# Insight and Inference for DVARS 

Soroosh Afyouni ${ }^{\text {a,b }}$, Thomas E. Nichols ${ }^{\text {c,b,* }}$<br>${ }^{a}$ Institute for Advanced Studies, University of Warwick, Coventry, CV4 7AL, UK<br>${ }^{b}$ Institute for Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK<br>${ }^{c}$ Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK


#### Abstract

Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI) are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated to preprocessing rs-fMRI data and using diagnostic measure to identify bad scans. One such diagnostic measure is DVARS, the spatial standard deviation of the data after temporal differencing. A limitation of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a threshold to distinguish bad scans from good. In this work we describe a variance decomposition of the entire 4D dataset that shows DVARS to be just one of three sources of variation we refer to as $D$-var (closely linked to DVARS), $S$-var and $E$-var. $D$-var and $S$-var partition the average variance between adjacent time points, while $E$-var accounts for edge effects, and each can be used to make spatial and temporal summary diagnostic measures. Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE ANOVA table, which decomposes the total and global variance into fast ( $D$-var), slow ( $S$-var) and edge ( $E$-var) components. We find expected values for each variance component under nominal models, showing how $D$-var (and thus DVARS) scales with overall variance and is diminished by temporal autocorrelation. Finally we propose a sampling distribution for squared DVARS (a multiple of $D$-var) and robust methods to estimate this null model, allowing computations of DVARS p-values. We propose that these diagnostic time series, images, p-values and ANOVA table will provide a succinct summary of the quality of a rs-fMRI dataset that will support comparisons of datasets over preprocessing steps and between subjects.


Keywords: DVARS, Mean Square of Successive Differences, Variance Decomposition, fMRI, Resting-State

## 1. Introduction

Functional connectivity obtained with resting state functional magnetic resonance imaging (rs-fMRI) is typically computed by correlation coefficients between different brain regions, or with a multivariate decomposition like Independent Components Analysis (Cole et al., 2010). Both approaches can be corrupted

[^0]5 by artifacts due to head motion or physiological effects, and much effort is dedicated to preprocessing rs-fMRI data and using diagnostic measure to identify bad scans.

Smyser et al. (2011) proposed and Power et al. (2012) popularized a measure to characterize the quality of fMRI data, an image-wide summary that produces a time series that can detect problem scans. They called their measure DVARS, defined as the spatial standard deviation of successive difference images. In

### 2.1. Notation

For $T$ time-points and $I$ voxels, let the original raw rs-fMRI data at voxel $i$ and $t$ be $Y_{i t}^{R}$. Denote the mean at voxel $i$ as $M_{i}^{R}=\frac{1}{T} \sum_{t} Y_{i t}^{R}$, and by $m^{R}$ some type of typical mean value (e.g. mean or median of the mean image $\left\{M_{i}^{R}\right\}$ ). We take as our starting point for all calculations the centered and scaled data:

$$
\begin{equation*}
Y_{i t}=\frac{Y_{i t}^{R}-M_{i}^{R}}{m^{R}} 100 \tag{1}
\end{equation*}
$$

The scaling ensures that typical brain values before centering are around 100 and are comparable across datasets, and centering simplifies variance calculations.

### 2.2. DSE Variance Decomposition

Let the total ("all") variance at scan $t$ be

$$
\begin{equation*}
A_{t}=\frac{1}{I} \sum_{i=1}^{I} Y_{i t}^{2} \tag{2}
\end{equation*}
$$

and define two variance terms, one for fast ("differenced") variance

$$
\begin{equation*}
D_{t}=\frac{1}{I} \sum_{i=1}^{I}\left(\frac{Y_{i, t+1}-Y_{i t}}{2}\right)^{2} \tag{3}
\end{equation*}
$$

the half difference between time $t$ and $t+1$ at each voxel, squared and averaged over space, and one for slow variance

$$
\begin{equation*}
S_{t}=\frac{1}{I} \sum_{i=1}^{I}\left(\frac{Y_{i t}+Y_{i, t+1}}{2}\right)^{2} \tag{4}
\end{equation*}
$$

the average between $t$ and $t+1$ at each voxel, squared and averaged over space.
We then have the following decomposition of the average variance at time points $t$ and $t+1, A_{t, t+1}=$ $\left(A_{t}+A_{t+1}\right) / 2$

$$
\begin{equation*}
A_{t, t+1}=D_{t}+S_{t} \tag{5}
\end{equation*}
$$

for $t=1, \ldots, T-1$. This has a particularly intuitive graphical interpretation: If we plot $D_{t}$ and $S_{t}$ at $t+1 / 2$, they sum to the midpoint between variances $A_{t}$ and $A_{t+1}$ found at $t+1 / 2$ (see Figure 1). Noting that the usual DVARS measure is

$$
\begin{equation*}
\operatorname{DVARS}_{t}=2 \sqrt{D_{t}} \tag{6}
\end{equation*}
$$

this shows that DVARS has a concrete interpretation, with $\operatorname{DVARS}_{t}^{2} / 4$ being the "fast" variance component in the average variance at $t$ and $t+1$.

This also leads to a decomposition of the total average variance. If we define the temporal averages

$$
\begin{align*}
& A=\frac{1}{T} \sum_{t=1}^{T} A_{t} \\
& D=\frac{1}{T} \sum_{t=1}^{T-1} D_{t}  \tag{7}\\
& S=\frac{1}{T} \sum_{t=1}^{T-1} S_{t}
\end{align*}
$$

and lastly an "edge" variance term

$$
\begin{align*}
E_{t} & =\frac{1}{I} \sum_{i=1}^{I} Y_{i t}^{2} / 2  \tag{8}\\
E & =\frac{1}{T}\left(E_{1}+E_{T}\right)
\end{align*}
$$

we have the following "DSE" decomposition

$$
\begin{equation*}
A=D+S+E \tag{9}
\end{equation*}
$$

That is, the total variance (" $A$-var") in the 4 D dataset is the sum of variance terms attributable to fast variance (" $D$-var"), slow variance (" $S$-var") and edge variance (" $E$-var").

DSE Variance Decomposition


## Decomposition at $t, t+1$

$$
\left(A_{t}+A_{t+1}\right) / 2=D_{t}+S_{t}
$$

## Overall Decomposition



Figure 1: Illustration of the DSE variance decomposition, where $A$-var (green) is the total variance at each scan, $D$-var (blue) is the variance of the half difference of adjacent scans, $S$-var (yellow) is the variance of the average of adjacent scans, and $E$-var is the edge variance at times 1 and $T$. $D$-var and $S$-var for index $t\left(D_{t}\right.$ and $\left.S_{t}\right)$ sums to $A$-var between $t$ and $t+1\left(\left(A_{t}+A_{t+1}\right) / 2\right)$. Note how the $S$-var and $D$-var time series allow insight to the behavior of the total variance: The excursion of $A$-var around $t=2$ and $t=3$ arise from fast variance while the rise for $t \geq 6$ is due to slow variance. For perfectly clean, i.e. independent data, $D$-var and $S$-var will converge and each explain approximately half of $A$-var.

We can further extend this decomposition into global and non-global variance at time point $t$

$$
\begin{equation*}
A_{t}=A_{\mathrm{G} t}+A_{\mathrm{N} t}, \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{\mathrm{G} t}=\bar{Y}_{t}^{2} \\
& A_{\mathrm{N} t}=\frac{1}{I} \sum_{i=1}^{I}\left(Y_{i t}-\bar{Y}_{t}\right)^{2}, \tag{11}
\end{align*}
$$

${ }_{35}$ and $\bar{Y}_{t}=\frac{1}{I} \sum_{i=1}^{I} Y_{i t}$ is the global intensity for time $t$. Analogously, $D_{t}$ can be decomposed into $D_{\mathrm{G} t}$ and $D_{\mathrm{N} t}$ (as noted in Burgess et al. (2016)), and likewise for $S_{t}$ and $E_{t}$. Creating temporal averages as in Eqn. (7), this likewise extends to a decomposition of global variance into fast, slow and edge components

$$
\begin{equation*}
A_{\mathrm{G}}=D_{\mathrm{G}}+S_{\mathrm{G}}+E_{\mathrm{G}} \tag{12}
\end{equation*}
$$

Table 1 provide the full list of values that make up this decomposition, and indicate how they can be plotted. See Appendix B for options on plotting the global variance decomposition.

This framework also leads to diagnostics in image form. Just as a variance image with voxels $A_{i}=$ $\sum_{t} Y_{i t}^{2} / T$ is useful, so could a $D$-var image, $D_{i}=\sum_{t}\left(Y_{i, t+1}-Y_{i t}\right)^{2} /(4 T)$ and a $S$-var image, $S_{i}=\sum_{t}\left(Y_{i t}+\right.$ $\left.Y_{i, t+1}\right)^{2} /(4 T)$ offer more information on the noise structure.

### 2.3. DSE ANOVA Table © Reference Values

This DSE decomposition can be usefully assembled into a variant of an Analysis of Variance (ANOVA) table that summaries contributions from fast, slow, end, global and non-global components to the total variance in a 4D dataset. Traditionally ANOVA tables use sum-of-squares to partition variance, but we instead focus on root mean squared (RMS) or mean squared (MS) values to leverage intuition on typical noise standard deviation (or variance) of resting state fMRI data. Table 2 shows the values that make up what we call the DSE ANOVA table.

To understand this decomposition we define reference values for "good", artifact-free data using a null model. In Appendix D we detail the most arbitrary version of this model, based only on time-constant spatial covariance, $\Sigma^{S}$, and find expected values for each element of the DSE ANOVA table. More interpretable expected values, however, come from a slightly restrictive model with time-space-separable correlation. This separable noise model assumes data with arbitrary spatial covariance $\Sigma^{S}$ but a common temporal autocorrelation for all voxels with a constant lag-1 autocorrelation $\rho$. While this is less restrictive than an $\operatorname{AR}(1)$ model, in real data temporal autocorrelation varies widely over space, and we only consider this as a tractable working model to understand the DSE ANOVA table. (Our null model for DVARS p-values, below, is more realistic). We also consider the idealized model of "perfect" data with completely independent and identically distributed (IID) 4D noise.

Table 3 shows three sets of reference values for the DSE ANOVA table. (Going forward we drop the third row of the DSE ANOVA table showing non-global variance, since in practice the global explains so little variance that the first and third rows are essentially the same; see e.g. Table 6 entries' for $A_{\mathrm{G}}$, and Figure 7 right). The first pair of rows shows the expected value of the MS of each component for the separable noise model. This shows that all variance components scale with the average voxel-wise variance $\left(\operatorname{tr}\left(\Sigma^{S}\right) / I\right.$, where $\operatorname{tr}(\cdot)$ is the trace), and as temporal autocorrelation increases $D$-var shrinks and $S$-var grows. The global components are seen to depend on $\mathbf{1}^{\top} \Sigma^{S} 1 / I$, the average summed spatial covariance, where $\mathbf{1}$ is a vector of ones. This indicates, intuitively, that the greater the spatial structure in the data the more variance that is explained by the global.

The next pair of rows in Table 3 show the expected MS values normalized to the expected $A$-var term. The $A$-var-normalized $D$-var and $S$-var diverge from $1 / 2$ exactly depending on $\rho$, and normalized $E$-var is $1 / T$. The global terms here depend on the balance between average spatial covariance and average variance, $1^{\top} \Sigma^{S} 1 / \operatorname{tr}\left(\Sigma^{S}\right)$.

Finally, the final pair of rows shows expected values under the most restrictive case of IID noise. Here $D$-var and S-var are exactly equal, about $1 / 2$, and we see that the global variance explained should be tiny, $1 / I$. This suggests that normalized global variance relative to the nominal IID value, i.e. $\left(A_{G} / A\right) /(1 / I)$, is an estimate of $\mathbf{1}^{\top} \Sigma^{S} \mathbf{1} / \operatorname{tr}\left(\Sigma^{S}\right)$, a unitless index of the strength of spatial structure in the data. (This particular result doesn't depend on the separable model; see Appendix D.

These reference models provide a means to provide DSE values in three useful forms. For each $A$-var, $D$-var, $S$-var and $E$-var term we present:

1. RMS, the square root of the mean squared variance quantity,
2. $\% A$-var, a variance as a percentage of total variance $A$, and
3. Relative IID, $A$-var-normalized values in ratio to nominal IID values.

For example, for $A$-var we have (1) RMS is $\sqrt{A}$, (2) $\% A$-var is $100 \%$ and (3) relative IID is 1.0 . For $D$-var, (1) RMS is $\sqrt{D},(2) \% A$-var is $D / A \times 100$ and (3) relative IID is

$$
\begin{equation*}
\frac{D}{A} / \frac{1}{2} \frac{T-1}{T} . \tag{13}
\end{equation*}
$$

For $D_{G}$-var, (2) RMS is $\sqrt{D_{G}}$, (2) $\% A$-var is $D_{G} / A \times 100$ and (3) relative IID is

$$
\begin{equation*}
\frac{D_{G}}{A} / \frac{1}{2} \frac{1}{I} \frac{T-1}{T}, \tag{14}
\end{equation*}
$$

noting that we normalize to $A$ and not $A_{G}$.

### 2.4. Inference for $D V A R S$

We seek a significance test for the null hypothesis

$$
\begin{equation*}
H_{0}: \mathbb{E}\left(\mathrm{DVARS}_{t}^{2}\right)=\mu_{0} \tag{15}
\end{equation*}
$$

where $\mu_{0}$ is the mean under artifact-free conditions. Note this is equivalent to a null of homogeneity for $\operatorname{DVARS}_{t}$ or $D_{t}$. If we further assume that the null data are normally distributed, we can create a $\chi^{2}$ test statistic

$$
\begin{equation*}
X\left(\mathrm{DVARS}_{t}\right)=\frac{2 \hat{\mu}_{0}}{\hat{\sigma}_{0}^{2}} \mathrm{DVARS}_{t}^{2} \tag{16}
\end{equation*}
$$

${ }_{85}$ approximately following a $\chi_{\nu}^{2}$ distribution with $\nu=2 \hat{\mu}_{0}^{2} / \hat{\sigma}_{0}^{2}$ degrees of freedom, where $\sigma_{0}^{2}$ is the null variance (see Appendix E).

What remains is finding estimates of $\mu_{0}$ and $\sigma_{0}^{2}$. The null mean of $\operatorname{DVARS}_{t}$ is the average differenced data variance,

$$
\begin{equation*}
\mu_{0}=\frac{1}{I} \sum_{i} \sigma_{D i}^{2} \tag{17}
\end{equation*}
$$

where $\sigma_{D i}^{2}$ is the variance of the differenced time series at voxel $i$. To avoid sensitivity to outliers, we robustly estimate each $\sigma_{D i}^{2}$ via the interquartile range (IQR) of the differenced data,

$$
\begin{equation*}
\hat{\sigma}_{D i}^{2}=\frac{\operatorname{IQR}\left(\left\{Y_{i, t+1}-Y_{i t}\right\}_{t=1, \ldots, T-1}\right)}{\mathrm{IQR}_{0}}, \tag{18}
\end{equation*}
$$

where $\operatorname{IQR}_{0}=\left(\Phi^{-1}(0.75)-\Phi^{-1}(0.25)\right) \approx 1.349$ is the IQR of a standard normal, and $\Phi^{-1}(\cdot)$ is the inverse cumulative distribution function of the standard normal. Below we evaluate alternate estimates of $\mu_{0}$, including the median of $\left\{\hat{\sigma}_{D i}^{2}\right\}$ and directly as the median of $\left\{\mathrm{DVARS}_{t}^{2}\right\}$.

The variance of $\operatorname{DVARS}_{t}^{2}$ unfortunately depends on the full spatial covariance, and thus we're left to robustly estimating sample variance of $\left\{\mathrm{DVARS}_{t}^{2}\right\}$ directly. We consider several estimates based on IQR and evaluate each with simulations below. Since the IQR-to-standard deviation depends on a normality assumption, and we consider various power transformations before IQR-based variance estimation (see Appendix F for details). We also consider a "half IQR" estimate of variance

$$
\begin{equation*}
\operatorname{hIQR}\left(\left\{\mathrm{DVARS}_{t}^{2}\right\}_{t}\right) / \operatorname{hIQR}_{0}, \tag{19}
\end{equation*}
$$

where hIQR is the difference between the median and first quartile, and $\mathrm{hIQR}_{0}=\mathrm{IQR}_{0} / 2$. This provide additional robustness when more than just the upper quartile of $\operatorname{DVARS} \mathrm{S}_{t}^{2}$ values are corrupted.

Finally, the $X\left(\mathrm{DVARS}_{t}\right)$ values can be converted to p-values $P\left(\mathrm{DVARS}_{t}\right)$ with reference to a $\chi_{\nu}^{2}$ distribution, and subsequently converted into equivalent Z scores,

$$
\begin{equation*}
Z\left(\mathrm{DVARS}_{t}\right)=\Phi^{-1}\left(1-\mathrm{P}\left(\mathrm{DVARS}_{t}\right)\right) \tag{20}
\end{equation*}
$$

Note that for extremely large values of $\mathrm{DVARS}_{t}$ numerical underflow will result in p-values of zero; in such cases an approximate Z score can be obtained directly as $Z\left(\mathrm{DVARS}_{t}\right)=\left(\mathrm{DVARS}_{t}^{2}-\mu_{0}\right) / \sigma_{0}$.

Also note that under complete spatial independence the degrees of freedom will equal the number of voxels $I$, and so $\nu$ can be thought of an effective number of spatial elements; large scale structure will decrease $\nu$ while larger $\nu$ should be found with cleaner data. Though we caution that estimates of $\nu$ will be very sensitive to the particular estimators used for $\mu_{0}$ and $\sigma_{0}^{2}$.

### 2.5. Standardized DVARS

We propose that our $D$-var time series, $D_{t}=\operatorname{DVARS}_{t}^{2} / 4$, is a more interpretable variant of DVARS, the average variance $A_{t, t+1}$. However, there are various transformations that may be considered better for plotting or reporting (see Table 4 and Figure 4).

In addition to the original $\mathrm{DVARS}_{t}$ and our $D_{t}$, we might also consider the percent $D$-var variance explained at a time point. Eqn. (5) could be used to find, in sums-of-squares units, the percent variance attributable to $D$-var at $t, t+1$ :

$$
\begin{equation*}
\frac{I \times D_{t}}{I \times A_{t, t+1}} 100 \tag{21}
\end{equation*}
$$

However, problem scans can inflate $A_{t}$ and could mask problem time points. Hence we instead propose to replace $A_{t, t+1}$ with its average $A$ and compute percent $D$-var as

$$
\begin{equation*}
\% D \text {-var : } \frac{D_{t}}{A} 100 \tag{22}
\end{equation*}
$$

This has the merit of being interpretable across datasets, regardless of total variance. As shown in Table 3 IID data have $D$ around half of $A$, i.e. yield $\% D$-var of $50 \%$.

While $\% D$-var can be more interpretable than unnormalized $D$-var, its overall mean is still influenced by the temporal autocorrelation. For example, if $\% D$-var is overall around $30 \%$ and at one point there is a spike up to $50 \%$, what is interesting is the 20 percentage point change, not $30 \%$ or $50 \%$ individually. Hence another useful alternative is change in percent $D$-var

$$
\begin{equation*}
\Delta \% D-\operatorname{var}: \frac{D_{t}-\mu_{0} / 4}{A} 100 \tag{23}
\end{equation*}
$$

interpretable as the excess fast variance as a percentage of average variance.
We previously have proposed scaling DVARS relative to its null mean (Nichols, 2013),

$$
\begin{equation*}
\operatorname{RDVARS}^{\mathrm{DVARS}_{t}} / \sqrt{\mu_{0}} . \tag{24}
\end{equation*}
$$

(While we had called this "Standardized DVARS", a better label is "Relative DVARS.") This gives a positive quantity that is near 1 for good scans and substantially larger than one for bad ones. However, there is no special interpretation "how large" as the units (multiples of $\mu_{0}^{-1 / 2}$ ) are arbitrary; as noted above, DVARS falls with increased temporal correlation, making the comparison of these values between datasets difficult.

Finally the Z-score $Z\left(\mathrm{DVARS}_{t}\right)$ or $-\log _{10} P\left(\mathrm{DVARS}_{t}\right)$ may be useful summaries of evidence for anoma- lies.

## 3. Methods

### 3.1. Simulations

To validate our null distribution and p-values for DVARS we simulate 4D data as completely independent 4D normally distributed noise

$$
\begin{equation*}
Y_{i t} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right), i=1, \ldots, I, t=1, \ldots, T \tag{25}
\end{equation*}
$$

for $\sigma_{i}$ drawn uniformly between $\sigma_{\min }$ and $\sigma_{\max }$ for each $i, I=90,000$.
We manipulate two aspects in our simulations, time series length and heterogeneity of variance over voxels. We consider $T$ of $100,200,600$ and 1200 data-points, reflecting typical lengths as well as those in the Human Connectome Project. We use three variance scenarios, homogeneous with $\sigma_{\min }=\sigma_{\max }=200$, low heterogeneity $\sigma_{\min }=200$ and $\sigma_{\max }=250$, and high heterogeneity $\sigma_{\min }=200$ and $\sigma_{\max }=500$.

We consider four estimates of $\mu_{0}$. First is the very non-robust sample mean of $\left\{\mathrm{DVARS}_{t}^{2}\right\}$, denoted $\hat{\mu}_{0}^{\text {DVARS }}$, considered for comparative purposes. The next two are based on the IQR-based estimate of voxelwise variance of the differenced data, Eqn. 18, considering the mean $\hat{\mu}_{0}^{D}$ and median $\tilde{\mu}_{0}^{D}$ of the robust variances $\hat{\sigma}_{D i}^{2}$. Finally we also consider the empirical median of $\left\{\operatorname{DVARS}_{t}^{2}\right\}, \tilde{\mu}_{0}^{\text {DVARS }}$. For $\sigma_{0}^{2}$ all estimates were based directly on $\left\{\operatorname{DVARS}_{t}^{2}\right\}$; for comparative purposes we considered the (non-robust) sample variance of $\left\{\right.$ DVARS $\left._{t}^{2}\right\}, \hat{\sigma}_{0}^{2}$, and IQR-based and hIQR-based estimates of variance with power transformations $d$ of 1 , $1 / 2,1 / 3$ and $1 / 4$, denoted generically $\tilde{\sigma}_{0}^{2}$; note $d=1 / 3$ is theoretically optimal for $\chi^{2}$ (see Appendix F.

For p-value evaluations, we only evaluate the most promising null moment estimators, $\tilde{\mu}_{0}^{D}$ and $\tilde{\mu}_{0}^{\text {DVARS }}$ for $\mu_{0}$, and $\tilde{\sigma}_{0}^{2}$ with hIQR, $d=1$ and $\mathrm{hIQR}, d=1 / 3$. We measure the bias our estimators in percentage terms, as $\left(\hat{\mu}_{0}-\mu_{0}\right) / \mu_{0} \times 100$ and $\left(\hat{\sigma}_{0}^{2}-\sigma_{0}^{2}\right) / \sigma_{0}^{2} \times 100$, where the true value are $\mu_{0}=2 \sum_{i} \sigma_{i}^{2} / I$ and $\sigma_{0}^{2}=8 \sum_{i} \sigma_{i}^{4} / I^{2}$ (as per Appendix E when $\Sigma^{S}=I$ ).

For each setting we use 1,000 realisations. We obtain P-values from each method and validate them via $\log$ P-P plots (probability-probability plots) and histograms of approximate Z-scores.

### 3.2. Real Data

We use two publicly available data-sets to demonstrate the results of methods proposed in this paper on real-data. First, we drew 20 healthy subjects at random from the Human Connectome Project (HCP,S900 release). We chose this dataset due to the high quality and long sessions of the data (Smith et al. 2013 Glasser et al. 2013). Second, we used first 25 healthy subjects from the New York University (NYU) cohort of the Autism Brain Imaging Data Exchange (ABIDE) consortium via Preprocessed Connectome Project (PCP) Craddock et al. 2013). We selected this cohort for its high signal-to-noise ratio and the more typical (shorter) time series length (Di Martino et al., 2014).

### 3.2.1. Human Connectome Project Data

For full details see (Van Essen et al. 2013; Glasser et al., 2013); in brief, 15 minute eyes-open resting acquisitions were taken on a Siemens customized Connectome 3T scanner with a gradient-echo EPI sequence, $\mathrm{TR}=720 \mathrm{~ms}, \mathrm{TE}=33.1 \mathrm{~ms}$, flip angle $=52^{\circ}$ and 2 mm isotropic voxels. For each subject, we used the first session, left to right phase encoding direction (See Supplementary Table S1 for full details of subjects). and ICA-FIXed processed. Unprocessed refers to the raw data as acquired from the machine without any pre-processing step performed, useful as a reference to see how the variance components change with preprocessing steps. Minimally pre-processed data have undergone a range of conventional pre-processing steps such as correction of gradient-nonlinearity-induced distortion, realignment aiming to correct the head movements, registration of the scans to the structural (T1w) images and finally transformation of the images to the MNI standard space.

Finally, an ICA-based clean up (Salimi-Khorshidi et al., 2014) is applied, where artifactual ICA components, such as movement, physiological noises of the heart beat and respiration, are regressed out the data. Due to extent of the FIX denoising and an ongoing debate regarding the nature of the global signal, we did not consider global signal regression with the HCP data. From now on, we call this stage 'fully pre-processed' to be consistent with the ABIDE-NYU cohort we describe in the following.

### 3.2.2. ABIDE - New York University Data

For full details visit PCP website http://preprocessed-connectomes-project.org/; in brief, 6 minute eyes-closed resting acquisitions were taken on an Allegra 3T scanner with a gradient echo EPI sequence, $\mathrm{TR}=2000 \mathrm{~ms}, \mathrm{TE}=15 \mathrm{~ms}$, flip angle $=90^{\circ}$, and 3 mm isotropic voxels (See Supplementary Table S 2 for full details of subjects). In this study, each subject was analyzed using Configurable Pipeline for the Analysis of Connectomes (C-PAC) pipeline, in three stages; unprocessed, minimally pre-processed and fully pre-processed. The unprocessed data are raw except for brain extraction with FSL's BET. Minimally preprocessed data were only corrected for slice timing, motion by realignment and then the data were transformed into a template with 3 mm isotropic voxels. Fully pre-processed data additionally had residualisation with respect to 24-motion-parameters, signals from white matter (WM) and cerebrospinal fluid (CSF), and linear and quadratic low-frequency drifts. Conventionally this pipeline deletes the first three volumes to account for T 1 equilibration effects, but we examine the impact of omitting this step for the raw data.

## 4. Results

### 4.1. Simulations

Figure 2 shows the percentage bias for the null expected value $\mu_{0}$ (left panel) and variance $\sigma_{0}^{2}$ (right panel) for different levels of variance heterogeneity and time series length. In general, the bias for both
parameters is modest, increasing with greater heterogeneity and decreasing with growing $T$.
The direct estimates of the mean based on the DVARS ${ }_{t}^{2}$ time series perform best on this clean, artifact- free data, while mean estimated based on voxel-wise median difference variances $\tilde{\mu}_{0}^{D}$ degrades the most with increasing heterogeneity. The estimates of variance have relatively less bias but it is difficult to identify one particular best method, save for IQR often (but not always) having less bias than hIQR, and lower $d$ generally associated with less bias.

On balance, given the generally equivocal results and concerns about robustness, for further consideration
hIQR with $d=1$ and hIQR with $d=1 / 3$ for $\sigma_{0}^{2}$.
Figure 3 shows log P-P plots for $\chi^{2}$ p-values and histograms of approximate Z scores, $\left(\mathrm{DVARS}_{t}^{2}-\mu_{0}\right) / \sigma_{0}$; values above the identity in the P-P plot correspond to valid behavior. While all methods have good performance under homogeneous data, $\tilde{\mu}_{0}^{D}$ (panels A \& C) is not robust to variance heterogeneity and ${ }_{35}$ results in inflated significance. In contrast, $\tilde{\mu}_{0}^{\text {DVARS }}$ (panels $\mathrm{B} \& \mathrm{D}$ ) has good performance over all, for variance estimated with either $d=1$ or $d=1 / 3$ (top and bottom panels, respectively), and also yields good approximate Z-scores.


Figure 2: $\quad$ Simulation results for estimation of DVARS ${ }^{2}$ null mean $\mu_{0}$ (left panel) and variance $\sigma_{0}^{2}$ (right panel), for no, low and high heterogeneity of variance over voxels all estimates (rows). All estimators improve with time series length $T$ and most degrade with increased heterogeneity. Both the sample mean ( $\hat{\mu}_{0}^{\text {DVARS }}$ ) and median ( $\tilde{\mu}_{0}^{\text {DVARS }}$ ) of DVARS ${ }_{t}^{2}$ perform best, as does voxel-wise median of difference data variance ( $\hat{\mu}_{0}^{\mathrm{DVARS}}$ ) for sufficient $T$, though $\hat{\mu}_{0}^{\text {DVARS }}$ lacks robustness. No one variance estimator dominates.


Figure 3: Simulation results for validity of DVARS p-values for different estimators of $\mu_{0}$ and $\sigma_{0}^{2}$. The left two panels (A \& C) use $\tilde{\mu}_{0}^{D}$, the two right panels ( $\mathrm{B} \& \mathrm{D}$ ) use $\tilde{\mu}_{0}^{\text {DVARS } ; ~ t h e ~ u p p e r ~ t w o ~ p a n e l s ~(~} \mathrm{A} \& \mathrm{~B}$ ) use variance based on hIQR with $d=1$, the lower two panels ( $\mathrm{C} \& \mathrm{D}$ ) use hIQR with $d=1 / 3$. P-P plots and histograms of approximate Z scores show that only use of $\tilde{\mu}_{0}^{\text {DVARS }}$ gives reliable inferences, and power transformation parameter $d$ seems to have little effect.

On the basis of these results, we elected to use $\tilde{\mu}_{0}^{\text {DVARS }}$ as the only reliable option for the mean, and $\mathrm{hIQR}, d=1 / 3$ as a variance estimate.

### 4.2. Real Data

We first focus on selected results of two HCP subjects, then later summarize results for all HCP and ABIDE subjects.

### 4.2.1. Temporal Diagnostics: Comparison of DVARS measures

Figure 4 shows different DVARS-type measures for subject 118730 of the HCP cohort. The first six $D_{t}, S_{t}$ and $E_{t}$ variance components, upper plot with minimal pre-processing, lower with full pre-processing. The grey stripes indicate 19 data points identified as having significant DVARS after Bonferroni correction. Supplementary Table S3 shows values for all significant scans. We also show the results of this analysis for three more subjects (HCP subject 115320, ABIDE-NYU subject 51050 and 51055) in Supplementary Figures S1, S4 and S7.

In Figure 4 the largest $D_{t}$ occurs at index 7 (i.e. 7 th and 8 th data points) where $\sqrt{D_{t}}$ is 4.074 , corresponding to $70.155 \%$ of average variance and far in excess of the nominal IID value of $50 \%$. The equivalent Z score is 36.330 and only indicates extreme statistical significance, while a more meaningful $\Delta \% D$-var of $41.198 \%$ indicates practical significance in terms of excess variance at this point. The least significant $D_{t}$ occurs at index 726 , with a Z score of 4.36 and $\sqrt{D_{t}}$ is 5.66 ; here a $\Delta \% D$-var of $4.95 \%$ indicates this is a relatively modest disturbance. In contrast, values of original DVARS or relative DVARS do not offer a meaningful interpretation.

The bottom panel of Figure 4 shows the DSE plot for fully pre-processed data. This data now exhibits the idealized behavior of IID data, with $D$-var and $S$ variance components converging at $50 \%$ of average variance (see right-hand y-axis). Note how $\sqrt{D_{t}}$ is around 2.6 before clean up, and 2.5 after clean up, while $\sqrt{S_{t}}$ fell dramatically with cleaning, indicating that nuisance variance removed was largely of a "slow" variety. Also observe that clean up results in drops in total $A_{t}$ variance where artifacts were observed, indicating variance removed by the regression procedure.


Figure 4: Comparison of different variants of DVARS-related measures on HCP 115320. The first six plots are variants of DVARS listed in Table 4 the $Z$ (DVARS) plot shows the one-sided $5 \%$ Bonferroni significance threshold for 1200 scans, with vertical grey lines marking these significant scans. The bottom two plots show all 4 variance components, total $A_{t}$ (green), fast $D_{t}$ (blue), $S_{t}$ slow (yellow), and edge $E_{t}$ (purple), for minimally preprocessed (upper) and fully preprocessed (lower) data. For minimally preprocessed data $D$-var is about $25 \%$ of $A$-var (see right axis), far below $S$-var. For fully preprocessed data $D$-var and $S$-var converge to $50 \% A$-var.

### 4.2.2. Temporal Diagnostics: Before and after clean-up

Figures 5 and 6 shows the minimally and fully pre-processed variance decompositions, respectively, of HCP subject 115320 .

Figure 5. upper panel, shows that if the strict FD threshold were used $47 \%$ of scans would be flagged, while the lenient threshold appears to miss several important events. For example, around scans 775 and 875 there are two surges in $\sqrt{D_{t}}$, rising to about $60 \%$ and $40 \%$ average variance (excesses of $30 \%$ and $10 \%$, respectively, from a baseline of about $30 \%$ ) while FD remains low. The lower panel's pie chart shows that slow $S$-var explains just under $75 \%$ of total variance, and almost all of global variance; edge variance is also 1.5 above expected.

In Figure 6, the fully preprocessed data-set shows roughly equal of fast and slow variance, as reflected in the overlapping $D_{t}$ and $S_{t}$ time series (blue and yellow, respectively) and the pie and bar charts for total variance. Edge $E$-var has also dropped to fall in line with IID expectations. This convergence, however is not homogeneous over scans, and excursions of $S$-var are still found after scan 650. However, these are much reduced excursions of $S_{t}$ (no more than $75 \%$ of average variance, compared to over $150 \%$ in Fig. 5).

Note that while significant DVARS are found, they are small in magnitude: Table 5 lists the 10 significant tests, none with $\Delta \% D$-var greater than $6 \%$. If we used a $\Delta \% D$-var of $5 \%$ we would still mark 4 of these 10 significant; while we might hope for better performance from the FIX method, note the severe problems detected towards the end of the scan (Fig. 55).

The smallest significant $\Delta \% D$-var is $2.66 \%$, which is smaller than the least significant scan detected in the minimally preprocessed data, $3.78 \%$. This indicates the increased sensitivity in our procedure as the background noise in the data is reduced.

It is also worth noting that majority of the spikes detected in Figure 5 has been removed by motion correction algorithms (i.e. in this specific case, ICA-FIX; shown in Figure 6], however these algorithm may leave negative spikes which have to be detected via two-sided test and be removed.

Temporal diagnostics of before and after clean-up for three other subjects (HCP subject 118730, NYUABIDE subjects 51050 and 51050) also reported in Supplementary Materials. See Figure S2 and S3 for HCP subject 118730, Figure s5 and s6 for NYU-ABIDE subject 51050 and Figure s8 and s9 for NYU-ABIDE 51055.


Figure 5: Illustration of DSE and DVARS inference for HCP 115320 minimally pre-processed data. The upper panel shows four plots, framewise displacement (FD), the DSE plot, the global variance signal $G_{\mathrm{A} t}$, and an image of all brainordinate elements. FD plots show the conventional 0.2 mm and 0.5 mm , strict and lenient thresholds, respectively. The bottom panel summaries the DSE ANOVA table, showing pie chart of the 4 variance components and a bar chart relative to IID data, for whole (left) and global (right) components. Many scans are marked as significant, reflecting disturbances in the latter half of the acquisition.


Figure 6: Illustration of DSE and DVARS inference for HCP 115320 fully pre-processed. Layout as in Fig. 5 Cleaning has brought $S_{t}$ slow variance into line with $D_{t}$ fast variance, each explaining about $50 \%$ of total variance. While some scans are still flagged as significant, $\% D$-var (right y axis) never rises above about $55 \%$, indicating $\Delta \% D$-vars of $5 \%$ or less and possible lack of practical significance.

Table 5: List of all statistically significant $D_{t}$ fast variance components in the fully pre-processed HCP 115320. Spikes which represent the highest (index 1177) and lowest (index 1035) was bold.

| Scan | Index | DVARS | $\sqrt{\mathrm{D}-\mathrm{var}}$ | $\% \mathrm{D}-\mathrm{var}$ | $\Delta \% \mathrm{D}-\mathrm{var}$ | RDVARS | Z(D-var) | FD |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $256 \& 257$ | 256 | 4.982 | 2.4910 | 52.519 | 3.362 | 1.038 | 5.093 | 0.136 |
| $257 \& 258$ | 257 | 5.077 | 2.538 | 54.553 | 5.397 | 1.058 | 8.175 | 0.172 |
| $774 \& 775$ | 774 | 5.095 | 2.547 | 54.935 | 5.779 | 1.062 | 8.753 | 0.290 |
| $777 \& 778$ | 777 | 4.955 | 2.477 | 51.950 | 2.794 | 1.033 | 4.232 | 0.247 |
| $873 \& 874$ | 873 | 5.089 | 2.544 | 54.805 | 5.649 | 1.061 | 8.556 | 0.255 |
| $\mathbf{1 0 3 5} \& \mathbf{1 0 3 6}$ | $\mathbf{1 0 3 5}$ | $\mathbf{4 . 9 4 8}$ | $\mathbf{2 . 4 7 4}$ | $\mathbf{5 1 . 8 1 5}$ | $\mathbf{2 . 6 5 9}$ | $\mathbf{1 . 0 3 1}$ | $\mathbf{4 . 0 2 7}$ | $\mathbf{0 . 2 8 0}$ |
| $1175 \& 1176$ | 1175 | 4.960 | 2.480 | 52.062 | 2.905 | 1.034 | 4.401 | 0.109 |
| $1176 \& 1177$ | 1176 | 4.953 | 2.476 | 51.926 | 2.769 | 1.032 | 4.195 | 0.104 |
| $\mathbf{1 1 7 7} \& \mathbf{1 1 7 8}$ | $\mathbf{1 1 7 7}$ | $\mathbf{5 . 0 9 6}$ | $\mathbf{2 . 5 4 8}$ | $\mathbf{5 4 . 9 6 4}$ | $\mathbf{5 . 8 0 7}$ | $\mathbf{1 . 0 6 2}$ | $\mathbf{8 . 7 9 6}$ | $\mathbf{0 . 3 0 1}$ |
| $\mathbf{1 1 7 8} \& 1179$ | 1178 | 5.049 | 2.524 | 53.952 | 4.795 | 1.052 | 7.263 | 0.132 |

The DSE ANOVA tables for minimally and fully preprocessed (Table 6) gives concise summaries of the data quality. The RMS values provide concrete values that can be used to build intuition for data from a given scanner or protocol. The total noise standard deviation falls from 5.015 to 3.437 with clean-up, but it is notable that the fast variance $D$-var falls only slightly from 2.598 to 2.406 (in RMS units), while slow variance falls dramatically from about 4.287 to 2.454 . This indicates that much of the variance reduction in "cleaning" comes from removal of low frequency drifts and other slowly-varying effects. The magnitude of temporally structured noise is reflected by $S$-var explaining $73 \%$ of total variance, and after clean-up $S$-var and $D$-var fall into line around $50 \%$. A measure of the spatially structured noise is the global $A_{\mathrm{G}}$-var that, while small as a percentage, is seen to be about 1,500 that expected with IID before preprocessing, and falling to about 275 relative to IID after preprocessing. That the majority of $A_{\mathrm{G}}$-var is due to $S_{\mathrm{G}}$-var indicates that the global signal is generally low frequency in nature.

We also show the DSE ANOVA tables for three other subjects; HCP subject 118730 in Table S4, NYUABIDE subject 51050 and 51055 in Tables S5 and S6, respectively.

Table 6: DSE ANOVA Tables for HCP 115320. Minimally preprocessed data (top), fully preprocessed (bottom) are readily compared: Overall standard deviation drops from 5.015 to 3.437 , while fast noise only reduces modestly from 2.598 to 2.406 , indicating preprocessing mostly affects the slow variance. The IID-relative values for $D, S$ and $E$ for the fully preprocessed data are close to 1.0 , suggesting successful clean-up in the temporal domain; the global signal, however, still explains about $275 \times$ more than would be expected under IID settings, indicating (likely inevitable) spatial structure in the cleaned data.

| Minimally Preprocessed Data |  |  |  |
| :--- | ---: | ---: | :---: |
| Source | RMS | \% of A-var | Relative to IID |
| $A$ - All | 5.015 | 100.000 | 1.000 |
| $D$ - Fast | 2.598 | 26.837 | 0.537 |
| $S$ - Slow | 4.287 | 73.039 | 1.462 |
| $E$ - Edge | 0.176 | 0.124 | 1.486 |
| $A_{\mathrm{G}}$ - All Global | 0.415 | 0.684 | 1539.383 |
| $D_{\mathrm{G}}-$ Fast Global | 0.063 | 0.016 | 71.126 |
| $S_{\mathrm{G}}$ - Slow Global | 0.408 | 0.662 | $2,980.787$ |
| $E_{\mathrm{G}}$ - Edge Global | 0.040 | 0.006 | $17,636.960$ |

Fully Preprocessed Data

|  | RMS | \% of A-var | Relative to IID |
| :--- | ---: | ---: | :---: |
| $A$ - All | 3.437 | 100.000 | 1.000 |
| $D$ - Fast | 2.406 | 48.980 | 0.980 |
| $S$ - Slow | 2.454 | 50.948 | 1.020 |
| $E$ - Edge | 0.092 | 0.072 | 0.860 |
| $A_{\mathrm{G}}$ - All Global | 0.120 | 0.122 | 274.058 |
| $D_{\mathrm{G}}$ - Fast Global | 0.037 | 0.012 | 52.830 |
| $S_{\mathrm{G}}-$ Slow Global | 0.114 | 0.109 | 493.227 |
| $E_{\mathrm{G}}$ - Edge Global | 0.008 | $<0.001$ | $1,508.473$ |

Figure 7 illustrates the use of the DSE decomposition to summarize a group of subjects. The top shows the 20 HCP subjects, the bottom the 25 ABIDE subjects, with left showing total variance decomposition, right the decomposition for the global signal. For the HCP raw data, the $D$-var component ranges from just over $5 \%$ to $40 \%$, successively converging to $50 \%$ with preprocessing. For the ABIDE data, failing to remove initial T1-saturated scans is immediately evident with edge variance $E$ taking a large portion of variance from $S$, and the global signal unusually explaining well over $5 \%$ of variance. With the initial 3 scans removed, the usual pattern of $D$ and $S$ explaining most of the variance is seen.


Figure 7: Illustration of group level contribution of each variance component for 20 HCP subjects (top) and 25 ABIDE subjects (bottom). The left panels show the total DSE $\% A$-var values for whole variance, the right panels show the same for global variance. Successive preprocessing moves fast and slow variance components to equal proportions. For ABIDE, when the first 3 T1-saturated scans are not removed ("Raw (1 to 180)"), a large excess is seen on $E$-var (at the expense of $S$-var) and the global, both slow and fast components, explaining an unusually large portion of variance.

Figure 8 shows the image-wise $D$-var and $S$-var components, visualized as RMS. Like when observed in time-series form, the $D$-var images reflects a generally homogeneous 'noise floor', with CSF and major vasculature visible above this floor. The $S$-var image shows more structure, around the edges, and throughout the brain.


Figure 8: Fast $D$-var and slow $S$-var variance components computed voxelwise. The $D$-var image (top) shows a homogeneous appearance with vascular noise sources apparent, while $S$-var has appreciable edge components and is much more heterogeneous.

Finally, Table 7 explores the use of the estimated $\chi^{2}$ degrees of freedom $\nu$ as an index of spatial effective degrees of freedom. Raw data, exhibiting substantial spatial structure, has $\nu=287$, which increases to $\nu=11,086$ for fully preprocessed data, still only about $5 \%$ of the actual number of voxels.

Table 7: Spatial effective degrees of freedom (EDF) for HCP subject 115320. As more spatial structure is removed with preprocessing, spatial EDF rises, but never to more than $5 \%$ of the actual number of voxels.

|  | Voxels | Spatial EDF | Spatial EDF / Voxels |
| :---: | :---: | :---: | :---: |
| Raw | 162,768 | 287 | $0.176 \%$ |
| Minimally processed | 224,998 | 1,660 | $0.738 \%$ |
| Full processed | 224,998 | 11,086 | $4.928 \%$ |

## 5. Discussion

We have provided a formal context for the diagnostic measure DVARS, showing DVARS ${ }_{t}^{2}$ to be part of a decomposition of variance at each successive scan pair and over the whole 4 D data. We have proposed DSE plots and DSE ANOVA tables that concisely summarize the interplay of the fast, slow, total and global variance, finding null expected values for each table entry. Our analysis shows that $D$-var (and DVARS) scales with overall noise variance, and is deflated by temporal autocorrelation. The DSE plots allow $D$-var to be judged relative $S$-var, checking for convergence to $50 \%$ of $A$-var as data approaches independence. We have found the null distribution and a practical null hypothesis testing procedure for DVARS. We complement the statistical significance of DVARS p-values with the practical significance of $\Delta \% D$-var. We illustrated these tools on exemplar HCP subjects, and used the ABIDE cohort to show how $D$ and $S$ converge with successive clean-up, and how $E$ var can usefully detect T 1 saturation effect when initial scans are not discarded.

### 5.1. Limitations

Our DVARS p-values depend critically on accurate estimates of $\mu_{0}$ and $\sigma_{0}^{2}$. Despite finding exact expressions for the null mean and variance, we found the most practical and reliable estimates to be based on the sample $\mathrm{DVARS}_{t}^{2}$ time series itself, using median for $\mu_{0}$ and hIQR to find $\sigma_{0}$ (essentially identical results were found with $d=1$ ). Of course this indicates that our inference procedure can only infer relative to the background noise level of the data, picking out extreme values that are inconsistent with our approximating $\chi^{2}$ approximation.

We observe that as data becomes cleaner, and the background noise falls, we have greater power to identify extreme $\operatorname{DVARS}_{t}^{2}$ values. This is a limitation that simply highlights the need for measures of practical significance, which provide with $\Delta \% D$-var.

The effective spatial degrees of freedom may prove to be a useful index of spatial structure in the data, but we stress this particular $\chi^{2}$ degrees-of-freedom $\nu$ is specific to this setting and is unlikely to be useful in other contexts (e.g. as a Bonferroni correction over space).

Finally we do not suggest that our results here solve the fMRI diagnostic problem, nor are we enthusiastic advocates of scrubbing, removing and interpolating problem scans. Rather we have sought and we believe found greater insight into the behavior of this widely used fMRI diagnostic measure.

## Software and Reproducibility

In this work majority of the analysis have been done on MATLAB 2015b and MATLAB 2016b, supported by FSL 5.0.9 for neuroimaging analysis.

Inference on DVARS as well as DSE variance decomposition techniques proposed in this paper is available via MATLAB scripts, found at/http://www.github.com/asoroosh/DVARS. Elements of these methods have also been implemented in Python and is accessible via Nipype toolbox (Gorgolewski et al., 2011).

Results and figure scripts presented in this work is publicly available on http://www.github.com/ asoroosh/DVARS_Paper17.

## Acknowledgements

We thank Jonathan Power, Matt Glasser, Deanna Barch and Steve Peterson for feedback on the original standardized DVARS work, Javier Gonzalez-Castillo for input on interpreting our DVARS inferences, Abraham Snyder for input on history of DVARS and Michael Harms for his useful comments on the final draft of the manuscript.

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

## Appendix A. DVARS History

As far as we are aware, DVARS was first used to compute frame censoring by Smyser et al. (2011). Power et al. 2012 reported the first systematic analysis of DVARS in relation to FD in resting state fMRI. However, at least as early as 2006, a web page at the Cambridge Cognitive Brain Unit maintained by Matthew Brett's titled "Data Diagnostics" offered tsdiffana.m, a Matlab script that produces the same measure (see http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics; when viewed on 28 October, 2012, the page listed the "last edited" data as 31 July 2006) and there are likely earlier uses in fMRI.

The idea of working with differences dates to at least 1941 in the statistics literature in work John van Neumann and colleagues (von Neumann et al. 1941). That work focused on estimation of "standard deviation from differences" when the mean slowly varied from observation to observation. They point out that the idea can traced back further, as early as 1870. In signal processing this estimator can be known as the Allan variance, developed as a robust variance estimator in the presence of $1 / \mathrm{f}$ noise (Allan, 1966). And in cardiology the "root mean square successive difference" is a standard measure of heart period variability (Berntson et al., 2005). For yet more background see Kotz et al. (1988).

Despite successive work on finding the exact distribution of this variance estimate (Harper, 1967), or using it in a test for the presence of autocorrelation (Cochrane and Orcutt, 1949), we are unaware of any study of the distribution of the individual differences averaged over a multivariate observation, as is the case in this fMRI application.

## Appendix B. Plotting the global variance decomposition

The global variance components, at each time point, are just a single scalar value squared. Thus they may be more intuitively plotted in a signed RMS form. For example, instead of plotting variance $A_{G t}, D_{G t}$ and $S_{G t}$, the signed quantities

$$
\begin{align*}
G_{\mathrm{A} t} & =\bar{Y}_{t} \\
G_{\mathrm{D} t} & =\left(\bar{Y}_{t+1}-\bar{Y}_{t}\right) / 2  \tag{B.1}\\
G_{\mathrm{S} t} & =\left(\bar{Y}_{t}+\bar{Y}_{t+1}\right) / 2
\end{align*}
$$

can be plotted. These set of three time series may seem arbitrary, but have the feature of the sum of squares of $G_{\mathrm{D} t}$ and $G_{\mathrm{S} t}$ sum to the mean-square $G_{\mathrm{A} t}$ and $G_{\mathrm{A} t, t+1}$.

## Appendix C. Derivation of DSE variance decomposition

The decomposition of the average variance at time $t$ and $t+1$, Eqn. (5), is based on a simple algebraic identity; for variables $a$ and $b$,

$$
\begin{equation*}
a^{2}+b^{2}=\frac{1}{2}(a-b)^{2}+\frac{1}{2}(a+b)^{2} . \tag{C.1}
\end{equation*}
$$

This justifies a decomposition of the average variance at each voxel $i$, for each time $t=1, \ldots, T-1$,

$$
\begin{equation*}
\frac{Y_{i t}^{2}+Y_{i, t+1}^{2}}{2}=\left(\frac{Y_{i, t+1}-Y_{i t}}{2}\right)^{2}+\left(\frac{Y_{i t}+Y_{i, t+1}}{2}\right)^{2} \tag{C.2}
\end{equation*}
$$

Averaging this expression over voxels $i=1, \ldots, I$ gives the decomposition for scan pair variance $A_{t, t+1}$ in Eqn. (5). Summing image variance $A_{t, t+1}$ over $t$, however,

$$
\begin{align*}
\sum_{t=1}^{T-1} A_{t, t+1} & =\sum_{t=1}^{T-1}\left(A_{t}+A_{t+1}\right) / 2 \\
& =\frac{1}{2} A_{1}+\sum_{t=2}^{T-1} A_{t}+\frac{1}{2} A_{T} \tag{C.3}
\end{align*}
$$

misses $1 / 2$ of edge terms, which are added to produce the fundamental DSE decomposition in Eqn. (9).

## Appendix D. Derivation of DSE ANOVA Mean Squares

Here we set out the least restrictive model possible to justify our expected values for the DSE ANOVA table (Table 22. While the DSE ANOVA table and decompositions $A=D+S+E$ and $A_{G}=D_{G}+S_{G}+E_{G}$ are in mean-square (MS) units, below we develop the results in terms of sum-of-squares (SS) that, in each case, can be divided by $I \times T$ to obtain the MS.

All of the results follow from application of rules for expectations and variances of quadratic forms of mean zero vectors. For reference, if $w$ is a mean zero random vector with covariance $\Sigma$, and $B$ is a square matrix, then $\mathbb{E}\left(w^{\top} B w\right)=\operatorname{tr}(B \Sigma)$ and $\mathbb{V}\left(w^{\top} B w\right)=2 \operatorname{tr}(B \Sigma B \Sigma)$.

## Appendix D.1. Model

In defining the the joint distribution of all $I \times T$ elements of the 4 D data $\left\{Y_{i t}\right\}$, we will always assume is that $Y_{i t}$ is mean zero and has constant variance over time, $\mathbb{V}\left(Y_{i t}\right)=\mathbb{V}\left(Y_{i t^{\prime}}\right)$ for $t \neq t^{\prime}$, but allow variance to vary over space. For data organized as time series, length- $T$ vectors $Y_{i}$, let

$$
\begin{align*}
\mathbb{V}\left(Y_{i}\right) & =\left(\Sigma^{S}\right)_{i i} \Sigma_{i i}^{T}  \tag{D.1}\\
\mathbb{C}\left(Y_{i}, Y_{i^{\prime}}\right) & =\left(\Sigma^{S}\right)_{i i^{\prime}} \Sigma_{i i^{\prime}}^{T}
\end{align*}
$$

where $\Sigma^{S}$ is the $I \times I$ spatial covariance matrix, common to all time points, and $\left(\Sigma^{S}\right)_{i i}$ is the variance at the $i$ th voxel, $\Sigma_{i i}^{T}$ is the $T \times T$ temporal autocorrelation matrix for voxel $i, \mathbb{C}(\cdot)$ denotes covariance, and $\Sigma_{i i^{\prime}}^{T}$ is the $T \times T$ temporal cross correlation matrix for voxels $i$ and $i^{\prime}$. This implies that, for data organized as images, length $-I$ vectors $Y_{t}$,

$$
\begin{equation*}
\mathbb{V}\left(Y_{t}\right)=\Sigma^{S} \tag{D.2}
\end{equation*}
$$

When a time-space separable covariance structure is assumed then $\Sigma_{i i^{\prime}}^{T}=\Sigma^{T}$ for all $i, i^{\prime}$.

Appendix D.2. A-var Expected SS
Total SS $\sum_{i t} Y_{i t}^{2}$ has expected value

$$
\begin{align*}
\mathbb{E}\left(\sum_{i=1}^{I} Y_{i}^{\top} Y_{i}\right) & =\sum_{i}\left(\Sigma^{S}\right)_{i i} \operatorname{tr}\left(\Sigma_{i i}^{T}\right)  \tag{D.3}\\
& =\operatorname{tr}\left(\Sigma^{S}\right) T
\end{align*}
$$

Appendix D.3. D-var and E-var Expected SS.
The total $D$-var SS is $\sum_{i=1}^{I} \sum_{t=1}^{T-1}\left(Y_{i, t+1}-Y_{i t}\right)^{2} / 4=\sum_{i=1}^{I}\left(D Y_{i}\right)^{\top} D Y_{i} / 4$ where

$$
D=\left[\begin{array}{ccccc}
-1 & 1 & & &  \tag{D.4}\\
& -1 & 1 & & \\
& & \ddots & \ddots & \\
& & & -1 & 1
\end{array}\right]
$$

is the $(T-1) \times T$ finite difference matrix. We have

$$
\begin{align*}
\mathbb{E}\left(Y_{i}^{\top} D^{\top} D Y_{i}\right) & =\operatorname{tr}\left(D^{\top} D\left(\Sigma^{S}\right)_{i i} \Sigma_{i i}^{T}\right) \\
& =\left(\Sigma^{S}\right)_{i i}\left(2(T-1)-\left(\Sigma_{i i}^{T}\right)_{t, t+1}-2 \sum_{t=2}^{T-1}\left(\Sigma_{i i}^{T}\right)_{t, t+1}-\left(\Sigma_{i i}^{T}\right)_{T, T-1}\right) \tag{D.5}
\end{align*}
$$

where notably the last expression only depends on the lag-1 temporal autocorrelations. To obtain more interpretable results we further assume that there is a constant lag-1 autocorrelation at each voxel, $\rho_{i}=$
$\left(\Sigma_{i i}^{T}\right)_{t, t+1}$, for $t=1, \ldots, T-1$, which reduces D.5 to $2(T-1)\left(\Sigma^{S}\right)_{i i}\left(1-\rho_{i}\right)$. This gives the expected total $D$-var SS as

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i} Y_{i}^{\top} D^{\top} D Y_{i} / 4\right)=(T-1) \sum_{i}\left(\Sigma^{S}\right)_{i i}\left(1-\rho_{i}\right) / 2 \tag{D.6}
\end{equation*}
$$

If we yet further assume constant temporal autocorrelation $\rho$, corresponding to our separable model, this SS simplifies to $\operatorname{tr}\left(\Sigma^{S}\right)(T-1)(1-\rho) / 2$.

The expected SS for $S$-var is follows the same arguments with differencing matrix replaced with a running sum matrix $\operatorname{abs}(D)$, negating the three negative terms in Eqn. D.5, and reducing to $\operatorname{tr}\left(\Sigma^{S}\right)(T-1)(1+\rho) / 2$ under spatially and temporally homogeneous lag-1 temporal autocorrelation.

Appendix D.4. E-var Expected SS.
The total SS $E$-var is $\sum_{i=1}^{I} \sum_{t=1, T} Y_{i t}^{2} / 2=\sum_{t=1, T} Y_{t}^{\prime} Y_{t} / 2$, with expected value

$$
\begin{equation*}
\mathbb{E}\left(\sum_{t=1, T} Y_{t}^{\prime} Y_{t} / 2\right)=\operatorname{tr}\left(\Sigma^{S}\right) \tag{D.7}
\end{equation*}
$$

Appendix D.5. $A_{G}$-var Expected $S S$.
The global time series is $\bar{Y}_{t}$ and total SS due to global is

$$
\begin{align*}
\sum_{i=1}^{I} \sum_{t=1}^{T} \bar{Y}_{t}^{2} & =I \sum_{t}\left(\mathbf{1}^{\top} Y_{t} / I\right)^{2}  \tag{D.8}\\
& =\sum_{t}\left(\mathbf{1}^{\top} Y_{t}\right)^{2} / I
\end{align*}
$$

where $\mathbf{1}$ is a vector of ones. The expectation of the squared term is $\mathbb{V}\left(\mathbf{1}^{\top} Y_{t}\right)=\mathbf{1}^{\top} \Sigma^{S} \mathbf{1}$, and thus the expected SS is

$$
\begin{equation*}
\frac{T}{I} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} \tag{D.9}
\end{equation*}
$$

Appendix D.6. $D_{G}$-var and $S_{G}$-var Expected $S S$.
Write the global differenced time series as $\bar{Y}_{t}^{D}=\mathbf{1} Y_{t}^{D} / I$ where $Y_{t}^{D}=\left(Y_{t+1}-Y_{t}\right)$ for $t=1, \ldots, T-1$. The total SS due to half differenced global $D_{\mathrm{G} t}$ is then

$$
\begin{equation*}
\sum_{i=1}^{I} \sum_{t=1}^{T-1}\left(\bar{Y}_{t}^{D}\right)^{2} / 4=\sum_{t=1}^{T-1}\left(\mathbf{1}^{\top} Y_{t}^{D}\right)^{2} /(4 I) \tag{D.10}
\end{equation*}
$$

To find the expectation of the squared term, note that

$$
\begin{equation*}
\mathbb{V}\left(Y_{t}^{D}\right)=2\left(\Sigma^{S}-\Sigma^{S} \circ \Sigma_{t, t+1}^{S T}\right) \tag{D.11}
\end{equation*}
$$

where $\circ$ is the Hadamard product and $\Sigma_{t, t+1}^{S T}$ is the spatiotemporal covariance matrix, elements extracted from the temporal cross correlation matrix as $\operatorname{per}\left(\Sigma_{t t^{\prime}}^{S T}\right)_{i i^{\prime}}=\left(\Sigma_{i i^{\prime}}^{T}\right)_{t, t^{\prime}}$, and that

$$
\begin{equation*}
\mathbb{V}\left(\mathbf{1}^{\top} Y_{t}^{D}\right)=2\left(\mathbf{1}^{\prime} \Sigma^{S} \mathbf{1}-\sum_{i i^{\prime}} \Sigma_{i i^{\prime}}^{S}\left(\Sigma_{i i^{\prime}}^{T}\right)_{t, t+1}\right) \tag{D.12}
\end{equation*}
$$

The final expression for the expected SS is then, with successive assumptions

$$
\begin{align*}
\sum_{t=1}^{T-1} \mathbb{V}\left(\mathbf{1}^{\top} Y_{t}^{D}\right) /(4 I) & =\sum_{t=1}^{T-1} \mathbf{1}^{\prime} \Sigma^{S} \mathbf{1}\left(1-\Sigma_{t, t+1}^{T}\right) /(2 I)  \tag{D.13}\\
& =(T-1) \mathbf{1}^{\prime} \Sigma^{S} \mathbf{1}(1-\rho) /(2 I)
\end{align*}
$$

where first equality comes from assuming a separable covariance structure and the second from a common lag-1 autocorrelation.

The result for $S_{G}$-var follows similarly.

As results are more naturally defined for squared quantities, we seek a null distribution for

$$
\begin{equation*}
\mathrm{DVARS}_{t}^{2}=Y_{t}^{D^{\top}} Y_{t}^{D} / I \tag{E.1}
\end{equation*}
$$

where $Y_{t}^{D}=Y_{t+1}-Y_{t}$ as above. While an expression of the mean of DVARS can be obtained from Eqn. (D.11), note also

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{DVARS}_{t}^{2}\right)=\operatorname{tr}\left(\mathbb{V}\left(Y_{t}^{D}\right)\right) / I \tag{E.2}
\end{equation*}
$$

That is, the expected value of $\operatorname{DVARS}_{t}^{2}$ is simply the variance of each voxel in the differenced data, averaged
Appendix D.7. $E_{G}$-var Expected SS.
The total SS $E_{G}$-var is $\sum_{i=1}^{I} \sum_{t=1, T} \bar{Y}_{t}^{2} / 2$, and following same arguments as for $A_{G}$-var has expected value

$$
\begin{equation*}
\frac{1}{I} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} \tag{D.14}
\end{equation*}
$$

Results for the non-global terms in the decomposition $A_{N}=D_{N}+S_{N}+E_{N}$ follow as difference of respective total and global terms.

## Appendix E. Derivation of DVARS Null Distribution

 over voxels. The natural estimator of this is the sample mean (or robust equivalent) of the sample variance image (or robust equivalent) of the differenced 4D data.The variance is more involved

$$
\begin{equation*}
\mathbb{V}\left(\operatorname{DVARS}_{t}^{2}\right)=2 \operatorname{tr}\left(\mathbb{V}\left(Y_{t}^{D}\right) \mathbb{V}\left(Y_{t}^{D}\right)\right) / I^{2} \tag{E.3}
\end{equation*}
$$

in particular depending on the entirety of the $I \times I$ difference image variance matrix. For the most restrictive assumptions considered above $\mathbb{V}\left(Y_{t}^{D}\right)=2(1-\rho) \Sigma^{S}$ and thus

$$
\begin{equation*}
\mathbb{V}\left(\operatorname{DVARS}_{t}^{2}\right)=8(1-\rho)^{2} \frac{\operatorname{tr}\left(\Sigma^{S} \Sigma^{S}\right)}{I^{2}} \tag{E.4}
\end{equation*}
$$

This dependence on the full spatial covariance demands the empirical approaches to variance estimations taken in the body of the paper.

Only at this point do we invoke a normality assumption, and make use of the classic chi-square approx- the accuracy of the IQR variance estimate. While the asymptotically optimal power transformation to normality for $\chi^{2}$ is known to be the $d=1 / 3$ cube-root transformation (Hernandez and Johnson, 1980), our test statistic is only approximately $\chi^{2}$ and, in particular, variance heterogeneity can worsen the approximation.

To obtain a quantity that should be more symmetric consider the power transformation

$$
\begin{equation*}
W_{t}=\left(\mathrm{DVARS}_{t}^{2}\right)^{d} \tag{F.1}
\end{equation*}
$$

IQR-based estimates of the variance of $W, \sigma_{W}^{2}$, will hopefully be more accurate than such estimates on DVARS ${ }^{2}$. However, ultimately we seek estimates of the variance of DVARS ${ }^{2}$, and so for a given $d$ we compute

$$
\begin{align*}
\mathbb{V}\left(\operatorname{DVARS}_{t}^{2}\right) & =\mathbb{V}\left(W_{t}^{1 / d}\right) \\
& =\frac{1}{d} \mu_{W}^{2(1 / d-1)} \sigma_{W}^{2} \tag{F.2}
\end{align*}
$$

where the last expression is the delta method variance of $W_{t}^{1 / d}$, and $\mu_{W}$ is the mean of $W_{t}$ (which we robustly estimate with the median of $W_{t}$ ).

## References

Allan, D.W., 1966. Statistics of Atomic Frequency Standards. Proceedings of the IEEE 54, 221-230. doi $10.1109 /$ PROC. 1966.4634.

Berntson, G.G., Lozano, D.L., Chen, Y.J., 2005. Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology 42, 246-252. doi $10.1111 / \mathrm{j} .1469-8986.2005 .00277 . \mathrm{x}$.

Burgess, G.C., Kandala, S., Nolan, D., Laumann, T.O., Power, J.D., Adeyemo, B., Harms, M.P., Petersen, S.E., Barch, D.M., 2016. Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project. Brain Connectivity 6, 669-680.

Cochrane, D., Orcutt, G.H., 1949. Application of Least Squares Regression to Relationships Containing Auto- Correlated Error Terms. Journal of the American Statistical Association 44, 32-61. URL: http: //www.jstor.org/stable/2280349, doi $10.2307 / 2280349$.

Cole, D.M., Smith, S.M., Beckmann, C.F., 2010. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in systems neuroscience 4, 8. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2854531\{\&\}tool= pmcentrez\{\&\}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/20407579, doi:10.3389/ fnsys.2010.00008

Craddock, R., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B., Lewis, J., Li, Q., Milham, M., et al., 2013. The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics (Neuroinformatics 2013) .

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al., 2014. The autism brain imaging data exchange: towards a largescale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry 19, 659-667.

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105-124. URL: http://dx.doi.org/10.1016/j. neuroimage.2013.04.127, doi 10.1016/j.neuroimage.2013.04.127, arXiv:NIHMS150003.

Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S., 2011. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics 5,13 .

Harper, W.M., 1967. The Distribution of the Mean Half-Square Successive Difference. Biometrika 54, 419-433. URL: http://www.jstor.org/stable/2335034

Hernandez, F., Johnson, R., 1980. The large-sample behavior of transformations to normality. Journal of //www.ncbi.nlm.nih.gov/pubmed/24238796, doi 10.1016/j.tics.2013.09.016

Smyser, C.D., Snyder, A.Z., Neil, J.J., 2011. Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain. NeuroImage 56, 1437-1452. URL: http://dx.doi.org/ 10.1016/j.neuroimage.2011.02.073, doi 10.1016/j.neuroimage.2011.02.073, arXiv:NIHMS150003.

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al., 2013. The wu-minn human connectome project: an overview. Neuroimage 80, 62-79.
Table 1: Time series visualisation of the DSE variance decomposition. $A$-var is to the total variance at time point $t, D$-var, $S$-var and E -var correspond to the fast, slow and edge variance terms. Global and non-global variance components sum to the total components. All of these terms, given as mean squared quantities, are best

Table 2: DSE ANOVA table giving a mean squared (MS) variance decompositions of resting-state fMRI data. The first row shows how the total MS can be split into 3 terms, in the second through 4th columns, $A=D+S+E$. The first column likewise shows how total MS can be decomposed in to that explained by a spatially global time series (second row) and a non-global or residual-global component (third row), $A=A_{G}+A_{N}$. Likewise, each row and column sums accordingly: $A_{G}=D_{G}+S_{G}+E_{G}, D=D_{G}+D_{N}$, etc. Terms are shown here as MS for brevity, but are best reported in root mean squared (RMS) units. Unless noted otherwise, summations are over the full range of possible values. See Table for definitions of the time series variables.

Table 3: Expected values of the DSE ANOVA table under nominal models. First two rows show expected mean squared (MS) values under the simplified separable noise model, for whole and global variance; $\Sigma^{S}$ is the $I \times I$ spatial covariance matrix and $\operatorname{tr}\left(\Sigma^{S}\right)$ is its trace, the sum of voxel-wise variances. Third and fourth rows show expected MS normalized relative to the total variance $A$-var. Final two rows show the expected normalized MS under a naive, default model of independent and identically distributed (IID) data in time and space. This shows that $D$-var and S-var are equal under independence and, when normalized, approximately $1 / 2$. Due to the $1 / I$ term, the global will generally only ever explain a small portion of variance, but, spatially structured noise reflected by the average summed spatial covariance, $1^{\top} \Sigma^{S} \mathbf{1} / I$, can enlarge global variance.

| Whole Sep. | $\frac{1}{I} \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{2} \frac{1}{I} \frac{T-1}{T}(1-\rho) \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{2} \frac{1}{I} \frac{T-1}{T}(1+\rho) \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{I} \frac{1}{T} \operatorname{tr}\left(\Sigma^{S}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Global Sep. | $\frac{1}{I^{2}} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1}$ | $\frac{1}{2} \frac{1}{I^{2}} \frac{T-1}{T}(1-\rho) \mathbf{1}^{\top} \Sigma^{S} \mathbf{1}$ | $\frac{1}{2} \frac{1}{I^{2}} \frac{T-1}{T}(1+\rho) \mathbf{1}^{\top} \Sigma^{S} \mathbf{1}$ | $\frac{1}{I^{2}} \frac{1}{T} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1}$ |
| Whole Sep. Rel. | 1 | $\frac{1}{2} \frac{T-1}{T}(1-\rho)$ | $\frac{1}{2} \frac{T-1}{T}(1+\rho)$ | $\frac{1}{T}$ |
| Global Sep. Rel. | $\frac{1}{I} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} / \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{2} \frac{1}{I} \frac{T-1}{T}(1-\rho) \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} / \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{2} \frac{1}{I} \frac{T-1}{T}(1+\rho) \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} / \operatorname{tr}\left(\Sigma^{S}\right)$ | $\frac{1}{I} \frac{1}{T} \mathbf{1}^{\top} \Sigma^{S} \mathbf{1} / \operatorname{tr}\left(\Sigma^{S}\right)$ |
| Whole IID Rel. | 1 | $\frac{1}{2} \frac{T-1}{T}$ | $\frac{1}{2} \frac{T-1}{T}$ | $\frac{1}{2} \frac{1}{T} \frac{T-1}{T}$ |
| Global IID Rel. | $\frac{1}{I}$ |  | $\frac{1}{I} \frac{1}{T}$ |  |

Table 4: Form and interpretation of various DVARS variants, expressed as functions of original $\operatorname{DVARS}_{t}$. Here $\left\{Y_{i t}\right\}$ are the 4 D data, $A$ is the overall mean square variance, $\mu_{0}$ is the expected DVARS ${ }_{t}^{2}$ under a null model, and $P\left(\mathrm{DVARS}_{t}\right)$ is the p-value for $\mathrm{DVARS}^{2}$, and $\Phi^{-1}$ is the inverse cumulative distribution function of a

| Name | Expression | Interpretation |
| :---: | :---: | :---: |
| DVARS | $\mathrm{DVARS}_{t}=\sqrt{\sum_{i}\left(Y_{i t}-Y_{i, t+1}\right)^{2} / I}$ | Standard deviation of difference image |
| $\sqrt{ } D$-var | $\mathrm{DVARS}_{t} / 2$ | Fast component of noise, as standard deviation |
| $\% D-\operatorname{var}$ | $\mathrm{DVARS}_{t}^{2} /(4 A) \times 100$ | Fast noise, as \% of average noise variance |
| $\Delta \% D$-var | $\left(\mathrm{DVARS}_{t}^{2}-\mu_{0}\right) /(4 A) \times 100$ | Excess fast noise, as \% of average noise variance |
| Rel. DVARS | $\mathrm{DVARS}_{t} / \sqrt{\mu_{0}}$ | DVARS as a multiple of null mean |
| Z(D-var) | $\Phi^{-1}\left(1-P\left(\mathrm{DVARS}_{t}\right)\right)$ | DVARS p-value as Z-score | normal.


[^0]:    * Corresponding author
    

