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ABSTRACT 44 

Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon 45 

(Oncorhynchus kisutch) farming. Current treatments have been ineffective for the control 46 

of the disease. Genetic improvement for P. salmonis resistance has been proposed as a 47 

feasible alternative for the control of this infectious disease in farmed fish. Genotyping 48 

by sequencing (GBS) strategies allow genotyping hundreds of individuals with thousands 49 

of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide 50 

association studies (GWAS) and predict genetic values using genome-wide information. 51 

We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect 52 

the genetic architecture of resistance against P. salmonis in a farmed coho salmon 53 

population and identify molecular markers associated with the trait. We also evaluated 54 

genomic selection (GS) models in order to determine the potential to accelerate the 55 

genetic improvement of this trait by means of using genome-wide molecular information.  56 

764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) 57 

which were experimentally challenged against P. salmonis were sequenced using ddRAD 58 

sequencing. A total of 4,174 SNP markers were identified in the population. These 59 

markers were used to perform a GWAS and testing genomic selection models. One SNP 60 

related with iron availability was genome-wide significantly associated with resistance to 61 

P. salmonis defined as day of death. Genomic selection models showed similar accuracies 62 

and predictive abilities than traditional pedigree-based best linear unbiased prediction 63 

(PBLUP) method.  64 

 65 

 66 

 67 
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INTRODUCTION 69 

 Chile is the largest producer of coho salmon (Oncorhynchus kisutch) globally, 70 

reaching about 160,000 tons in 2014, representing  more than 90% of total production 71 

(FAO 2016).  However, the success and sustainability of this industry is constantly 72 

threatened by infectious diseases, including Salmon Rickettsial Syndrome (SRS). This 73 

disease is caused by Piscirickettsia salmonis, a gram-negative and facultative intracellular 74 

bacteria which was isolated for the first time in Chile in coho salmon (Cvitanich et al. 75 

1991). Data from the Chilean National Fisheries and Aquaculture Service (Sernapesca) 76 

estimates that 59.3% of the morality rates ascribed to infectious disease were associated 77 

with SRS (Sernapesca 2016a). To date, control measures and treatments for SRS are 78 

based on antibiotics and vaccines. However, both strategies have not had the expected 79 

effectiveness under field conditions.  Because of this, it is necessary to develop alternative 80 

strategies for  the control of this disease (Yáñez  et al. 2014a). In this regard, breeding for 81 

enhanced disease resistance is a feasible and sustainable option to improve animal health, 82 

welfare and productivity (Stear et al. 2001). A primary requisite for including disease 83 

resistance into a breeding program is the presence of significant additive genetic variation 84 

for the trait (Falconer and Mackay 1996). Commonly, data to evaluate resistance comes 85 

from experimental challenges carried out using siblings of the selection candidates 86 

(Ødegård et al. 2011;Yañez and Martinez 2010; Yáñez et al. 2014a). Quantitative studies 87 

have estimated significant genetic variation for resistance against different pathogens in 88 

salmonid species (Ødegård et al. 2011; Yáñez et al. 2014a).  For instance, low to moderate 89 

heritabilities for resistance against P. salmonis in Atlantic salmon (Salmo salar) (h2 = 90 

0.11 to 0.41) (Yáñez et al. 2013; Yáñez et al. 2014b) and coho salmon (h2 = 0.16) (Yañez 91 

et al. 2016a) have been estimated.  92 
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 Marker assisted selection (MAS) can improve production traits in cases where the 93 

phenotypes are difficult to measure in the selection candidates (e.g. disease resistance 94 

traits) and the total additive genetic variance explained by genetic markers is high (Hayes 95 

and Goddard 2010). This methodology has been successfully applied for the improvement 96 

of resistance against infectious pancreatic necrosis in Atlantic salmon, which is controlled 97 

by a major quantitative trait locus (QTL) (Houston et al. 2012; Moen et al. 2015). In the 98 

case of polygenic traits, genomic selection (GS) (Meuwissen et al. 2001) can significantly 99 

improve selection accuracy of breeding values compared to traditional selection, and 100 

therefore enhance the response to selection for disease resistance in salmonid species 101 

(Tsai et al. 2016; Vallejo et al. 2016, 2017; Bangera et al. 2017; Correa et al. 2017). 102 

 Genotyping by sequencing (GBS) is an alternative for genotyping in cases when 103 

SNP panels are not available. This approach reduces the complexity of the genome, and 104 

can be used to identify thousands of markers without prior marker discovery efforts or a 105 

reference genome. Currently, several approaches of GBS have been developed, 106 

significantly reducing the cost and labor (Baird et al. 2008; Elshire et al. 2011; Peterson 107 

et al. 2012). These methodologies have been widely used in salmonid species, either to 108 

generate high density linkage maps (Brieuc et al. 2014; Gonen et al. 2014) or to perform 109 

association studies to identify genomic regions involved in the resistance against 110 

pathogens (Campbell et al. 2014; Palti et al. 2015b). 111 

 Double-digest restriction-site associated DNA (ddRAD) reduces DNA 112 

complexity by digesting DNA with two restriction enzymes (REs) simultaneously, and 113 

avoiding random shearing (Peterson et al. 2012). This approach has been widely used in 114 

genetic studies in aquaculture species (Robledo et al. 2017). In the present study, we used 115 

ddRAD sequencing to dissect the genetic architecture of resistance against P. salmonis in 116 

a farmed coho salmon population and identify molecular markers associated with the trait. 117 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/124099doi: bioRxiv preprint 

https://doi.org/10.1101/124099


6 

 

Furthermore, GS models were used to evaluate the potential to accelerate the genetic 118 

improvement of resistance against P. salmonis in this coho salmon breeding population 119 

by means of using genome-wide molecular information. 120 

 121 

 122 
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MATERIALS AND METHODS 138 

Coho Salmon Sampling 139 

 The coho salmon used in the present study were from the 2012 year-class of a 140 

genetic improvement program established in 1997 (owned by Pesquera Antares) and 141 

managed by Aquainnovo (Puerto Montt, Chile). Further details about this breeding 142 

population, in terms of reproductive management, rearing conditions, fish tagging, and 143 

breeding objectives  are described by Yáñez et al. (2014c; 2016)  and Dufflocq et al. 144 

(2016). 145 

 146 

Experimental Challenge 147 

  The experimental challenge is described in details by (Correa et al. 2015a) and 148 

Yáñez et al. (2016). Briefly, 2,607 individuals belonging to 108 maternal full-sib families 149 

(60 paternal half-sib families), were challenged against Piscirickettsia salmonis. Prior the 150 

challenge experiment, each fish was marked with a passive integrated transponder (PIT-151 

tag), placed in the abdominal cavity for genealogy traceability during the challenge test. 152 

The experimental challenge test was performed at Aquainnovo´s Research Station, 153 

located in Lenca River, Xth Region, Chile. For the lethal dose 50 (LD50) calculation, a 154 

random sample of 80 fish were selected from the population. Four different dilutions from 155 

the P. salmonis inoculum were evaluated (1/10, 1/100, 1/1000 and 1/10000). Twenty fish 156 

per dilution were intraperitoneally (IP) injected with 0.2ml/fish. Daily mortality was 157 

recorded. This preliminary test spanned 26 days and a dilution of 1:680 was estimated as 158 

the LD50. 159 
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 For the definitive challenge, fish were distributed into three tanks (7m3) with a salt 160 

water concentration of 31 ppt. An average of eight individuals (ranging from 1 to 18) 161 

from each of the 108 families were distributed into each tank.  162 

 The experimental challenge was performed through an intraperitoneal (IP) 163 

injection with 0.2ml/fish of the LD50 inoculum.  The average weight of the fish at the 164 

inoculation was 279g (SD = 138g).  Additionally, qRT-PCR was previously performed 165 

in order to control for the presence of Infectious Salmon Anemia Virus (ISAV), Infectious 166 

Pancreatic Necrosis Virus (IPNV) and Flavobacterium spp. 167 

 The challenge test was continued up to 50 days post injection. Throughout the 168 

challenge, environmental parameters (pH, temperature, salinity and oxygen) were 169 

measured and controlled. Daily mortality was removed from each tank, and a sample from 170 

anterior kidney was taken and stored at -80ºC in RNALater. A necropsy assay was 171 

performed in conjunction with qRT-PCR to confirm the cause of death and the presence 172 

of P. salmonis. This was also done to control for the presence of other pathogens, such as 173 

Vibrio ordalii, Renibacterium salmoninarum and IPNV.   174 

 175 

Trait definitions and quantitative analysis 176 

 Resistance was defined as the day of death (DD) with values ranging from 1 to 50 177 

depending on the time of death. Additionally, resistance was evaluated as a binary (BIN) 178 

trait, either dead or alive at the end of the challenge. Values for this trait were 1 in cases 179 

where the fish died during the challenge, or 0 if the fish survived until the end of the 180 

challenge. Initial Body Weight (IW) for each fish, was measured prior to the IP injection. 181 

A linear bivariate animal model was used in order to estimate covariance components for 182 

DD and BIN. Sex and tank were used as fixed effects, and IW was included as a covariate 183 
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in the model. The animal model was fitted using ASREML (Gilmour et al. 2009). 184 

Heritability estimation was computed as follow: 185 

ℎ"# =
%&'
(

%&'
( )%*'

(   186 

Where 𝜎,"#  and 𝜎-"#   are the additive genetic and residual variances respectively.  187 

The genetic correlation 𝑟/0  between both traits was defined as Falconer and Mackay 188 

(1996): 189 

𝑟/0 =
%12,14

%12( %14(
  190 

where 𝜎5/,50 is the additive genetic covariance between traits, 𝜎5/# is the additive genetic 191 

variance of DD, and 𝜎50#  is the additive genetic variance of BIN. 192 

  193 

ddRAD library preparation and sequencing 194 

 Ten ddRAD libraries were produced by multiplexing 828 individuals following 195 

the protocol described by Peterson et al. (2012). For this, 64 parents (males and females) 196 

and 764 offspring representing the 17 most resistant and 16 most susceptible families 197 

were selected. An average of 23 (ranging from 11 to 43 individuals) offspring per family 198 

were chosen. Briefly, total DNA was extracted using the commercial kit Wizard SV 199 

Genomic DNA purification System (Promega) according to manufacturer’s protocol. 200 

Between 80 and 200 ng of DNA, from each individual was digested with two restriction 201 

enzymes (New England Biolabs, UK; NEB); 10 U of SbfI (specific for the CCTGCA|GG 202 

motif)) and MseI (specific for the T|TAA motif) in 12 µl reaction volume, including 1 µl 203 

of SbfI and MseI adapter (8.3 pM), for 90 min at 37°. The ligation reaction was carried 204 
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out by adding 1 µl of T4 ligase (NEB) diluted 1:100 in T4 buffer and incubating for 150 205 

min at 37° and subsequently at 16° overnight. 206 

Each ligation mix was diluted with 189 µl of dilute TE buffer (1:10). Kodak DNA 207 

Polymerase (ABM), a high fidelity polymerase, was used to amplify DNA fragments with 208 

the correct adapters. PCR reactions (20 µl) were prepared containing 10 µl of PCR mix 209 

2x, 1 µl of primer mix (10 µM each), 6 µl of diluted ligation mix and 3 µl of nuclease-210 

free water. Each sample was PCR amplified using the following conditions: 95° for 2 211 

min, followed by 17 cycles of 95° for 20s, 66° for 30s and 68° for 40s. After PCR, 212 

amplicon quality was checked by loading 5 µl on a 2% agarose gel. Subsequently, 213 

samples were pooled, so that the final concentration was similar among them within each 214 

library. Each library was concentrated through an evaporation step for 80 min in a 215 

Centrivap Mobile Console Centrifugal Evaporator (Labconco). This step was conducted 216 

until 300 µl of the generated library was obtained. Final volume of each library was 217 

loaded on a 1% agarose gel. Size of the bands selected for sequencing ranged from 750 218 

and 1500 bp and between 1,800 and 2,500 bp. DNA was purified through the QIAquick 219 

gel extraction kit (Qiagen) following manufacturer’s instructions. Finally, libraries were 220 

sequenced on an Illumina Hiseq2500 platform, using 150 base single-end sequencing.  221 

 222 

SNP identification 223 

Raw sequence reads obtained from sequencing Illumina were analyzed using STACKS 224 

v. 1.41 (Catchen et al. 2011, 2013). This software was specifically developed to analyze 225 

short-read data generated through next generation sequencing (NGS) (Davey et al. 2013). 226 

Sample reads were trimmed to 134 bp for all subsequent analyses. Additionally, these 227 

reads were demultiplexed and filtered using process_radtags. Rad-tags which passed the 228 
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quality filter were aligned to the Oncorhynchus kisutch reference genome (GenBank: 229 

MPKV00000000.1) using BWA v. 0.7.12 (Li and Durbin 2009). The reference genome 230 

was indexed and alignments were performed using the mem algorithm, all other 231 

parameters were set as default. Loci were then built using pstacks allowing a minimum 232 

depth of coverage of three to build a locus (-m 3). A catalog of loci was constructed 233 

through cstacks program using only the parents’ reads. To build the catalog, the maximum 234 

number of mismatches allowed between sample tags was three (-n 3), and the matching 235 

was based on genomic location (g). After this, the sstacks program was used in order to 236 

match rad-tags against the catalog based again on genomic location (g), followed by 237 

populations software, using defaults parameters. Loci were considered as valid if they are 238 

present, in at least, 75% of the individuals of the population. 239 

 240 

Genomic Association Study 241 

In order to associate the molecular markers to P. salmonis resistance, either as DD or 242 

BIN, a GWAS was performed using the GenABEL library (Aulchenko et al. 2007) 243 

implemented in R (http://www.r-project.org). Prior to analyses, identified SNPs were 244 

submitted to a Quality Control (QC), with the following parameters: Minor Allele 245 

Frequency (MAF) ≥ 0.01, Hardy-Weinberg Equilibrium (HWE) = p < 1x10-6, individual 246 

call rate > 0.70 and SNP call rate > 0.90. Additionally, all markers were used in order to 247 

estimate identity by state (IBS). Association analysis was performed through the 248 

Grammar-Gamma method (Svishcheva et al. 2012) including a genomic kinship matrix 249 

estimated using filtered SNPs. The polygenic function (Thompson and Shaw 1990) was 250 

used to fit two different univariate additive polygenic models. The linear regression 251 

model was defined as follows: 252 
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yi = β0 + β1SNP + β2Sex + β3Tank + β4IW + ei 253 

Where yi is the vector of phenotypes (DD), β0 is the mean, β1 is the effect of each SNP, 254 

β2 is the fixed effect of the sex, β3 is the fixed effect of the tank, β4 is the effect of the 255 

initial weight as covariate and ei is the random residual.  256 

The logistic regression models for BIN was: 257 

P 𝑦 = 1 = 89:;9<=>?;9(=@A;9BCDEF;9GHI

J)89:;9<=>?;9(=@A;9BCDEF;9GHI
 258 

Where P is the probability of the random variable to be one, β0 is the mean, β1 is the 259 

effect of each SNP, β2 is the fixed effect of the sex, β3 is the fixed effect of the tank, β4 260 

is the effect of the initial weight as covariate and ei is the random residual. 261 

Genomic-wide significance was assessed by False Discovery Rate (FDR) (Benjamini and 262 

Hochberg 1995). Briefly, p values were ordered from p1 ≤ p2 ≤ … ≤ pk where k is the 263 

number of SNPs tested. Beginning from the largest p value, the first p value (pi) that 264 

satisfied: pi ≤ /k*0.05, where i = ith observation. Finally, the pi that satisfied the condition 265 

became the significant value. 266 

Finally, BLASTn was used to align the genome-wide associated region, against Atlantic 267 

salmon genome (Genbank: GCA_000233375.4) and identify candidate genes associated 268 

with P. salmonis resistance. 269 

 270 

Genomic Prediction 271 

The pedigree-based approach, PBLUP was used as the control for the genomic 272 

evaluations, and EBV for each individual were estimated using a linear mixed model 273 
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implemented in BLUPF90 (Misztal et al. 2016). The model used was as follows: 274 

𝑦 = 𝑋𝛽 + 𝑇𝑔 + 𝑒 275 

where 𝑦 is a vector of phenotypes (BIN or DD), 𝛽 is a vector of fixed effects (Sex, Tank 276 

and initial weight effects), 𝑔 is a vector of random additive polygenic genetic effects that 277 

follows a normal distribution ~N(0,A𝜎Q# ),  𝑋  and 𝑇  are incidence matrices, 𝐴  is the 278 

additive relationship matrix, and 𝑒 is the residual (Lynch and Walsh 1998).  279 

The genomic EBV (GEBV) for each individual were estimated using GBLUP (Genomic 280 

BLUP) as implemented in the BLUPF90 software. GBLUP is a modification of the 281 

PBLUP method, where the numerator relationship matrix 𝐴 is replaced by a genomic 282 

relationship matrix 𝐺, as described by VanRaden (2008). Pedigree (PBLUP) and genomic 283 

(GBLUP) heritabilities were calculated using the AIREMLF90 software (Misztal et al. 284 

2016) as previously described. 285 

The different models were compared using a five-fold cross validation scheme. Briefly, 286 

all genotyped and phenotyped animals were randomly separated into five validations sets, 287 

which were predicted one at a time by masking their phenotypes and using the remaining 288 

animals as a training set to estimate the marker effects. Thus, for each validation run, the 289 

dataset was split into a training set (80%) and a validation set (20%). To reduce the 290 

stochastic effects, this cross-validation analysis was replicated 10 times. Accuracy was 291 

used to assess the performance of each model and was estimated as: 292 

𝑅-UV,UV =
W*XY,4
Z

, 293 

where 𝑅-UV,0  is the correlation between the EBV of a given model (predicted for the 294 

validation set using information from the training set) and the actual phenotype, while ℎ 295 
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is the square root of the pedigree-based estimate of heritability (Legarra et al. 2008; 296 

Ødegård et al. 2014). To test prediction accuracies obtained using different SNP densities, 297 

1 K, 2 K, 3 K and 4 K SNPs were randomly selected from the SNPs that passed the quality 298 

control. Finally, accuracies were calculated for each model and SNP density, and 299 

compared to those obtained with the PBLUP model. 300 

 301 

Data availability 302 

Table S1 contains genotypic data. Data of pedigree and phenotypes that supports the 303 

findings in this study are available from Aquainnovo and AquaChile but restrictions apply 304 

to the availability of these data, which were used under license for the current study, and 305 

so are not publicly available. However, data are available from the corresponding author 306 

upon reasonable request and with permission of Aquainnovo and AquaChile. 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 
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RESULTS 320 

Challenge test   321 

Mortality began on day 10 post challenge, with evident clinical signs and pathological 322 

lesions typical of the Salmon Rickettsial Syndrome. These signs include swollen kidney, 323 

splenomegaly and liver with a yellowish tone (Rozas and Enríquez 2014). Challenged 324 

families showed considerable phenotypic variation for P. salmonis resistance. Average 325 

mortality of all families reached 41% during the 50-day challenge. Average cumulative 326 

mortality rate among the 17 best and 16 worst families selected for genotyping, reached 327 

19% and 63%, respectively (Figure 1). 328 

 329 

Heritabilities and correlations between traits 330 

Moderate significant additive genetic variation was estimated for both DD and BIN. 331 

Using a pedigree relationship matrix, h2 was estimated as 0.26 (± 0.01) and 0.42 (± 0.01) 332 

for DD and BIN, respectively. In the case of using a G matrix, the h2 was estimated to be 333 

0.32 and 0.38 for DD and BIN, respectively. Genetic correlation between traits was very 334 

high and significantly different from zero (-0.95 ± 0.03). Additionally, high significant 335 

phenotypic correlation was estimated, being -0.77 (± 0.01). 336 

 337 

ddRAD sequencing 338 

Prior to quality control (QC), per base quality (Phred score) was evaluated. The average 339 

quality score ranged from 36 to 38 among libraries, indicating high quality of data. 340 

Illumina sequencing, including parents, yielded an average of 156,058,078 (± 16 341 

millions) of raw sequences. After QC, which included the removal of low quality 342 
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sequences and reads with either missing or ambiguous barcodes, an average of 343 

31,660,024 of the reads were removed. In parallel with QC, reads were trimmed to 134 344 

bp. In this regard, 79% of the raw reads were retained for subsequent analysis. In order 345 

to create a set of all possible alleles in the population, data sets of the parental samples 346 

were used to create the STACKS catalogue. This catalogue consisted of 106,309 unique 347 

ddRAD loci from which 55,770 markers from 757 individuals were obtained. 348 

 349 

Association Analysis 350 

A total of 4,174 markers and 592 animals passed all QC criteria (see Table S1). 351 

Association analysis identified one marker showing genome-wide statistical significance 352 

(p value = 5.50E-05) (Fig. 2) for DD. This marker was located on scaffold01025. 353 

However, none of the markers were significant using the FDR significance threshold 354 

when resistance was defined as a binary trait (Fig. 3). For this trait only one marker was 355 

identified as suggestively associated (p value = 1.50E-05). This marker was located in 356 

Chromosome 29. BLAST results determined that the genomic region surrounding the 357 

significant SNP associated with DD, was located on chromosome Ssa03, proximate to a 358 

heme oxygenase 2-like gen. Location, proportion of heritability and phenotypic variance 359 

explained, and p-values for the significant and suggestive marker are summarized in table 360 

1.  361 

 362 

 363 

 364 

 365 
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Genomic Prediction 366 

Prediction was assessed using phenotype and genotype information from 4,174 SNPs 367 

which passed all QC steps from 592 individuals. These individuals were randomly split 368 

into five different training (474) and validation (118) sets, either for DD or BIN. PBLUP 369 

accuracy reached 0.58 and 0.61 for DD and BIN, respectively. These values were similar 370 

to those obtained using genomic information, ranging from 0.57-0.60 for DD and 0.60-371 

0.62 for BIN at different SNPs densities (Table 2). Moreover, using only phenotypic 372 

information, reliability was also higher for BIN, reaching 0.38 in contrast to 0.36 for DD. 373 

When genomic data was used, reliability values were similar to those obtained with 374 

PBLUP ranging from 0.34 to 0.39. Finally, predictive ability reached up to 38% in the 375 

case of DD, showing an increase around 15% in the case of BIN, independently of the 376 

use of genotype information. 377 

 378 

 379 

  380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 
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DISCUSSION 388 

 Piscirickettsia salmonis is the etiological agent of SRS, the main disease affecting 389 

salmon production in Chile. Currently, control strategies have not shown the expected  390 

effectiveness in field conditions (Rozas and Enríquez 2014). Some strains of P. salmonis 391 

have presented resistance to Quinolones and oxytetracycline and intermediate 392 

susceptibility to florfenicol (Henríquez et al. 2016), which are some of the most used 393 

antibiotics in the Chilean industry for the treatment of this infectious disease (nearly 90% 394 

of the total amount) (Sernapesca 2016b). 395 

 Selective breeding has been successfully applied  commercially for important 396 

production traits of aquaculture species, including salmonids (Gjedrem 2012; Yáñez et 397 

al. 2014a). Genetic improvement has included disease resistance, based on information 398 

of relatives, but does not allow for the use of within-family genetic variation and 399 

consequently affects the achievable genetic progress due to the lower accuracy on EBVs 400 

(Falconer and Mackay 1996). GS has had a major impact on traits difficult to measure on 401 

the selection candidates themselves, as is the case of disease resistance, and has improved  402 

genetic gain and selection accuracy (Goddard and Hayes 2009). In this sense, breeding 403 

schemes can incorporate genomic information, either through GS or via MAS, in order 404 

to accelerate the genetic progress for disease resistance traits (Yáñez et al. 2015).  405 

 Significant genetic variation for P. salmonis resistance was detected in the present 406 

study. Moderate heritabilities were estimated using different trait definitions, either for 407 

DD or BIN using both A and G matrices. Estimated heritabilities were higher for 408 

resistance as binary trait when compared to DD, independent of the matrix used in the 409 

analysis. Additionally, high genetic correlation between traits was estimated (-0.95 ± 410 

0.03), suggesting that DD and BIN, are likely measures of the same trait. 411 
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 Previously, Yáñez (2016), estimated a heritability of 0.16 for resistance against P. 412 

salmonis, defined as day of death, in the same coho salmon population, through a linear 413 

model. However, our estimations used a directed sample of the population, which 414 

explains the difference between estimations. These results are in agreement with previous 415 

findings which estimated heritabilities for resistance against P. salmonis in Atlantic 416 

salmon ranging from 0.11 to 0.41  (Yáñez et al. 2013, 2014b; Correa et al. 2015b). The 417 

genetic variation for P. salmonis resistance, and values of heritability, are in accordance 418 

with different studies that also found significant genetic resistance against other bacterial 419 

disease in salmonid species (Gjøen et al. 1997; Ødegård et al. 2006; Vallejo et al. 2016).  420 

 Association analysis identified one molecular marker significantly associated with 421 

P. salmonis resistance defined as day of death. The reference genome of coho salmon is 422 

not completely assembled into chromosomes (~75% anchored), and it was not possible 423 

to elucidate to which chromosome this marker belongs. However, the availability of a 424 

high quality Salmo salar genome reference (Lien et al. 2016) made it possible to identify 425 

the marker on a genomic region of chromosome Ssa03 proximate to Hem Oxygenase-2 426 

(HO2), an enzyme involved in the iron accessibility through the degradation of a heme 427 

group (Kikuchi et al. 2005). Different studies have already demonstrated the ability of P. 428 

salmonis to evade the immune system and infect, survive and replicate inside 429 

macrophages (McCarthy et al. 2008; Rojas et al. 2009). Transcriptional studies performed 430 

by Rise et al. (2004) showed that after P. salmonis infection, ferritin and transferrin, both 431 

related with binding and the storing of iron, were up regulated in Atlantic salmon 432 

macrophages. Similar results were obtained by Pulgar et al. (2015) who showed that after 433 

an IP challenge against P. salmonis, genes related to iron homeostasis were differentially 434 

up-regulated in head kidney of resistant families of Atlantic salmon compared with the 435 

susceptible ones. Moreover, head-kidney iron content was significantly lower in resistant 436 
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families, which was positive correlated with P. salmonis load. This evidence makes it 437 

possible to suggest that the deprivation of the intracellular iron content is a key immune 438 

response mechanism against P. salmonis infection, and may reduce its replication rate. A 439 

similar  mechanism was previously demonstrated to reduce bacterial growth inside 440 

murine macrophages for a variety of bacterial infections (Paradkar et al. 2011). Hem 441 

oxygenase 1 has been shown to be up-regulated 2 hr after an infection generated by the 442 

gram negative bacteria, Salmonella typhimurium (Nairz et al. 2007). This gene was able 443 

to reduce oxidative stress, has been involved in murine-macrophages iron export and a 444 

subsequent intracellular iron deprivation (making iron inaccessible to bacteria) (Nairz et 445 

al. 2007). These results support the potential role that HO2 could be playing in the 446 

resistance against P. salmonis in coho salmon (i.e. limiting bacteria replication rate 447 

through iron deprivation at the intra-cellular level). However, further studies need to be 448 

performed in order to have a better understanding of the host immune response against 449 

the infection and confirm the role of HO2 in the variation of P. salmonis resistance. 450 

 Previously, resistance against bacterial diseases has been suggested as a polygenic 451 

trait in aquaculture species. For example, Palaiokostas (2016) suggested resistance 452 

against Photobacterium damselae subsp. had a polygenic genetic architecture in Gilthead 453 

Sea Bream (Sparus aurata). Using a 50K SNP genotyping array, it was possible to 454 

elucidate a moderately polygenic architecture for resistance against P. salmonis in 455 

Atlantic salmon (Correa et al. 2015b). In the current study, and using 4 K SNPs, a 456 

moderate polygenic genetic architecture for resistance against P. salmonis in coho salmon 457 

population is suggested. However, due to the low marker density, it might be possible 458 

that this density is not enough to capture linkage disequilibrium (LD) between genetic 459 

markers and all the important QTLs controlling P. salmonis resistance in coho salmon.  460 
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 Currently, GS has been demonstrated to be a feasible alternative over traditional 461 

breeding methods to increase response to selection due to higher accuracy breeding 462 

values, in both, simulated and empirical studies in aquaculture species (Sonesson and 463 

Meuwissen 2009; Tsai et al. 2015, 2016, Vallejo et al. 2016, 2017; Bangera et al. 2017; 464 

Correa et al. 2017).  465 

 The current study, showed similar accuracies, reliabilities and predictive ability 466 

(PA) when comparing PBLUP and GBLUP (even among different SNPs densities). In 467 

this regard, estimated accuracies with PBLUP were 0.58 and 0.60, which are highly 468 

similar to those obtained using genomic data, from 0.56 to 0.62 (independent of the 469 

number of genetic markers used). Similar tendencies were obtained for reliability and PA, 470 

where the average values were identical between PBLUP and GBLUP.  471 

 When resistance was defined as a binary trait, both accuracy and reliability, were 472 

slightly higher in comparison with resistance as day of death. However, PA was almost 473 

15% higher for BIN than DD, either with or without genomic data, reaching up to 0.44. 474 

These results, are similar to those obtained in GS for Bacterial Cold Water Disease 475 

(BCWD), in rainbow trout (Oncorhynchus mykiss), using SNP arrays and RAD seq 476 

(Vallejo et al. 2016), obtaining similar PA values with or without genotypic information, 477 

ranging from 0.37-0.50 and from 0.26-0.41 for DD or BIN, respectively. Vallejo et al. 478 

(2016) attributed this results to the small training sample size of their study (n=583), 479 

which is higher than that used in the current study (n=473). In this regard, PA increase 480 

reached up to 108% relative to PBLUP when the number of phenotyped and genotyped 481 

individuals increase, even when less SNPs were used (Vallejo et al. 2017). Interestingly, 482 

estimated PA for BCWD resistance are similar using 10 K SNPs obtained by RAD as 483 

those obtained using a 40 K SNP array, even if resistance is defined as day of death or as 484 
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binary. Authors attributed this to the long-range LD within the population (Vallejo et al. 485 

2016). 486 

 In case of Atlantic salmon, improvement in accuracy raised 20% using 112 K 487 

SNPs either for length and weight in juvenile individuals (Tsai et al. 2015). Moreover, 488 

sea lice resistance has showed a relative improvement in accuracy of 22 and 27%, relative 489 

to PBLUP, using 37 K and 33 K SNPs respectively. Additionally, improvement in 490 

reliability reached up to 52% with 220 K (Ødegård et al. 2014; Tsai et al. 2016; Correa 491 

et al. 2017). In case of P. salmonis resistance, relative reliability has been improved in 25 492 

and 30% either for resistance, defined as day of death or as a binary trait respectively 493 

(Bangera et al. 2017). 494 

 Using 2b-RAD methodology, Palaiokostas (2016) showed a reduction in the 495 

improvement of accuracies, for resistance against a bacterial disease in S. aurata, when 496 

lower SNPs densities were evaluated. In this regard, an improvement of 53% in the 497 

estimated accuracy was observed using 12 K molecular markers, raising it up to 0.46 in 498 

comparison with 0.30 obtained through PBLUP through a Bayesian model. However, 499 

using 2 K SNPs, accuracy showed a maximum increase of 20%. However, this 500 

improvement was completely abolished when the number of markers was reduced to 700.  501 

 We hypothesize that the similar results with or without genomic information in 502 

the current study, could be due to the small training sample size and the low density of 503 

SNPs markers used, making it difficult to capture the LD between markers and all of the 504 

loci influencing this trait. Moreover, simulations performed by Perez Enciso (2015), 505 

suggest that even using a higher number of molecular markers obtained by RAD seq, 506 

accuracies are lower than using a medium density SNP array, likely due to that in the 507 

RAD seq methodology; SNPs are tightly linked among them, whereas in arrays SNPs are 508 
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uniformly distributed along the genome. The availability of dense SNP arrays for coho 509 

salmon, as it is already the case for Atlantic salmon (Houston et al. 2014; Yañez et al. 510 

2016b) and rainbow trout (Palti et al. 2015a), may allow increase the accuracy for 511 

predicting genomic breeding values and the power for the determination of the genetic 512 

factors involved in economically-important traits, including P. salmonis resistance, in this 513 

species.  514 

 515 

5. Conclusions 516 

Moderate significant genetic variation was estimated for resistance against Piscirickettsia 517 

salmonis in coho salmon, using either pedigree or genomic information. These results 518 

highlight the feasibility to include this character into genetic improvement programs. One 519 

SNP was genome-wide significantly associated with resistance to P. salmonis, and may 520 

be involved in the immune host response against this infection through iron homeostasis 521 

mechanism. Genomic predictions using ddRAD genotypes including 4,174 loci showed 522 

similar accuracies as PBLUP. To our knowledge, this is the first study aiming at 523 

dissecting the genetic architecture of resistance against P. salmonis, in coho salmon 524 

population. 525 

 526 

 527 

 528 

 529 

 530 
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Table 1. Location, p value, proportion of heritability and phenotypic variance explained 775 

by the two most important markers associated with resistance against P. salmonis. 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

		 SNP	 Position	 p	value	
Proportion	

of	
heritability	

Proportion	of	
phenotypic	
variance	

BIN	
58185_41	 Okis	29	 1.50E-05	 0.056	 0.021	
62738_67	 Scaffold	01025	 1.34E-04	 0.044	 0.016	

DD	
58185_41	 Okis	29	 3.67E-04	 0.066	 0.021	
62738_67	 Scaffold	01025	 5.50E-05*	 0.123	 0.039	

        * Significant Association; BIN: binary (dead or alive); DD: day of death 
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 Table 2. Accuracy, reliability and predictive ability of GEBVs assessed by five-fold 790 

cross validation for resistance against Piscirickettsia salmonis defined as day of 791 

death or as binary trait in coho salmon population using four SNPs densities. 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

	 DD BIN 
	 Accuracy Reliability Predictive	Ability Accuracy Reliability Predictive	Ability 

PBLUP 0.58 0.36 0.38 0.61 0.38 0.44 
1000 0.60 0.38 0.38 0.60 0.36 0.44 
2000 0.58 0.36 0.37 0.62 0.39 0.44 
3000 0.56 0.34 0.37 0.60 0.37 0.44 
4174 0.57 0.35 0.37 0.60 0.38 0.44 

  DD: day of death; BIN: binary (dead or alive) 
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 802 

Figure 1. Kaplan-Meier curves for Pisciricketssia salmonis experimental challenge in 803 

coho salmon. Average mortality curves for the 108 full-sib families, and the 17 best and 804 

16 worst families. 805 
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 811 

 812 

Figure 2. Genomic association analysis for resistance against Pisciricketssia salmonis 813 

in coho salmon population. Resistance was defined as day of death. The horizontal line 814 

indicates the FDR significance threshold. 815 
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 819 

Figure 3. Genomic association analysis for resistance against Pisciricketssia salmonis 820 

in coho salmon population. Resistance was defined as a binary trait. The horizontal line 821 

indicates the FDR significance threshold. 822 
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