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Abstract

The measure of synonymous and non-synonymous substitution rates (dS and dN) is useful
for assessing selection operating on protein sequences or for investigating mutational processes
affecting genomes. In particular, the ratio % is expected to be a good proxy of w, the
probability of fixation of non-synonymous mutations relative to that of neutral mutations.
Standard methods for estimating dV, d.S or w rely on the assumption that the base composition
of sequences is at the equilibrium of the evolutionary process. In many clades, this assumption
of stationarity is in fact incorrect, and we show here through simulations and through analyses
of empirical data that non-stationarity biases the estimate of dN, dS and w. We show that
the bias in the estimate of w can be fixed by explicitly considering non-stationarity in the
modeling of codon evolution, in a maximum likelihood framework. Moreover, we propose an
exact method of estimate of dN and dS on branches, based on stochastic mapping, that can
take into account non-stationarity. This method can be directly applied to any kind of model

of evolution of codons, as long as neutrality is clearly parameterized.

1 Introduction

The intensity and direction of selection operating on protein sequences can be evaluated by
comparing the probability of fixation of non-synonymous mutations to that of neutral muta-
tions. The ratio of fixation probabilities of non-synonymous vs. neutral mutations (denoted
w) is commonly estimated by comparing non-synonymous versus synonymous substitutions
rates (denoted respectively dN and dS): under the assumption that selection on synonymous
sites is negligible, the ratio % is expected to be a proxy for w, and therefore to be informative
on selective regimes on protein-coding sequences. Furthermore, the estimate of synonymous
substitutions rates can also be useful in itself, e.g. to be used as a molecular clock, or to
investigate variation in mutation rates or biased-gene conversion along genomes.

Substitution rates (dN and dS) are expressed in terms of number of (non-)synonymous sub-
stitutions per (non-)synonymous site. One important issue is therefore to quantify the number
of (non-)synonymous sites. Historically, the first methods developed to estimate dS and dN,
directly compared sequences to count the numbers of synonymous and non-synonymous substi-
tutions, and used elaborate formula to account for the ”per (non-)substitution site” feature (Li
et al., 1985; Nei and Gojobori, 1986).

Subsequent methods relied on sequence alignments in a phylogenetic context, and the
maximum likelihood of probabilistic codon-based substitution models on these alignments
(Goldman and Yang, 1994; Yang and Nielsen, 2000; Guindon et al., 2004; Kosakovsky Pond
et al., 2005; Yang, 2007). Once w has been estimated by maximum likelihood, dN and dS
can also be inferred ancestral sequence reconstruction: on each branch, the number of (non-
)synonymous substitutions is estimated, and to consider the ”per (non-)synonymous site”
feature, the expected numbers of (non)-synomynous neutral substitutions are estimated by
applying a similar but neutral model, i.e. without selection (Goldman and Yang, 1994; Yang
and Nielsen, 2000; Kosakovsky Pond and Frost, 2005). In addition to the estimate of dN and
dS, such an approach is a convenient way to access branch-specific and site-specific substitu-
tion process, specifically while looking for signals of episodic, positive selection (Messier and
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Stewart, 1997; Kosakovsky Pond and Frost, 2005; Lemey et al., 2012).

But up to now, programs used to compute dN and dS have two drawbacks. First, they
propose approximate computations of the counting of the numbers needed, for the count-
ing of effective (non-)synonymous substitutions as well as for the normalization ”per (non-
)synonymous site”. For example, in (Kosakovsky Pond and Frost, 2005), Kosakovsky-Pond
and Frost consider the most parsimonious substitution scenarios between expected ancestral
states at top and bottom of the branches, and compute which part of each scenario is synony-
mous or not. Afterwards, they use an inferred model and its neutral equivalent to estimate
dN and dS. However, choosing a given substitution scenario (the most parsimonious, or even
the most likely one) will forget many other possible scenarios, especially when the branch gets
longer and the selection gets smaller.

Second, these programs assume stationarity in the modeling of the data, i.e. assume that
codon frequencies are constant all along the evolutionary process. It is now well established
that in many cases this assumption is false. For example, in mammals, genomic landscapes
are characterized by large-scale variation in GC-content along chromosomes (the so-called
isochores) (Bernardi et al., 1985), which are caused by the process of GC-biased gene conversion
(eBGC) (Duret and Galtier, 2009). Variation in the intensity of gBGC among taxa (notably
due to variation in recombination rate) caused frequent changes in gene GC-content along the
mammalian phylogeny (Romiguier et al., 2010). Variations in GC-content are also frequently
observed in bacteria, notably during the reductive genome evolution of endosymbionts such
as Buchnera aphidicola (van Ham et al., 2003; Moran et al., 2008; Moran, 1996; Pérez-Brocal
et al., 2006), but also in free-living organisms such as Prochlorococcus marinus (Rocap et al.,
2003; Dufresne et al., 2005; Yu et al., 2012; Dufresne et al., 2003; Paul et al., 2010). These
changes in GC-content affect both codon (Wernegreen and Moran, 1999; Moran, 1996) and
amino-acid (Mouchiroud et al., 1991; Wernegreen and Moran, 1999; Itoh et al., 2002; Moran
et al., 2008) frequencies.

In this article, we illustrate through simulations how assuming stationarity leads to a
systematic bias in dN, dS and % estimates, and we show that this bias can be properly
removed when stationarity assumption is released. Next, we introduce a new method based
on stochastic mapping for an accurate estimate of dN and dS. Instead of choosing a given
scenario between pairs of ancestral states on branches, this method integrates over all possible
scenarios, in accordance with their probability given the model and the length of the branch,
to compute more precisely dN and dS, following the definition given in Kosakovsky Pond and
Frost (2005). We implemented this method in bio++ libraries (Guéguen et al., 2013), so that
it can be used without any constraint of stationarity or homogeneity of the process, and can
give access to branch and/or site specific estimates. Using this method, we explore the bias
induced by the assumption of stationarity on the estimates of dV, dS and %, and show that
this bias is fixed with our method. Finally, an application of this method and the importance
of considering non-stationarity are illustrated on a set of orthologous primate genes.

2 Stochastic Mapping

Stochastic mapping is a way to infer substitution events based on probabilistic modeling
estimates. In 2002, Rasmus Nielsen proposed a bayesian approach to map substitution events
on the branches of a phylogenetic tree, given a probabilistic substitution model (Nielsen, 2002).
Since then, many theoretical and computational works have been made to describe accurately
the substitution process along a phylogenetic tree, given a probabilistic model and a sequence
alignment (Ball and Milne, 2005; Dutheil et al., 2005; Minin and Suchard, 2008; Hobolth and
Stone, 2009).

These works are based on computing the expected number of substitution events of a
given category along a branch. These estimates are conditioned by the states at both ends
of this branch. Moreover, Minin and Suchard have proposed a way to compute the expected
time spent in a given state on this branch, under the same conditions (Minin and Suchard,
2008). With real data, the sequences on the ancestral nodes are not known, but it is possible
to compute the posterior expectations on each branch given the data and the substitution
process (Romiguier et al., 2012).

Hereafter, we use this methodology specifically on two categories of events: synonymous
and non-synonymous substitutions. Similarly to the ”per (non-)synonymous site” normaliza-
tion for dN and dS, the expected numbers of substitution events on a branch have to be
corrected given the changing ancestral sequence all along the branch. (O’Brien et al., 2009)
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where f::O P(X(7) = a|X(0) = s, X (t) = e)dr is the time spent by X in state a during
duration ¢, given the initial state X (0) = s and the final state X (¢f) = e. We can define the
conditional ability of process X based on model M, under the same conditions, to perform

L—events:
Roc =Y Que [

acA T
given that X (0) = s, X (¢) = e. In Minin and Suchard (2008), this value is defined as the reward
of vector Qr = (Qa,r)a, which conditional expectation E(Rg,|s,e,t, M) can be computed in
the same way as E(Ng|s, e, t, M).

For any branch b € T of length ¢, and any site i, we can compute P(s,e|b, D;, M) the
probability that the state of site ¢ at the top (resp. bottom) of b is s (resp. e) given M
and data D; on this site. Then the expected a posteriori number of L—events on site i in
branch bis E(Ng|b, Di, M) ="  E(Nc|s,e,ty).P(s,elb, D;, M), which sums up on the sites:
E(Nc|b,D,M) =3, E(Nc|b, D, M) to obtain the a posteriori expected count of £L—events
on branch b given the data D and the model M.

In a same manner, we can compute the expected ability of any model M’ (with generator
Q') to perform L—events given the a posteriori probabilities of sequences given D and M:
E(Rgy b, Di, M) =3, E(R..q,|s € tb).P(s,elb, Di;, M) and
E(RQ/ﬁ|b,D,M) => E(RQ/£|b, D, M).

Here these expectations are computed on all scenarios given the data and model M, which
is in theory the true model, and in practice will be the most likely model.

t
]lX(T)zadT
=0

How can we use this definition to compute relevant dN and dS? At each time 7, the
property of a site to be (non-)synonymous is based on the rates of all the (non-)synonymous
substitutions this site can undergo. These rates depend on the considered model. For example,
a site with the codon AAA (which only synonymous codon is AAG) will be more synonymous
with a model that favors A and G nucleotides than with a model that favors C and T. So
these rates will have to be computed with a model similar to M, but defined as neutral, i.e.
which does not favor synonymous or non-synonymous substitutions in its definition (Yang and
Nielsen, 2000; Kosakovsky Pond and Frost, 2005). Hence, to compute relevant dN and dS, the
expected counts of (non-)synonymous substitutions will be normalized considering the number
of potential substitutions expected according to the same model, but without selection. If M
is the model used to describe the process, with generator @, we denote MO its neutral version,
with generator Q°. In the case of model YN98 (Yang and Nielsen, 1998), Q° is the same as
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Q, with w = 1. And the expected number of (non)-synonymous substitutions that would have
been performed by My is by definition the ability of model Mg along the history defined by
D and M.

The ratio 2NelbDM)

W is then considered as an a posteriori normalized count of the
L—events on branch b. Since the models are built on codon sequences, they are normalized
such that there is one substitution per codon per unit of time on sequences at equilibrium. It
is then straightforward to see that the ability of a model to perform any substitution equals 1
per unit of time per codon. In the case of dN and dS, the normalization is not ”per codon”
but ”per nucleotide”, which means the ability of a model to perform any substitution should
be 1 per unit of time per nucleotide, i.e. 3 times the previous one. Finally, we obtain the

equivalents of dN and dS in the methodology of stochastic mapping : %.
0 16D,

3 Applications

To investigate the bias induced by stationarity assumption, we use stochastic mapping to
compute relevant dN, dS and % estimates on simulated and empirical sequence datasets,
both of which are subject to changes in GC content. The same model has been used, aka
the model proposed in Yang and Nielsen (1998) (denoted ”YN98”), both in homogeneous and
non-homogeneous (or branch) modelings. To model a non-stationary process, it is necessary to
introduce root codon frequencies. To reduce the number of parameters to estimate, root and
equilibrium codon frequencies are computed as products of position nucleotide frequencies
instead of a full parametrization of the codon frequencies (61 parameters). In simulations,
nucleotide frequencies are considered as identical for all positions (denoted "F1X4”, with
2 x 3 parameters). For real dataset analyses, nucleotide frequencies are position specific inside
codons (denoted "F3X4”, with 2 x 9 parameters, because of 3 equilibrium frequencies), and
normalized as stop codon frequencies are set to 0.

In a first step, parameter w is estimated through maximum likelihood computation of
model, root frequencies and branch lengths on each alignment. Then, in a second step, dIV
and dS are computed using normalized stochastic mapping as described in Method section,
from this optimized model and tree.

This procedure has been implemented in the Bio++ program suite (Guéguen et al., 2013).
It can then easily be used on the numerous models that are available in this suite, and most
importantly in any non-homogeneous modeling. Moreover, it can output both site-specific
and/or branch-specific estimates.

This suite was used for simulations, maximum likelihood estimates and stochastic map-
ping computations. We also performed the same estimates under stationary assumption with
codeml (Yang and Nielsen, 2000), and the results exhibit similar biases to those obtained with
our approach (see Fig. S1 in supplementary material).

4 Data
4.1 Simulated dataset

To study the influence of the non-stationarity in G+C content on the maximum likelihood
estimate of w, we simulated the evolution of 100 coding sequences of 3000 codons. Each
simulation started from an ancestral sequence with determined proportion of G4C, noted
0ro0t, and ran along the tree depicted in Figure 1, using an homogeneous YN98+F1X4 model
with determined G+C equilibrium frequency, noted 6cq. Each 0 value (feq and 6ro0t) ranged
from 0.1 to 0.9 per step of 0.1. We simulated negative, weakly negative, neutral, and weakly
positive selection (resp. w = 0.1, w =0.9, w =1, w = 1.1).

4.2 Mammalian dataset

From the data studied in Kosiol et al. (2008), we retrieved 6055 sequence alignments of or-
thologous genes present in human, chimpanzee, macaque, mouse, rat and dog genomes.
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Figure 1: Phylogeny of the studied species in the mammalian dataset. The same tree is

used for simulation with two different theta values: 0.0¢ is the G+C probability at the root, fqq
is the equilibrium G+C probability.
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Figure 2: Estimate of w = 0.1 with a stationary model (left) and non-stationary model (right),
on simulated data with changing G+C content. 6;00t: G4C frequency in the root sequence. 0.4:
G+C equilibrium frequency of the simulation model.

5 Results

5.1 Assessment on simulated data

On all data, we inferred the most likely model, which gave the estimate of w, and then we
used our approach to estimate dN, dS and %.

When w is estimated with a stationary model, decreasing G+C content along the tree
entails a systematic over-estimate of w, and increasing G+C content entails an systematic
under-estimate of w, whereas the same estimate without the hypothesis of stationarity are
not biased (see Figure 2, results obtained with other w are shown in supplementary figures S2
to S4). These under or over estimates can lead to false qualitative interpretation of selection,
as dubious positive selection can be inferred in case of decreasing GC-content, or dubious
negative selection in case of increasing GC-content (as illustrated in simulations with neutral
and nearly-neutral models, see supplementary figures S5 to S10).

For the estimate of dN and dS, assuming stationarity biases both the estimates of dN
and dS in similar ways (Figure 3). These values are mostly under-estimated (Fig. 4) when
equilibrium GC is very different from 0.5 and GC content changes (either up or down). This
means that in these cases the inferred trees are too short. We also observe that unbiased
estimates of dN and dS decrease with equilibrium GC content. But this is not due to our
method, since on stationary processes estimates of dN and dS computed with codeml have a
similar trend (see the dashed line in Fig. S1 in supplementary material).

Actually, when the dynamics of GC content is heterogeneous, the bias is not systematically
in the same direction whether GC increases (or decreases), but it depends also on the GC
of other branches, since a stationary modeling (hence homogeneous) will estimate its GC
equilibrium from all branches. For example, on the same tree, we considered a model with
stationary GC from the root to the primate leaves, and changing GC on the branches leading
to dog and to rodents. As shown in Figure 5, estimates of % on primate branches are biased
with the hypothesis of stationarity, even though the process is indeed stationary on these
branches. But the non-stationarity on the other branches misleads the estimated stationary
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Figure 3: Estimate of dN, dS and % with a stationary model (left) and non-stationary model
(right), on simulated data with changing G4C content and w = 0.1. 6,001: G+C frequency in the
root sequence. O.q: G+C equilibrium frequency of the simulation model.
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Figure 4: Ratio of substitution rates estimated with stationary model over substitution
rates estimated with non-stationary model. Sequences were simulated with changing G+C
content and w = 0.1. Left: dN . Right: dS. 0.50:: G4C frequency in the root sequence. 6.q: G+C
equilibrium frequency of the simulation model.

model.

5.2 Study on mammalian data set

We performed two different maximum likelihood estimates of the mammalian data set: a
stationary homogeneous YN98+F3X4 model (21 branch and model parameters), and a non-
stationary non-homogeneous model (31 additional parameters) with three homogeneous YN98
models, one for the primate clade, one for the rodent clade and one for the dog branch. We
used three models to match the heterogeneity in equilibrium GC content found between these
clades Romiguier et al. (2010). We computed dN (resp. dS) in the primate clade by summing
the stochastic mapping dN (resp. dS) of all branches of this clade.

Since the modelings are nested, we performed likelihood ratio tests on all estimates, and
corrected multiple testing using Benjamini-Hochberg correction. The increase in likelihood is
significant (using an LRT test with 31 degrees of freedom) with an 1% FDR value, in 83.4%
of the genes (Fig. 6).

If we compare the estimates of stationary versus non-stationary modeling, we see that the
estimates of dN are mostly lower, but not correlated with the evolution of GC-content at third
codon position (GC3) (Figure 7). On the contrary, we see an influence of the evolution in GC3
on the bias in the estimate of d.S, and then a more important under-estimate of % with genes
far from stationarity in GC3. As noticed in the simulation section, the bias is not correlated
with the sign of change in GC3 because we performed a non-homogeneous modeling, and the
bias depends also of the evolution of GC content in the other branches. However, the effect
is quite noticeable, the relative error on w estimate is at least 10% for 59% of the genes, or at
least 33% for 13.4% of the genes (Figure 8).

6 Conclusion

Our analyses, both on simulated and empirical datasets, show that estimates of dN, dS and w
can be biased when using standard methods, which assume sequence stationarity. The strength
of the bias depends on the gap between the equilibrium and the actual base composition.
Generally, estimates of w are more robust to this bias than those of dN or dS (Fig. 3), but in
extreme cases, our simulations showed a two-fold difference between the true and estimated
value of w. This bias can have a profound impact for analyses aiming at comparing average
values of w among large gene sets. For instance, to investigate the parameters that explain
variations in the efficacy of selection, many studies have compared the genome-wide average
of w across different taxa (e.g. Galtier (2016)). The genome-wide average of w varies from 0.13
to 0.17 among 48 bird species (Weber et al., 2014), and from 0.10 to 0.22 among 106 amniote
species (Figuet et al., 2016). Thus, at this scale, systematic errors in the estimate of w caused
by differences in the equilibrium base composition along lineages might have an important
impact on observed patterns.

The method that we developed, based on stochastic substitution mapping, provides unbi-
ased estimates of dN, dS and %. Moreover, this method can be used with any type of codon
modeling, as long as it is possible to define a neutral model with given parameter values.
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Figure 5: Estimate of dN, dS and % on primate branches with a stationary model (left),
and a non-stationary non-homogeneous model (right), on simulated data with changing G+C
content on dog and rodent branches, and w = 0.1. 0,40;: G+C frequency in the root and primates
sequences. O.q: G+C equilibrium frequency of the simulation model on dog and rodent branches.
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Figure 6: Logl0 of the differences in log-likelihoods between stationary and non sta-
tionary models on mammalian data. The red line stands for the 5% FDR threshold.
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Figure 7: log2 of the ratios of estimates of dN, dS and dN/dS with a stationary model over
the estimates with a non-stationary model, according to the change in GC3 content in the primate
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Figure 8: Histogram of the ratios in estimates of w in stationary model over non-stationary
model on mammalian data. Yellow, orange and red lines stand for 12.5%, 25% and 37.5% quantiles.
The purple line represents the median.
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Substitution mapping counts events on each branch and on each site. We used it in the
estimate of w on the whole tree or on a set of branches, but it can be used on any specific branch,
to look for episodic selection regimes. It seems also straightforward to adapt this approach
in the estimate of selection on specific sites, and indeed it is already possible with ”simple”
models such as the ones we considered in this article. However, most site-specific studies
consider site-models to model the heterogeneity in selection along the sequence (Yang et al.,
2000). Results of substitution mapping depend on the model used, and it seems reasonable to
use similar site-models in the case of heterogeneous sequences.

As described in (Minin and Suchard, 2008), in addition of computing the expectation of
counts and times on branches, it is possible to compute their variance (and other moments).
This would provide statistical information on the accuracy of the estimates of d/NV and d.S, and
we expect that it will be quite important in site specific estimates, since site specific data is
quite poor, and far more in restrained clades.

7 Availability

Our method has been implemented in the Bio++ suite (Guéguen et al., 2013). The max-
imum likelihood program is called bppml, and is available at the address http://biopp.
univ-montp2.fr/BppSuite. The stochastic mapping program is called mapnh, and is avail-
able at the address http://biopp.univ-montp2.fr/forge/testnh.

A short tutorial about model inference and stochastic mapping as described in this article
is available there: https://github.com/BioPP/supp-mat/tree/selection_vs_GC.
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