate (‘one-hop’) neighbourhood

of the reaction centre in the product of the (A,B) pair.

�e reaction signatures of the two reactant–product pairs in the

reaction in Fig 3a are shown in Fig 3b. It is easy to see that the reac-

tion signature is a subgraph of the product. Note that when there

are multiple reaction centres, there are multiple reaction signatures

as well, where each signature represents the neighbourhood around

the corresponding reaction centre. In general, the reaction centres

identify the locations of change, and the reaction signatures encode

the potential driving factor behind the change. Next, we formalise

our mechanism to store the change itself.

3.3.3 Detecting the change in (A,B) pair. Conceptually, in a pair

(A,B), we want to store∆ = B−A, where∆ is the di�erence between

the structures. Furthermore, given only B and ∆, we should be able

to re-construct A. As we will see later, the ability to reconstruct the

reactant A from just ∆ and the product B lies at the core our of our

algorithm’s ability to predict on unseen molecules. �e reaction

signature can change through either the addition or removal of

subgraphs, as detailed in Supplementary Methods. To illustrate,

Fig 3c shows the structural changes for three di�erent pairs. �e

�rst pair is from Fig 3a. �e other two pairs correspond to the

reactions in Fig 2a. Notice that since both reactions in Fig 2a involve

conversion of alcohol to aldehyde, their structural changes (along

with the reaction centres and signatures, which are not shown in

Fig 3c) are identical. �e above illustration not only showcases how

we capture structural changes in a reaction, but also demonstrates

our precise ability to detect a common pa�ern among reactions.

Armed with this technique, we next formulate the idea of a reaction
rule.

3.4 Reaction Rules
Given a database of reactions D, for each reaction R, we identify all

of its reactant–product pairs. From each pair (A,B), we extract and

store the following information: (i) the reaction signature, (ii) the

reaction centres, (iii) the subgraphs added and removed and (iv) all

reactants in R except A. �ese reactants are the co-factors or helper
reactants that facilitate the reaction. For example, the oxidising

agent would be stored as the helper reactant for (ethanol, ethanal)

and (propanol, propanal) pairs in Fig 2a. For the (C00152, C00049)

pair in the reaction in Fig 3a, both C00020 and C00013 would be

stored.

We denote the above information, which is extracted from each

(A,B) pair, as L(A,B), the reaction rule. Note that we do not

store the pair (A,B) itself; we only store the structural change

and its associated information. L(A,B) = L(C,D) if all of the four

items listed above are identical. For example, L(ethanol , ethanal) =
L(propanol ,propanal).

4
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(a) (b)

(c) (d) (e)

Figure 4: Illustration of graph operators and reaction rules. (a) An example of graph addition and subtraction. vi denotes
the vertex IDs. (b) �e process of predicting hexanol as the product pair of hexanal. (c) Features of the rules extracted from
the conversion of ethanal to ethanoic acid. (d) д2 and д1 corresponding to the example RRN discussed in the main text. (e)
Structure of hexanoic acid.

To identify rules, we consider a support threshold θ , which

decides the number of times a pa�ern of structural change must

be seen, to be considered a reaction rule. Since novel pathway

identi�cation between rare molecules is of critical importance, we

err on the side of exploration, and set the defaultθ = 1, which means

any structural change is a pa�ern, even if it does not repeat across

multiple reactions. �e top ranking pathways can be manually

screened at a later stage.

3.5 Pathway Prediction
We now discuss how the reaction rules described above can be

employed to predict synthesis of a target product. A reaction rule

serves two purposes: �rstly, given any target product molecule,

detect whether the rule is applicable on the molecule. If the rule

is applicable, we must predict the reactants required to synthesize

the given product. We introduce two graph operators: graph addi-

tion and subtraction, which enable the above. An example of the

operations is shown in Fig 4a.

Graph Addition. m(Vm ,Em ) = д(V ,E) + д′(V ′,E ′). �e resul-

tant graphm hasVm = V ∪V ′, Em = E∪E ′. Form to be connected,

it must satisfy that V ∩V ′ , ∅.
Graph Subtraction. m(Vm ,Em ) = д(V ,E) − д′(V ′,E ′). �e

resultant graphm has Vm = {v ∈ V ,v < V ′}, Em = {e = (v1,v2) ∈
E | v1,v2 ∈ Vm }.

Algorithm 1 presents the pseudocode of applying a reaction rule.

Let B be a target product and L be the reaction rule that we want

to apply on B if chemically feasible, i.e. if the rule is applicable,

based on the presence of appropriate subgraphs. Recall our hy-

pothesis that the presence of the reaction signature is the cause of

the reaction. Second, due to the reaction, the “Subgraph Added” of

1: m ← L.siдnature + L.subдraphAdded
2: if m ⊆ B then
3: B ← B − L.subдraphAdded
4: A← B + L.subдraphRemoved
5: return {A,L.helperReactants}
6: else
7: return Not applicable

Algorithm 1: ApplyRule(L,B)

L gets a�ached at the reaction centre c . �us, we �rst merge the

reaction signature with the “Subgraph Added” to create a single

merged graph m. Ifm is a subgraph of B, then L is applicable on B.

If the check passes, we proceed to the next step of formulating the

reactants that can synthesize B. Since the reaction centre is present

both in the signature and the “Subgraph Added”,m is guaranteed

to be connected.

First, we construct the reactant pair of B using L. We remove the

“Subgraph Added” from B (line 3) and then merge the “Subgraph

Removed” component with B to create the reactant pair A (line 4).

Finally, the helper reactants in L are fetched and their reaction with

A is predicted to synthesize B (line 5). Note that neither B nor A is

required to be present in the training database — only a matching

subgraph need be present.

To illustrate, let us revisit our original example of synthesising

hexanal from the training database in Fig 2a. �e structure of

hexanal is shown in Fig 4b. L(ethanol , ethanal) is a reaction rule,

which also occurs again in L(propanol ,propanal). �e reaction

signature for this rule is the subgraph within the green box in Fig 2aa

and the reaction centre is the central Carbon atom participating in

the C=O bond. �e “Subgraph Added” and “Subgraph Removed”

5
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correspond to columns 2 (and 3) of Fig 3c and the helper reactant

contained in this rule is the oxidising agent [O]. �e reaction rule is

applicable on hexanal since the merged graph of the signature and

“Subgraph Added” is a subgraph of hexanal. Now, to identify the

reactant pair, �rst we remove “Subgraph Added” and then a�ach the

OH at the reaction centre. Consequently, we generate the hexanol

molecule. �e step-by-step process is shown in Fig 4b. Finally, we

predict hexanol +[O] as the reaction since [O] is the helper reactant

stored in the rule. �us, we are able to predict the synthesis of

hexanal from hexanol even though we have not seen either of the

molecules in the training database.

3.6 Reaction Rule Network (RRN)
While we have described above, the procedure to predict a reaction

that could synthesize a target molecule (also see Algorithm 1),

our goal is to predict pathways — essentially a chain of reactions.

Furthermore, between a source and a target molecule, there could

be hundreds of pathways. How do we identify and rank only the

top-k best paths? To overcome these challenges, we propose the

idea of a reaction rule network (RRN).
Each node in the RRN corresponds to a reaction rule, and we

want to ensure the following property: if there exists a pathway

P = {R1, · · · ,Rn } from molecule A to B, such that reaction Ri
happens through rule Li , then, there should be a path from Ln to L1

in the RRN. Towards that goal, we notice that rules L1 and L2 can

be applied consecutively if the product of L1 is a reactant in L2. In

such a case, we should have a directed edge from L2 to L1. However,

neither the product nor the reactant may be present in the database.

We need to capture this dependency between L1 and L2 only from

the structural change information that we store. To capture all of

these properties, we formally de�ne the RRN as follows:

De�nition 3.1. Reaction Rule Network (RRN). Let L be the set

of all rules mined from our training database. �e RRN N (VN ,EN )
is a directed graph where VN = L. Let д2 = L2.siдnature −
L2.subдraphAdded+L2.subдraphRemoved andд1 = L1.siдnature+
L1.subдraphAdded and e = (L2,L1) ∈ EN if д1 ⊆ д2.

In the above de�nition, д2 is the subgraph that must be present

on any reactant on which L2 is applicable. On the other hand, д1

is the subgraph that must be present on any product generated

through L1 (follows from Algorithm 1). �us, if д2 is a (subgraph

isomorphic) subgraph of д1, then the product of L1 can feed in as a

reactant to L2. To illustrate the RRN, consider a training database

where in addition to the two reactions in Fig 2aa, we also have the

oxidation of ethanal to ethanoic acid shown in Fig 4c. Furthermore,

we consider every unique structural change as a pa�ern. �us, there

are two reaction rules; rule L1 corresponding to the conversion of

alcohol to aldehyde, and rule L2 corresponding to the conversion

of ethanal to ethanoic acid. �e reaction signature, subgraph added

and subgraph removed for L2 is also shown in Fig 4c. �e resultant

д2 and д1, as shown in Fig 4d, are isomorphic, and consequently,

there is an edge from L2 to L1 in the resultant RRN.

�e formalization of the RRN completes the o�ine model build-

ing component. Next, we discuss the online query (S,T ), where

the goal is to �nd a pathway from A to T where A ∈ S is one of the

source molecules.

Input: Set of source molecules S, Target molecule T and

number of paths k
Output: Top-k paths ranked according to heuristic Hd

1: Initialise PQ ← ϕ
2: InitialiseanswerSet ← new MaxHeap(k) /* Max heap of

size k ordered by dist */
3: srcVertices ← {v ∈ VN |v .siдnature+v .subдraphAdded ⊆ T }

4: for v ∈ srcVertices do
5: L← new PQNode()
6: L.path ← {v}
7: L.reactant ← ApplyRule(v,T )
8: L.dist ← Hd (v,L.reactant ,S)
9: L.pathway ← {L.reactant}

10: PQ ← PQ ∪ L
11: while PQ , ϕ do
12: L← PQ .extractMinDist()
13: if L.reactant ∈ S and (|answerSet | < k or

L.dist < answerSet .Top().dist ) then
14: answerSet ← answerSet ∪ L.path ;

15: for Lad j ∈ N .Adj(L.path.lastVertex) do
16: M ← new PQNode()
17: M .reactant ← ApplyRule(Lad j ,L.reactant)
18: M .path ← L.path ∪ {Lad j }
19: M .pathway ← L.pathway ∪ {M .reactant}
20: M .dist ← Hd (Lad j ,M .pathway,S)
21: if |answerSet | < k orM .dist < answerSet .Top().dist

then
22: PQ ← PQ ∪M
23: return answerSet

Algorithm 2: TopKPaths(S,T ,k)

3.7 Answering�eries on the RRN
To illustrate our query answering strategy, we continue with the

RRN outlined above. Suppose the query is to �nd a pathway from

hexanol to hexanoic acid (Fig 4e). Note that neither of the query

molecules are in the reaction database. We initiate by searching for

a rule that is applicable on the target molecule, hexanoic acid. In

our two-node network, rule L2 is applicable (line 1 in Algorithm 1).

On applying L2 on hexanoic acid, hexanal is generated as the re-

actant pair. Since hexanal is not the source molecule, we continue

searching by applying the adjacent rule L1. Since L1 is connected

from L2, we are guaranteed that L1 is applicable on the reactant

produced by L2, which is hexanal. On applying L1 on hexanal, hex-

anol is generated as the reactant pair, which completes the query

since it is the source molecule. �e resultant pathway is therefore

hexanol

L1−−→hexanal

L2−−→ hexanoic acid.

To generalize the above strategy, we �rst identify nodes (or

rules) that are applicable on the target molecule. From each of these

rules, a reactant is generated. If the reactant is one of the source

molecules then we stop. Otherwise, we continue exploring each

possible path using breadth-�rst search (BFS) either till all paths are

exhausted or a source molecule is reached. We call this strategy the

BFS exploration. Exploration using BFS guarantees that the �rst

pathway found is the shortest, in terms of length. �e exploration
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algorithm can easily be generalized to �nd the k shortest paths as

well. While BFS is simple, it is o�en not scalable in a large RRN

due to the large number of paths that exists. Furthermore, the BFS

strategy does not use the knowledge of the source molecule to

optimise the searching process. To overcome these weaknesses, we

explore an alternative algorithm, based on best-�rst search [32].

3.7.1 Heuristic Hd : Minimizing structural changes in every step.
We hypothesize that nature avoids reactions that cause drastic alter-

ations to the structure of the reactant. �is can also be appreciated

in terms of the enzymes — enzymes are highly specialized and

perform an incremental structural change to a substrate, rather

than wholesale structural changes. We model this e�ect through a

distance function that minimizes the total structural change in a

pathway, in addition to minimizing the distance to a source mole-

cule A. Speci�cally, the optimization function at a speci�c pathway

P = {X1, · · · ,Xn } of n molecules (n − 1 reactions) minimizes the

function below:

Hd (P ,S) =
n−1∑
i=1

дed(Xi ,Xi+1) + min∀A∈S{дed(Xn ,A)} (1)

where дed(д,д′) is the edit distance between graphs д and д′ [34].

Edit distance between two graphs is de�ned analogously to sub-

graph edit distance. Speci�cally, it is the minimum number of edits

required to convert д to д′. �e primary di�erence with sed(д,д′) is
that д is converted to д′ instead of a subgraph of д′. Consequently,

дed(д,д′) is symmetric. Based on Hd (P ,S), we optimise search

paths using best-�rst search, as listed in Algorithm 2.

Algorithm 2 explains how we we optimise search paths using

best-�rst search, based on Hd (P ,S). We initialise a priority-queue

(PQ) that orders rules in ascending order of their distance and the

answer set (AS) as a max heap of size k (lines 1–2). First, we insert

all applicable rules on the target molecule T in the PQ (lines 4–10).

Next, we pop the top rule L, i. e. the rule that generates a pathway

minimising Eq 1 and check if any of the source molecules has been

reached. If it has, then we insert the path in the answer set only if

the distance (of L) is lower than the distance of the kth best path

identi�ed so far (lines 13–14). Otherwise, we extract each of L′s
adjacent rules, generate the resultant reactants, and insert the rules

based on their distance in the PQ (lines 15–22). In this step, we

insert a rule in the PQ only if the distance is lesser than that of the

kth best path (lines 21–22). We again pop the next applicable rule

with the lowest distance and this process continues until all paths

to the source molecules are exhausted (line 11).

�e details of the 20 pathways can be found in Supplementary

Table S2.

3.8 Datasets used
We used the KEGG [15] as our training database. KEGG harbours

an extensive collection of >10,000 biochemical reactions known

to occur in various organisms. We also obtained organism-wise

reaction sets, where each set is a subset of the KEGG, containing

the known reactions in a single organism, such as yeast, E. coli, etc.

In total, we have 2,641 organisms, which results in 2,641 reaction

sets. �ese datasets were obtained via Path2Models [1], which is

based on KEGG. Our algorithms are implemented in Java JDK 1.7.0

and evaluated on a PC with 12GB memory and Intel i5 2.60GHz

quad core processor running Ubuntu 13.04.

4 RESULTS
In this section, we establish that our pathway predictions are accu-

rate, and that the proposed technique is scalable to large reaction

databases. Ours is the �rst technique that is fully automated, can

answer queries on unseen molecules, and requires no information

other than the structure of the molecules. Due to this simplicity

of our technique, we are the �rst to scale to a database as large as

150,000 reactions.

Our major results are four-fold. First, we query on those source

and target molecules present in the training database. �e presence

of query molecules in the training set is enforced only to allow

us to compare the performance with the state-of-the-art pathway

prediction techniques such as RouteSearch [20] and MRE [19]. We

demonstrate how our heuristic Hd picks up natural biosynthetic

pathways very frequently, much more than other state-of-the-art

methods. Second, we show that the common biosynthetic pathways

are optimised across organisms in nature. �ird, we remove the

constraint of requiring the source molecules in the training database

and show that we predict viable retrosynthetic pathways for known

and new molecules. Finally, we show that our results are accurate,

by means of cross-validation, and that our algorithm can scale well

for very large reaction databases.

4.1 Hd consistently picks up natural pathways
with high probability

In any pathway prediction algorithm, all predicted pathways are

ranked according to some score, and �nally the top-k highest scor-

ing paths are studied further for feasibility. Ranking the predicted

pathways is very important since there are o�en hundreds of paths

between two molecules, and a high rank should signify high bio-

chemical plausibility. As discussed earlier, we use Eq 1 as the

ranking function in our algorithm. To benchmark, we choose 20

pathways involved in the biosynthesis of amino acids and impor-

tant precursors in central carbon metabolism, similar to those used

in [4].

For the selected pathways, we predict by querying using their

source and target molecules and extract the top 10 predicted paths.

�e training database for this experiment corresponds to the reac-

tion set of E. coli. Table 1 presents the rank of the actual pathway

by each of the techniques. As clearly evident, the actual pathway

consistently ranks among the top 10 in our algorithm, while being

mostly absent in RouteSearch. MRE is able to predict only 10 of the

20 pathways. Although MRE occasionally ranks the correct result

higher than our method, it clearly lags behind our method in the

overall head-to-head comparison (4-14 with 2 ties). �ese results

point towards the superior ability of our technique to identify path-

ways reliably, and also rank the biologically favoured pathways

much higher.

4.2 Nature appears to optimize pathways
across organisms

Although the performance of our technique is clearly superior, the

native biosynthetic pathway did not always rank the highest. We
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ID Source Target Rank
Hd RouteSearch MREa

1 α-D-Glucose (C00267) D-Glyceraldehyde (C00118) 1 — —

2 D-Glyceraldehyde (C00118) Pyruvate (C00022) 2 — 13

3 5-Phospho-α-D-ribose (C00119) L-Histidine (C00135) 7 — —

4 Phosphoribulosyl-formimino-AICAR-

phosphate (C04916)

L-Histidine (C00135) 1 — —

5 D-Galacturonate (C00333) Pyruvate (C00022) 2 — 1
6 D-Erythrose (C00279) Pyridoxal phosphate (C00018) 6 — 119

b

7 L-�reonine (C00188) L-Isoleucine (C00407) 1 — 1
8 GTP (C00044) 7,8-dihydropteridine (C04874) 4 — No path

9 7,8-Dihydroneopterin 3’-triphosphate (C04895) Dihydrofolate (C00415) 3 — 2
10 L-Aspartate (C00049) 2,3,4,5-Tetrahydrodipicolinate (C03972) 2 — —

11 L-Aspartate (C00049) L-�reonine (C00188) 3 — —

12 Oxaloacetate (C00036) L-Glutamate (C00025) 3 — —

13 β-D-Glucose (C01172) D-Glyceraldehyde (C00118) 6 — 1
14 2-Oxobutanoate (C00109) L-Isoleucine (C00407) 1 — 1
15 Chorismate (C00251) L-Tryptophan (C00078) — 1 1
16 Shikimate (C00493) L-Tyrosine (C00082) 1 1 38

17 L-Glutamate (C00025) L-Ornithine (C00077) 8 1 —

18 Phosphoenolpyruvate (C00074) L-Aspartate (C00049) 3 — —

19 Phosphoenolpyruvate (C00074) L-Asparagine (C00152) 3 — —

20 L-Glutamate (C00025) L-Proline (C00148) 3 — —

a
— indicates that the pathway is not found, in the top 200

b
skips a step

Table 1: Pathway Prediction comparison of our algorithm (speci�cally, using the heuristic Hd ) versus RouteSearch and MRE.
�e source and target molecules are indicated along with their KEGG CIDs. Bold-faced rank displays the winning algorithm
for each row.

now investigate the possible reason behind this behaviour. We

base our investigation on the hypothesis that nature prefers com-

mon pathways that are feasible across multiple organisms instead

of a single organism [10, 27]. To test this hypothesis, we again

considered the 20 commonly occurring pathways from central car-

bon metabolism and amino acid synthesis, which are common to

many organisms. We performed the pathway prediction on the

organism-speci�c reaction sets and computed the rank of the actual

pathway using our heuristic Hd . We then computed an Aggregate
Score for each path, as

∑
2641

i=1
ri , where ri is the rank of the actual

path in organism i . �e pathways are then globally ranked based

on their Aggregate Score; the lower the Aggregate Score, be�er

is the rank (see Table 2). We also list the total number of unique

pathways that exist between the source and the target molecules

to fully expose the complexity of the prediction and ranking task.

�e results clearly reveal that nature can be be�er explained when

the analysis covers multiple organisms than a single one. More

speci�cally, the actual pathway consistently ranks highest in 60% of

the paths and within the top three for more than 90% of the paths.

Nature’s preference to use the same pathway for biosynthesis of

these molecules across all organisms is also captured by the Average
Rank column in Table 2.

4.3 Retrosynthetic predictions compare
favourably with other methods

In addition to the pathways we outlined above, we here show that

we perform comparably or be�er than MRE, in nearly all retrosyn-

thesis examples discussed in [19]. We predict retrosynthesis path-

ways for commercially important metabolites, such as itaconate,

naringenin, 1,3-propanediol, xylitol etc. We �nd that in a majority

of cases, we are able to recover known pathways or predict shorter

biologically plausible pathways for retrosynthesis. We summarise

our retrosynthesis predictions in Table 3, alongside comparisons

with MRE/FMM.

For itaconate, an important value-added precursor from bio-

mass [33] we recovered the same path as predicted by FMM. For

production of naringenin, an important plant secondary metabolite,

and resveratrol, we �nd the same pathway identi�ed by MRE and

FMM. For the production of xylitol, our top-ranked pathway is

shorter than that proposed by MRE, and agrees with FMM. For

artemisinic acid, an important anti-malarial drug, synthesised in

metabolically engineered S. cerevisiae [31], we were able to pre-

dict the same path as MRE, from HMG-CoA, although this di�ers

from [31]. For paths from acetyl-CoA to artemisinic acid, and cho-

rismate to L-Tryptophan, the top ranked paths from our algorithm

are not very relevant, perhaps due to the occurrence of very high-

degree metabolites, such as acetyl-CoA and pyruvate.
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ID Source Target Aggregate Average # Pathways
Rank Rank explored

1 α-D-Glucose (C00267) D-Glyceraldehyde (C00118) 1 1 297

2 D-Glyceraldehyde (C00118) Pyruvate (C00022) 2 2.98 259

3 5-Phospho-α-D-ribose (C00119) L-Histidine (C00135) 4 7.5 715

4 Phosphoribulosyl-formimino-AICAR-

phosphate (C04916)

L-Histidine (C00135) 1 1 312

5 D-Galacturonate (C00333) Pyruvate (C00022) 1 1.42 93

6 D-Erythrose (C00279) Pyridoxal (C00018) 1 1.69 255

7 L-�reonine (C00188) L-Isoleucine (C00407) 1 1 372

8 GTP (C00044) 7,8-dihydropteridine (C04874) 1 2.44 105

9 7,8-Dihydroneopterin 3’-triphosphate (C04895) Dihydrofolate (C00415) 2 2.56 193

10 L-Aspartate (C00049) 2,3,4,5-Tetrahydrodipicolinate (C03972) 1 1.82 156

11 L-Aspartate (C00049) L-�reonine (C00188) 1 1.92 139

12 Oxaloacetate (C00036) L-Glutamate (C00025) 1 1.89 132

13 β-D-Glucose (C01172) D-Glyceraldehyde (C00118) 2 2.19 140

14 2-Oxobutanoate (C00109) L-Isoleucine (C00407) 1 1 83

15 Chorismate (C00251) L-Tryptophan (C00078) 3 4.88 113

16 Shikimate (C00493) L-Tyrosine (C00082) 1 1.06 63

17 L-Glutamate (C00025) L-Ornithine (C00077) 4 5.89 142

18 Phosphoenolpyruvate (C00074) L-Aspartate (C00049) 2 3.71 128

19 Phosphoenolpyruvate (C00074) L-Asparagine (C00152) 2 4.1 174

20 L-Glutamate (C00025) L-Proline (C00148) 1 2.67 93

Table 2: Pathway prediction results across multiple organisms. �e source and target molecules are indicated, along with
their KEGG IDs. Also shown are the aggregate rank and average rank (across all organisms), along with the total number of
pathways explored. �e details of the 20 pathways are given in Supplementary Table S2.

Furthermore, we also examined some of the pathways evolved

by organisms to degrade anthropogenic chemicals such as pen-

tachlorophenol [2, 8]. We �nd that we are able to generate the

identical pathway between pentachlorophenol (C02575) and Maley-

lacetate (C02222), as indicated in Table 3. It is interesting to note

that this predicted pathway is one of several possible pathways,

given that we can apply many reaction rules to every intermediate.

We also �nd that MRE and FMM are unable to �nd any pathways

between these compounds, illustrating the importance of our ability

to generalise reaction rules, as well as handle novel molecules. MRE

and our approach both correctly predict another pathway where

atrazine (C06551) is converted to urea-1-carboxylate (C01010). To-

gether, these results illustrate the ability of our approach to not

only predict retrosynthetic pathways, but also possible pathways

that organisms may use to metabolise xenobiotics. Importantly, our

heuristic of minimising the metabolic transformations in a reac-

tion enables us to recover the very pathway these organisms have

evolved to breakdown xenobiotics.

4.4 Cross-validation illustrates the high
accuracy of our pathway predictions

First, we evaluate through 5-fold cross-validation. Speci�cally, we

split the KEGG Dataset into �ve parts, learn the training model on

four parts and predict on the ��h part. �is process is repeated

to cover each part as the test set. For our prediction query, we

pick arbitrary pathways from the test set and check if the exact

pathways are predicted. We always ensure that the source and the

target molecules are not part of the training set. Fig 5a presents the

prediction accuracy against the training dataset size. To understand

the results be�er, we segregate them into pathways of length 1, 2,

and ≥ 3. �e trends are similar across all lengths and the results

saturate at around ≈35,000 reactions in the training dataset. As

expected, the accuracy is be�er for single length pathways since

the search space is smaller. �eoretically, the search space increases

exponentially by a factor of d with each hop, where d is the average

degree of the RRN. For all three pathway lengths, the accuracy is

higher than 80% at ≈35,000 training reactions and beyond.

We continue with a similar line of analysis and next check how

the size of the RRN saturates with training dataset size. Figs. 5b

and 5c present the results. �e number of edges saturates quicker

than the number of vertices. �is means that although new rules

are discovered on increasing the training size, these rules are out-

liers and cannot be used in sequence with other rules. Notice that

just like accuracy, the number of edges saturates at around 40,000

reactions as well. �is correlation is not surprising.

4.5 Scalability
In this section, we benchmark the scalability of our technique. As

we have pointed out, this is the �rst technique to move beyond

individual case-studies and scale to thousands of reactions. First, we

investigate the querying time in our 5-fold cross validation study

against the training dataset size. In these experiments, we study
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# Source Path (intermediates)a Target Comments

1 Pyruvate (C00022) C01011→ C0531 Itaconate (C00490) Same as FMM

2 L-Tyrosine (C00082) C00811→ C00223→ C06561 Naringenin (C00509) Same as MRE/FMM

3 L-Tyrosine (C00082) C00811→ C00223 Resveratrol (C03582) Same as MRE/FMM

4 Glycerol (C00116) C00969 Propane-1,3-

diol (C02457)

Same as MRE/FMM

5 Glycerol (C00116) C00577→ C00546→ C00937 (R)-Propane-1,2-

diol (C02912)

Also predicts two paths shorter than

MRE, in addition

6 D-Xylose (C00181) — (direct) Xylitol (C00379) Shorter than MRE; same as FMM

7 HMG-CoA (C00356) C00418→ C01107→ C01143→
C00129→ C00448→ C16028

Artemisinic

acid (C20309)

Identical pathway as in MRE, but dif-

fers from [31]; paths from acetyl-CoA

are more convoluted

8 Chorismate (C00251) L-Tryptophan (C00078) Unable to �nd relevant paths

9 5-Phospho-α-D-

ribose (C00119)

C02739→ C02741→ C04896→
C04916→ C04666→ C01267→
C01100→ C00860

L-Histidine (C00135) Recovers native path in top 10,

amongst other probable paths; MRE

does not recover native path but

proposes shorter routes

10 Pentachlorophenol

(C02575)
b

C03434→ C07099→ C07097→
C06329

2-Maleylacetate (C02222) Identical pathway to [2]

11 Atrazine (C06551)
b

C06552→ C06553→ C06554→
C06555

Urea-1-

carboxylate (C01010)

Same as MRE

a
Intermediates are indicated only by KEGG CIDs, for brevity

b
these are xenobiotic degradation pathways, rather than retrosynthetic

pathways

Table 3: Retrosynthetic pathways to variousmolecules, as predicted by our algorithm, in comparisonwith othermethods such
as MRE and FMM.
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Figure 5: (a) Accuracy of pathway prediction against training dataset size, for pathways of varying lengths. (b-c) E�ect of
increasing training set size on (b) the number of vertices and (c) the number of edges in the RRN.

the running time for both the heuristic search Hd de�ned in Eq 1,

as well as the basic breadth �rst search. To understand the results

be�er, we plot the running time for pathways of length 1, 2 and ≥ 3

separately. Figures 6a–c present the results. An interesting pa�ern

emerges from these results. For short pathways, BFS is faster than

the heuristic of minimizing structural changes. �is is expected

since BFS blindly applies all rules within 1 or 2 hops. However,

as the length of the pathway grows, the number of possible paths

grows exponentially. Hence, BFS �nds it hard to connect to the

source amid so many possibilities. �is pa�ern is even more evident

in Fig 6d, where we study the growth rate of querying time with

pathway length. While BFS is competitive till length 2, beyond that,

it is not scalable.

While the length of the pathway is one factor, another dominant

factor in querying time is the number of signatures present in the

target product. If the target contains large number of signatures,

then more number of rules are applicable on it. Consequently, the
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(b) Pathways of length 2
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(c) Pathways of length ≥ 3

1 2 3 4
0

100

200

300

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

Path length

 

 

BFS
H

d

(d)

Figure 6: (a-c) Variation in querying time against the size of the training set, for pathways of length 1, 2 and ≥3, (d) Variation
in querying time against the length of pathway. Both BFS (blue squares) and the best-�rst search using theHd heuristic (green
diamonds) are depicted.

search space increases and the querying time grows. �is e�ect is

clearly visible in Fig 7a.

Fig 7b shows the growth rate of construction time against the

training dataset size. We partition the time taken to build the

network into two components. �e �rst component looks at the

time taken to mine the rules and the second component checks the

time taken to build the network from these rules. As visible, the

majority of the model building time is spent on constructing the

network. To build the network, we need to compare all pairs of

rules. Each of these comparisons involves subgraph isomorphism

tests and hence it takes more time than rule mining, which is a

linear scan across all reactions in the dataset. �e overall growth

of the construction time decreases beyond 75,000 reactions since at

this point the number of rules mined (Fig 5b) also saturates.

5 DISCUSSION
Is it possible to synthesise molecule B from molecule A? Are there

alternative pathways to synthesise a molecule, other than the one

followed by cells of living organisms? Why do organisms in na-

ture choose a particular pathway to synthesise a metabolite, say

pyruvate, from glucose?In this paper, we have developed a path-

way prediction technique that can answer these questions. �e

proposed system is the �rst fully-automated technique that can op-

erate at the level of hundreds of thousands of reactions and answer
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Figure 7: (a) Variation in querying time against the number
of reaction signatures present in target molecule. (b) E�ect
of increasing training set size on the time to build our pre-
diction model.

queries in seconds. �is level of sophistication is achieved through

a graph mining based approach, which automatically mines cause-

and-e�ect pa�erns of structural transformations from a training

database of chemical reactions. �ese pa�erns are employed to

construct an abstract representation of the reaction space in the

form of a RRN. �is abstract representation lies at the core of our

ability to make rapid predictions, even on molecules that we have

never seen before.

Many earlier studies have approached path �nding in meta-

bolic/chemical reaction networks; however, they typically fall short

in one or more of the following: (a) they rely on the existence of

query molecules in their database, or (b) their pipeline involves

the application of hand-curated rules such as atom–atom mapping

information, or (c) they only work for speci�c classes of reactions

(also see . Using no more information than the molecular struc-

ture of every molecule in the reaction database, we have devel-

oped a powerful pipeline for predicting pathways between any two

metabolites.

Our key �ndings fall into three categories. First, we have an

e�cient reactant–product mapping that is built on subgraph edit

distance. It enables us to accurately track changes in chemical

moieties across the entire spectrum of biochemical reactions. Next,

we identi�ed reaction signatures, which are essentially subgraphs

necessary for the reactions to occur. Next, we embedded infor-

mation about the reaction centres in a given metabolic network

onto another network, the RRN. �is novel representation enables

us to predict a series of reactions (or, a pathway) connecting two

metabolites, which may not even belong in the original reaction

database.

We then proceeded to ask a more fundamental question about

the organisation of metabolic networks: What is the key underlying

design principle of known metabolic pathways? For example, it is

well-known that standard biochemical pathways do not represent

shortest paths in the network — there are likely other constraints

such as energetics in play. Other studies [27] have shown that cen-

tral carbon metabolism is a minimal walk between key precursor

metabolites. We have here shown that across an assortment of

pathways, nature appears to minimize the incremental biochemical

change occurring, from the reactant to product, in every step of the

reaction. By employing a heuristic built on this logic, we correctly

recover a majority of pathways (see Table 2) from carbohydrate,
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amino acid and fa�y acid metabolism. In certain cases, we observe

that a di�erent pathway is in use by nature, clearly owing to en-

ergy considerations. For example, the path from D-Mannose to

L-Galactose in nature may be convoluted, owing to energy con-

siderations: D-Mannose→ GDP-mannose→ GDP-L-galactose→
β-L-Galactose→ L-Galactose, even though a simple epimerisation

reaction may theoretically be possible. It is important to note that

our graph formalism, coupled with our heuristic has enabled us

make reliable predictions, even in the absence of important infor-

mation such as atom–atom mapping or ∆G values for di�erent

reactions.

We have also predicted retrosynthetic pathways to commercially

important molecules such as 1,3-propanediol, naringenin, itaconate

and artemisinic acid, and we compare favourably with previous

methods such as MRE [19] and FMM [7]. Importantly, we are

able to additionally predict pathways for compounds such as pen-

tachlorophenol, which MRE and FMM are unable to. Our method

also enables us to predict pathways for compounds not present in

the training database.

Finally, we also demonstrated that our approach is very scalable.

�is is particularly important in the light of the fact that many

studies have pointed out that our current understanding of micro-

bial metabolism is rather myopic — many more organisms from

diverse phyla need to be reconstructed, and even for many current

metabolic network reconstructions, major gaps in the reactome are

present [25]. A comparison with the BRENDA enzyme database

also showed that only a third of the enzymatic activities in BRENDA

are covered by currently available metabolic networks [25]. Given

the signi�cant imminent expansion in metabolic network databases,

a scalable approach such as ours bears special signi�cance. By syn-

thetically expanding the KEGG database to about 150,000 reactions,

we show that our approach is still very fast, able to answer queries

in a ma�er of seconds.

Our method is not without limitations. In choosing to keep

the input information as minimal as possible, to enable widespread

applicability, we have chosen to leave out thermodynamics from the

picture, o�en very essential for accurate predictions and ranking

of pathways. Nevertheless, we demonstrate that even without

thermodynamic information, we are able to recover a majority

of natural biosynthetic pathways. Further, it is o�en di�cult to

obtain accurate measurements of changes in free energy, especially

those which are organism-speci�c. Also, like most other similar

approaches to predict reactions, the accuracy of our approach is

limited by the accuracy of the reaction database, KEGG, in this

case. KEGG also contains no information about the reversibility

of reactions, and essentially assumes all reactions are reversible.

However, it will be possible to integrate information from other

databases such as MetaCyc, or even use a consensus; the scalability

of our algorithm will be particularly handy in such scenarios.

6 CONCLUSION
In sum, we see three major contributions of our study. First, we

de�ne a robust reaction–product mapping method using subgraph

edit distance, which is fast and reliable. �is enables us to construct

a novel representation of a database of chemical reactions in terms

of a RRN that lends itself to rapid querying for pathways to syn-

thesize even molecules that are not present in the original reaction

databases. Next, we de�ne a heuristic to perform searches on this

network, by minimizing the extent of transformation in every reac-

tion. Searching using this heuristic very e�ectively recovers known

native pathways across organisms, and enables a realistic ranking of

predicted alternate biosynthetic pathways. Finally, we demonstrate

the ease with which we can provide solutions to retrosynthesis

queries. Importantly, our approach uses no information other than

the chemical structure of the molecules in every individual reaction,

and yet gives very accurate results and scales up to over a hundred

thousand reactions.
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