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ABSTRACT

Ebola virus (EBOV) infection causes a high death toll, killing a high proportion of EBOV infected patients within 7 days. Comprehensive

data on EBOV infection are very fragmented, hampering efforts in developing therapeutics and vaccines against EBOV. Under this

circumstance, mathematical models become valuable resources to explore potential controlling strategies. In this paper, we employed

experimental data of EBOV-infected nonhuman primates (NHPs) to construct a mathematical framework for determining windows

of opportunity for treatment and vaccination. Considering a prophylactic vaccine based on recombinant vesicular stomatitis virus

expressing the EBOV glycoprotein (VSV-EBOV), we found that the time window can be subject-specific, but vaccination could be

protective if a subject is vaccinated during a period from one week to four months before infection. For the case of a therapeutic

vaccine based on monoclonal antibodies (mAbs), a single dose might resolve the invasive EBOV replication even it was administrated

as late as four days after infection. Our mathematical models can be used as building blocks for developing therapeutic and vaccine

modalities as well as for evaluating public health intervention strategies in outbreaks. Future laboratory experiments will help to

validate and refine the estimates of the windows of opportunity proposed here.

Introduction 1

Emerged in 1976, Ebola virus (EBOV) has since caused numerous outbreaks in West African countries infecting 2

ten to hundreds of cases1. The recent outbreak in West-Africa (2014-2016) resulted in nearly 30.000 infected cases 3

with one-third of them being fatal2. Damages to the vascular systems during infection lead to bleeding, multi- 4

organ failure, hypotensive shock, and death3. Ebola virus disease (EVD) displays in a wide range of non-specific 5

symptoms early after infection, making diagnosis and early detection difficult3. The infection is acute leading to 6

death within one to two weeks1, 3. As a result, complete observations of disease progression or comprehensive 7

evaluations of potential treatment options are problematic. 8

Experimental observations showed that the immune system often fails to control EBOV infection leading 9

to elevated levels of viral replication3. Adaptive immune responses were poor or absent in fatal cases while 10

survivors developed sustained antibody titers3. However, follow-up durations were different between fatal cases 11

(approximately one week1) and survivors (from a few weeks to months1). Currently, treatment of EBOV infection is 12

mainly based on supportive care4. Vaccine and therapeutics approaches are still under development and licensure 13
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with promising results for certain antivirals4–6, passive immunotherapy and vaccinations7, 8. On one hand, EBOV 14

infected nonhuman primates (NHPs) treated early with monoclonal antibodies (mAbs) were able to recover after 15

challenged with a lethal dose of EBOV9. Furthermore, EBOV infected human treated with mAbs in addition to 16

intensive supportive care were more likely to recover4. On the other hand, macaques vaccinated early with the 17

VSV-EBOV vaccine survived lethal EBOV challenge10. Based on VSV-EBOV vaccine, a recent community trial 18

showed protective efficacy in a ring vaccination approach11. These results prompted that the outcome of EBOV 19

infection is sensitive to the time of intervention. Failing to catch up with the infection course could alter the chance to 20

survive EBOV infection. Tailoring time windows of intervention is thus critical at both clinical and epidemiological 21

levels. 22

Building a tractable approach that integrates systematically biological and medical research data is crucial 23

to harness knowledge and to tailor therapies and vaccines. In this context, mathematical modeling has been a 24

useful companion approach to advance understandings on mechanisms behind incomplete empirical observations. 25

An overwhelming amount of modeling studies have been done in influenza virus12–17, human papilloma virus 26

(HPV)18, and human immunodeficiency virus (HIV)19–21. These studies provided interpretations and quantitative 27

understandings of the mechanisms that control viral kinetics, which are instrumental to formulate treatment 28

recommendations21–25. Although West-Africa countries have been agitated by EBOV infection for decades, modeling 29

studies of EBOV infection are rare. To the best of our knowledge, the first endeavor to model EBOV replication in 30

vitro showed that the EBOV’s basic reproductive number is at least two fold higher than that for influenza virus26. 31

Using in vivo experiments in NHPs, this paper aims to model the interactions between EBOV replication and 32

IgG antibody dynamics with and without passive immunotherapy. In particular, variations of simple mathematical 33

models representing different interaction mechanisms were fitted to selective parts of the experimental datasets. 34

Goodness of fit of the models were compared when needed to rule out less supportive models. Developed models 35

were then used to estimate the needed time windows to achieve effective interventions. Considering an EBOV 36

infection with a high infective dose just after vaccination, our numerical results showed that regular antibody 37

response dynamic by vaccination would rather be late to control EBOV replication. To prevent a lethal infection 38

outcome (i.e. viral load higher than 106 TCID50), a host needs either a high antibody concentration early after 39

infection or an alternative therapy in-place sufficiently early to enable the host’s adaptive immune responses to 40

catch up the infection. Simulations of the developed models provided estimates for these critical windows of 41

opportunity. In particular, therapeutic treatment could be effective if an assumed long-lived monoclonal antibody 42

was administrated up to day 4 post infection. Prophylactic vaccination can be protective if it was given at least 43

6 days before exposure. However, circulating EBOV-specific antibody could diminish below protection level 44

approximately three months after vaccination. Altogether, the framework presented here could help to tailor 45

appropriate time windows for effective therapeutic and prophylactic interventions. 46
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Results 47

Study Design 48

To construct mathematical models for determining windows of opportunity for both treatment and vaccination, 49

we considered data from the two complementary strategies: a passive9 and an active immunization intervention 50

protocol10. Schematic representation of the NHP experiments are provided in Fig. 1. Additional experimental 51

details can be found in Materials and Methods. Viral load data in the controlled and treated cases were extracted 52

from both the studies9, 10. Antibody dynamics (IgG) data were available to assess its effects on the viral load10
53

whereas effects of mAbs were only available in terms of administrated time points and dosages. 54

Note that NHPs data is considered the best animal model to recapitulate EVD observed in humans27. In addition, 55

controlled and defined experimental conditions are key guidances to model the complex interactions between virus 56

and immune responses, e.g., defined time of infection and innoculum, consistent sampling time among the subjects, 57

uniform host’s conditions, and consequently immune responses. The viral load was considered to determine the 58

effect of intervention strategies. Epidemiological and pharmacological studies reported that a viral load higher than 59

106 copies/mL4, 28 is associated to a higher mortality rate, whereas observations on experimental data in NHPs 60

showed animals with viral load levels higher than 106 TCID50 were fatal9, 10. Thus, we assumed that subjects with 61

viral load levels higher than this threshold will have a severe outcome. 62
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Figure 1. Experimental designs of the two data sources. The experiments were conducted in non-human
primates. Number in the brackets is the sample size; mAbs: time of monoclonal antibody treatments9; VSV: time of
vaccinations with vesicular stomatitis virus (VSV)10; EBOV: time of Ebola virus infection.

Antibody profile after EBOV vaccination 63

To avoid ending up with a complex interaction model, IgG data were modeled independently to have a general

profile of IgG responses, which is used later as an input in models of viral replication. This was done by using the

IgG dynamics data after EBOV vaccination but before EBOV infection challenge10. A typical immunogen dynamic

can be summarized in two phases: a catabolic decay phase during which the antigen is taken up by macrophages

and other phagocytic cells, and an immune elimination phase during which newly synthesized antibodies combine

with the antigen forming antigen-antibody (AgAb) complexes which are also phagocytosed. These dynamics can

3
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be written as follows

dAg
dt

= −δAg Ag − βAg AgAb (1)

where δAg denotes the antigen removing rate. The parameter βAg denotes the rate of AgAb complexes forming.

The processed immunogen is then delivered to lymph nodes as the stimulus sources of the B-cell activation. This

process can be written as an auxiliary delay state

dGAg

dt
= (δAg Ag − GAg)/τAg (2)

in which the processed immunogen is converted to the signal GAg in time τAg. The above two processes lead to

B-cell activation, proliferation, and antibodies secretion which can be summarized as follows

dAb
dt

= rAbGAg − βAb AgAb − δAb Ab (3)

where rAb reflects the end result of the three processes. The parameter δAb is the decaying rate of IgG which is 64

approximately 28 days29. The parameter βAb denotes the rate of AgAb complex forming. An ineffective antigen 65

will not able to induce B-cell activation, i.e. rAb = 0. Applying this to the IgG kinetic data10 results in a classical 66

antibody response picture, namely a lag phase follows by an exponential phase before reaching a plateau (Fig. 2A). 67

A high and steady level of IgG can only be acquired after two weeks. As a result, antibody responses may offer 68

negligible protection during the first week after vaccination. 69

EBOV replication profile 70

EBOV replication dynamics in the absence of any interventions were also modeled separately. This was done using

EBOV titers (in TCID50) of only the control cases in the used datasets9, 10. We considered two models, including the

logistic growth model and a modified logistic growth model as follows

Logistic :
dV
dt

= rVV
(

1 − V
KV

)
, (4)

Lag-Logistic :
dV
dt

= rVV
(

1 − V
KV

)(
V

In + V

)
, (5)

where rV denotes the virus replication rate and KV denotes the carrying capacity of the host. The parameter In 71

expresses a threshold below which the virus replication is restrained. Both models assume the viral replication is 72

only limited by the available resources of the host. Considering a model selection based on AIC (see Materials and 73

Methods), the model Eq. (5) with a lag-phase early after infection and slow growing phase (AIC=-10) portrayed the 74

data better than the logistic growth model (AIC=21) in Eq. (4) (see also Figure 2B and the parameter estimates in 75
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Figure 2. Fitting models to IgG and viral titer data. Gray lines are subject-specific data. (A) Data of IgG titer post
vaccination and prior to EBOV challenge were used to fit to models of antibody responses. The fitted values of the
models were superimposed (orange line) illustrating an average profile of IgG dynamics after exposure to EBOV.
(B) Viral titers in control cases form both data sources9, 10 were used to evaluate EBOV replication models in
treatment-free scenarios. The follow-up data were stopped when the animals reached the endpoints to be
euthanized9, 10.

Table S3). EBOV needed approximately three days to gain the momentum before growing exponentially, suggesting 76

there is a crucial period for a successful treatment. 77

This result, in agreement with experimental observations, shows that even if the host develops a normal antibody 78

response, EBOV would replicate unrestrained by the antibodies during the first week. As innate immune responses 79

and consequently cellular adaptive responses were highly disrupted by EBOV3, this points towards the central role 80

of antibodies in survivors of EBOV infection. Noting that the EBOV replication profile represents the cases infecting 81

with a lethal dose, as such a varied, subject-specific lag-phase as a function of the innoculum can be expected. 82

Nevertheless, in terms of safety, using EBOV dynamics based on a lethal dose to evaluate treatment therapies will 83

provide the most conservative predictions. 84

Tailoring windows of opportunity for prophylactic vaccines (VSV-EBOV) 85

To account for the effect of antibodies in controlling the virus, the viral replication model Eq. (5) was modified to

dV
dt

= rVV
(

1 − V
KV

)(
V

In + V

)(
1 − Ab

KAb

)
. (6)

To connect to EBOV dynamics in (5), the parameter KAb was introduced reflecting a functional threshold at which 86

the antibody titers inhibit EBOV net growth rate. Crossing this threshold leads to the virus titer being cleared. To 87
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evaluate this model, IgG titer and viral load data of two animals vaccinated three days before EBOV infection were 88

used (M31 and M32); these were the only two animals with detectable viral titers in the experiment10. Firstly, the 89

antibody dynamics Ab were obtained by fitting the equations Eq. (1)-(3) to the IgG data of the two subjects. The 90

parameters δAb, δAg, βAg, and βAb were fixed to the estimates derived earlier from the data of all subjects (Fig. 2A). 91

The two parameters τAg and rAb were refitted to allow subject-specific responses, see Table S2. Afterwards, the Ab 92

outputs from the first step were used as inputs to fit the model Eq. (6) to viral titers data of the two subjects. With 93

the assumption that EBOV would replicate indifferently among infected subjects, the parameters KV and In were 94

fixed to the previous estimates from the model Eq. (5). 95

Figure 3A-C shows that the models Eqs. (1) to (3) rendered faithfully the IgG dynamics in the three animals. 96

Differences observed in the dynamics can be explained by subject-specific responding time to stimulate B cells (τAg) 97

and to produce EBOV specific antibodies (rAb), see Table S2. Figure 3D-E show that the model Eq. (6) reproduced 98

the viral dynamics in the two subjects (M31 and M32). The differences in IgG dynamics also lead to different 99

working threshold estimates of KAb for each subject, reflecting possibly different antibody responses strength. 100

The model of the interactions between IgG and EBOV allow to simulate windows of opportunity for vaccination. 101

By varying the time of vaccination, a time period during which a vaccine administration could prevent a likely-lethal 102

viral load level can be estimated. Since the threshold for a functional antibody response (KAb) can be subject-specific 103

(Fig. 3F), a range of thresholds based on the observed IgG data from 102.5 to 104.5 were tested. Based on data of the 104

control cases (Fig. 2B) and empirical observations in EBOV-infected human28, a subject expresses viral load level 105

higher than 106 could be considered as having a severe outcome. Figure 4 illustrates the time windows for different 106

vaccination time and different working threshold KAb. Noting while the chosen level can be subjective, one can 107

simply lower the values to have a more conservative time window estimate. 108

It can be observed that the higher the working thresholds of antibody the shorter the time windows of inter- 109

vention. For each KAb threshold, there is a safe time window where viral titers were not observed. For example, a 110

threshold KAb = 104 could prevent EBOV replication from reaching severe viral load levels if only the subject had 111

been vaccinated at least 6 days before infection. However, if the subject had received vaccination for more than four 112

months before, circulating antibody levels could have decreased below the working threshold (KAb) at the time of 113

infection. As such, if the secondary antibody responses to EBOV infection are not considerably faster than primary 114

responses, the subject would also succumb to the disease. Here, the secondary antibody response to EBOV was 115

assumed similar to a primary response, i.e. similar to the dynamic observed in Fig. 2A, and that the IgG titer were 116

accumulative to primary response. 117

Remarkably, assuming an infected subject would develop the same IgG profile as a vaccinated subject, simulation 118

results showed that a normal IgG response will fail to keep the viral load from reaching its peak, regardless of the 119

working threshold KAb (Fig. S1). At best, a normal IgG profile developing from the day of infection could clear the 120

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2017. ; https://doi.org/10.1101/125336doi: bioRxiv preprint 

https://doi.org/10.1101/125336


(A) M31

Day post vaccination

Ig
G

 ti
tr

e 
(lo

g1
0)

0 5 10 15 20 25 30

2.0

2.5

3.0

3.5

4.0

4.5

5.0

●

●

●

●

●

●

Fitted
Data
EBOV challange

(B) M32

Day post vaccination

Ig
G

 ti
tr

e 
(lo

g1
0)

0 5 10 15 20 25 30

2.0

2.5

3.0

3.5

4.0

4.5

5.0

● ● ●

●

●

●

● ●

(C) M33

Day post vaccination

Ig
G

 ti
tr

e 
(lo

g1
0)

0 5 10 15 20 25 30

2.0

2.5

3.0

3.5

4.0

4.5

5.0

● ● ●

●

●

● ● ●

(D) M31

Day post vaccination

V
ira

em
ia

 (
lo

g1
0)

0 2 4 6 8 10 12 14

0

2

4

6

8

● ●

●

●

Without vaccination
IgG effects

(E) M32

Day post vaccination

V
ira

em
ia

 (
lo

g1
0)

0 2 4 6 8 10 12 14

0

2

4

6

8

● ●

●

● ●

(F)

IgG (log10)

Ig
G

 e
ffe

ct
s

1 2 3 4

−1.0

−0.5

0.0

0.5

1.0

●

M31

●

M32

Figure 3. Effects of IgG antibody on controlling viral load. (A-C) Fitting IgG dynamics model Eqs. (1) to (3) to
IgG data of the three subjects vaccinated three days before EBOV challenge. (D-E) Fitting viral dynamics model
Eq. (6) to viral load data of the two subjects vaccinated three days before EBOV challenge. The model without
vaccination (solid black line) is added as reference. (F) Functions of IgG effect on controlling viral growth in each
subject.

virus 9 days post infection, if the subject is still alive after several days withstanding massive viral titers. 121

Tailoring window of opportunity for therapeutic vaccines (mAbs) 122

In the experiment with passive antibody treatment9, viral dynamics in the animals treated with mAbs ceased after

the first dose on day 3 post infection. Although this may include the role of host’s immune responses, the previous

section has shown that a normal IgG profile starting at the day of infection may not not able to clear the virus at

least until day 9 post infection (Fig. S1) and that antibody level were negligible during the first few days. Thus, for

EBOV-infected subjects, the mAbs treatment would play a decisive role in tackling EBOV infection during the first

days after infection. To recapitulate the viral dynamics in subjects treated with mAbs when antibody responses
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Figure 4. Simulation the effect of vaccination time and immune strengths. The time of vaccination before
challenging a subject with a lethal dose of EBOV were varied from one year to one day. Secondary response of IgG
dynamic was assumed similar and accumulative to the primary response. Colors represent the varied working
threshold (KAb). The smaller the threshold the stronger the effect of antibody in negating the viral replication. The
model of viral dynamics in the presence of antibody (Eq. (6)) were simulated. The maximum viral load generated
by the model in each combination of the vaccination time and the working threshold was retrieved and plotted.

were negligible, the viral dynamics are rewritten as follows

dV
dt

= rVV
(

1 − V
KV

)(
V

In + V

)(
1 − Km

M
1 + M

)
(7)

dM
dt

= −λM M, M0 = 0, M(t) = M(t − h) + 50, t = 3,6,9, (8)

where M is the administrated dose of mAbs (see Materials and Methods) and h is the ODE integration step size. 123

Here the mAbs are assumed acting indifferently from IgG antibody, i.e. not only reducing the viral replication 124

but also promoting the viral clearance. The Eq. (3) expressed the assumptions that the mAbs concentration was 125

accumulative over doses and decayed exponentially during the infection course. As a result, the combination of 126

parameter Km and the dynamics of the mAbs leads to similar working threshold mechanism as in Eq. (6). Here, the 127

parameter Km represents the maximum effect of the mAbs. 128

Evaluation of the model Eqs. (7) to (8) were done by fitting to the viral dynamics data, separately for each treated 129

animal with observable viral load9. As the model is ignoring the effects of antibody responses, only viral load data 130

at time points from day 0 to day 9 were used. The parameters rV ,KV , and In were fixed to the earlier estimates in 131

Eq. (5). For simplicity, the mAbs are assumed to have a stable and long elimination half-life of 28 days across the 132

subjects30. 133
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Figure 5 shows that the model portrays adequately the viral load kinetics in every subjects. Interestingly, the 134

mAbs treatment effect seemed to be separated in two groups: a low effect group (Km < 1) that allowed viral titers to 135

linger until day 9 and a high effect group (Km > 1) that quickly stemmed down the viral titers (details in Table S3). 136

Extrapolating the model Eq. (7) to time points after day 9 post infection showed a sustained viral load in those
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Figure 5. Fitting the mAbs treatment effect model. mAbs: fitted model with only mAbs effect during the first nine
dpi, dashed line shows the extrapolated viral load kinetics from this model; mAbs-IgG: adding the general IgG
profile with the working threshold KAb = 104.5. mAbs half-life is 28 days. Two different combinations of
monoclonal antibodies were tested in NHPs (ZMapp1 and ZMapp2)9. The top panel of figures (A1 to A6) presents
the six NHPs receiving three doses of ZMapp1, while the bottom panel of figures (B1 to B6) presents the six NHPs
receiving three doses of ZMapp29.

137

subjects whose mAbs effect is low (Km < 1), see Fig. 5. Because the mAbs was already assumed having the longest 138

elimination half-life observed in natural antibody, this result suggests that mAbs treatment alone may be insufficient 139

for those the mAbs effect is low. 140

To take into account the effect of host’s IgG response, we incorporated the general IgG profile developed earlier

into the model Eq. (7) and simulated the viral load dynamics with a conservative working threshold 104.5 in each

subject as follows

dV
dt

= rVV
(

1 − V
KV

)(
V

In + V

)(
1 − Km

M
1 + M

− Ab
KAb

)
. (9)

Here it was continued to assume that EBOV-infected subjects would able to develop a similar IgG profile as in those 141

subjects vaccinated with VSV-EBOV10. Figure 5 shows that including the effects of IgG into the treatment model 142
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replicated closely the viral load data. Therefore, the host’s antibody response (IgG) would have played the key role 143

in resolving the infection for those mAbs treatment were not sufficient. 144

In light of these results, therapeutic treatment windows can also be developed using the model Eq. (8) and 145

Eq. (9). For illustration purpose, we varied the time of treatment administration to define which treatment initiation 146

can prevent viral load to reach fatal levels, i.e., viral load is higher than 106 TCID50. Figure 6 illustrates EBOV 147

kinetics considering a single dose treatment approach, we can observe that a single dose of a long-lived mAbs 148

administrated up to day 4 post infection was able to clear the virus before it reached the likely-lethal viral load. 149
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Figure 6. Simulation of single-dose mAbs treatment assuming a long mAbs half-life of 28 days. The time
administrated mAbs were varied from 1 to 14 days. For each regimen, the model of viral dynamic including both
treatment and IgG effects were simulated to generate the corresponding viral load dynamics. (A) assuming low
effect (Km = 0.98), normal IgG response profile with working threshold KAb = 104.5, and long half-life mAbs of 28
days; (B) assuming high effect (Km = 1.47), normal IgG response profile with working threshold KAb = 104.5.

Discussion 150

The recent unprecedented EBOV outbreak in West Africa has affected more people than in all previously outbreaks 151

combined. While significant progress has been made in therapeutics and vaccines against EBOV on preclinical level, 152

no licensed products are currently available. Lack of market for products, consequently interests of pharmaceuticals 153

companies could have hindered the progress. Furthermore, the high pathogenicity of EBOV hampers the possibil- 154

ities to have comprehensive data and to conduct clinical and efficacy studies in EBOV infection. In this context, 155

using mathematical models in combination with experimental data can be essential for EBOV countermeasure 156

development. 157

Our results suggested that even if antibodies would response normally to vaccination at day of infection 158
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(Fig. 2A), the pace of antibodies response would still be too slow to counteract EBOV replication, which needs only 159

three days to start an exponential growth (Fig. 2B). In fact, antibody titers were negligible during the first week post 160

vaccination. Therefore, protection to EBOV infection depends on having a high level of antibodies as all animals 161

vaccinated sufficiently early were survived10. Future experiments should closely monitor IgG dynamics in infected 162

versus vaccinated cases. Comparing the responding time in the two situations will help to clarify if the adaptive 163

immune responses are indeed malfunction. 164

Differences in the race between the EBOV replication and the immune system response highlight the importance 165

of timeliness in EBOV treatment. By variations in the time of vaccine administration, simulations showed that 166

the window of opportunity for an effective intervention is limited. Beside the pathogen replication dynamic, key 167

parameters to the window estimates are the time to vaccination responses, the pathogen-specific antibody half-life, 168

and secondary antibody responses to the pathogen. As of now, lack of data about EBOV reinfection does not allow 169

to obtain more accurate estimates. Future controlled experiments in NHPs can evaluate the memory of immune 170

responses to EBOV reinfection to enable detailed evaluations of EBOV vaccination strategies. It is worth noting that 171

our models have not taken into account the effect of prime-boost immunization protocols which could significantly 172

widen the left boundary of the time windows. Prime-boost strategies have yielded 30-fold or greater increases in 173

antibody titers31. 174

Combination of mAbs represents one of the most promising therapeutic modality4. Our results showed that 175

early use of this supportive treatment is crucial in preventing a fatal outcome. However, subject-specific responses 176

to the mAbs can be expected. When the role of a host’s antibody response were neglected, mAbs treatment can 177

clear the virus in some but not all the subjects (Fig. 5). Both, a long and a short half-lives, exhibited the possibility of 178

a viral rebound if the antibody host responses were neglected (Figs. 5 and S2). These results reiterate the key role of 179

the host’s antibody response in clearing the virus once the treatment effect wears off. 180

As the elimination half-life estimate of the used mAbs were not reported, it was not possible to narrow down 181

the estimates of the drug effect, consequently the estimates of the time window. For example, a half-life of half an 182

hour can also produce the viral load data (Fig. S2) but the estimated drug effect were rescaled (Table S3). However, 183

this can be easily overcome when common pharmacokinetics parameters are available, such as the elimination 184

half-life for the mAbs. This approach opens the opportunity to mathematically evaluate EBOV treatment regimens. 185

Our example of assessing a one-dose regimen illustrates that highly beneficial information can be obtained. 186

Note that the windows of opportunity reported here based on data of NHPs infected with a lethal infective 187

dose, thus it would represent the infection in fatal cases. Depending on the infective dose and individual responses 188

strength (KAb) in each situation, the windows will become wider or narrower. Varying these conditions and 189

simulating the viral load showed that the validity of the models were supported when the generated viral load 190

dynamics exhibits known characteristics of EBOV infection in human (Fig. 7). For example, the time from infection 191
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Figure 7. Simulations of the viral replication model for different infective doses and the immune responses
strengths. The red area depicts the total viral load (AUC) that is used at the reference threshold for lethal criteria.
This equals to the total viral load in control cases presented in Fig. 2. Subjects withstand a total viral load higher
than the threshold is assumed fatal, otherwise they will recover once the viral load is resolved under detection level.

until the exponential growth of EBOV ranges from 2.6 to 12.4 days (median: 3.8), which is equivalent to the 192

incubation period of EBOV in human1. Additionally, the time from from infection to death ranges from 8.1 to 15.1 193

days (median: 9), and the time to recovery ranges from 6.9 to 17.6 days (median: 9.7) also resemble to that observed 194

in practice1. Based on these kinetics, infected subjects could develop the disease after several days having no 195

detectable viral load. This suggests that EBOV treatments need to provide as early as possible for all those exposed, 196

even that they express no signs or symptoms. Cares and quarantine procedures would also need to be provided for 197

exposed individuals at least twenty days which is twice the maximum incubation period estimated above. 198

In summary, this paper proposed mathematical models by using selective parts of different data sources for 199

model evaluation, resulting in a general framework for the development of treatment regimens and vaccination 200

strategies. On top of that, public health policies and initiatives can also be evaluated with realistic treatment efficacy 201

and subject-specific immune responses. In the scarcity of data, mathematically modeling approaches posits a strong 202

potential to uncover useful information in controlling infectious diseases which is gradually become pivotal in the 203

years to come. 204

Materials and Methods 205

Experimental data 206

Experimental data considering a therapeutic vaccine using monoclonal antibodies (mAbs) was taken from9. The 207

mAbs were engineered to specifically recognize the EBOV glycoprotein (GP) inserted in the membrane of the 208
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viral particle. In this experiment, a group of 12 macaques were administrated mAbs intravenously at day 3, 6, 9 209

post infection with a constant dose of with 50mg/kg. These were divided into two groups, 6 NHPs received the 210

monoclonal antibodies combination ZMapp1 (Group A) and the other 6 received ZMapp2 (Group B)9. No treatment 211

was given to the two control cases. EBOV titer increased rapidly but ceased when the first dose of mAbs was 212

administrated. The viral load continued to increase in the control cases until the subjects were euthanized at day 7 213

post infection. All animals cleared the virus from day 10 onward, with the exception of A1 which presented a high 214

clinical score. 215

Experimental data for a prophylactic vaccine based on recombinant vesicular stomatitis virus expressing the 216

EBOV GP (VSV-EBOV) was taken from10. In this experiment, groups of two or three macaques were vaccinated at 3, 217

7, 14, 21, and 28 days before EBOV challenge. Macaques were immunized with a single intramuscular injection of 218

plaque-forming units (PFU) of VSV-EBOV. An ineffective vaccine (the VSV-Marburg virus vaccine (VSV-MARV)) 219

was given to three control cases. IgG titers were measured regularly four weeks before and after the challenge. All 220

the vaccinated animals showed a sharp increase of IgG titers one week after vaccination. IgG titers sustained at 221

the level above up to two months. EBOV titers were monitored up to 9 days after the challenge. All the control 222

cases showed a high level of viral titers and were euthanized five to seven days after infection. Viral titer was not 223

observed in all the animals vaccinated at least seven days before the challenge. Among three animals vaccinated 224

three days before the challenge, two had observable viral load in which one died and the other survived. A 225

schematic representation of both NHPs experiments is provided in Fig. 1. 226

Model fitting and selection 227

Selective parts of the datasets were used to evaluate models representing different mechanisms. When applicable, 228

model comparison was done using Akaike information criteria (AIC). When data are available, extra components 229

involved in the models were computed as forcing functions by linear approximation. These functions were used as 230

inputs in model fitting instead of adding extra model equations. Time points when there were no measurable viral 231

load were imputed as 100.15 TCID50
32. Model fitting was conducted in log ten for both the states and parameters. 232

Objective function was defined as the root mean square error of the fitted value and the experimental data. 233

Optimization was done with the Differential Evolution algorithm using the recommended configurations33. All 234

simulations were done using R34. Details of model fitting can be found in Table S1. 235
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