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Abstract 

 
Learning to associate an event with an aversive outcome typically leads to generalization when similar situations 
are encountered. In real-world situations, generalization must be based on the sensory evidence collected through 
active exploration, which in turn can also be influenced by aversive learning. However, we currently do not 
know how far exploration strategies can be shaped by learning and whether or not learning results in adaptive 
changes during the course of ensuing generalization. Here, we investigated learning-induced changes in eye-
movement patterns using a similarity-based multivariate fixation-pattern analysis together with a set of 
parametrically controlled stimuli. Humans learnt to associate an aversive outcome (a mild electric shock) with 
one face along a circular perceptual continuum, whereas the most dissimilar face on this continuum was kept 
neutral. Before learning, eye-movement patterns mirrored the similarity characteristics of the stimulus 
continuum, indicating that exploration was mainly guided by subtle physical differences between the faces. 
Aversive learning resulted in a global increase in dissimilarity of eye movement patterns during generalization. 
Model-based analysis of the similarity geometry indicated that this was specifically driven by a separation of 
patterns along the adversity gradient, defined between the reinforced and neutral face. These findings show that 
aversive learning can introduce substantial remodeling of exploration patterns in an adaptive manner during 
viewing of faces. We suggest that separation of patterns for harmful and safe prototypes results from an internal 
categorization process operating along the perceptual continuum following learning. 
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Authors Summary 
Eye movements can shed light on the global objectives of the nervous system, as they represent the final 
behavioral outcome of complex neuronal processes. They can therefore provide important insights into systems 
level alterations induced by aversive learning, which is important to elucidate as many anxiety disorders are 
believed to result from an inability to form optimal aversive representations. Participants associated an aversive 
outcome with a given face positioned along a similarity continuum, thereby learning facial prototypes for 
adversity and safety. We examined eye-movement patterns during viewing of these faces by characterizing their 
similarity relationships. Before learning, the known similarity relationships between the stimuli could be 
estimated based on eye-movement patterns recorded during viewing of these faces. This indicates that 
exploration of neutral faces was mainly driven by their physical characteristics. Aversive learning gave rise to a 
decrease in similarity of viewing patterns specifically along the adversity gradient, indicating the presence of a 
new exploration strategy for the newly learnt adversity and safety prototypes. Our results provide evidence for 
adaptive changes in viewing strategies of faces with learning, and are compatible with the view that the nervous 
system achieves categorization to distinguish safety and adversity following aversive experiences. 
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Introduction 
To avoid costly situations, animals must be able to rapidly predict future adversity based on previously 

learnt aversive associations [1], as well as actively sampled information from the environment. However, 

sensory samples are noisy and the environment is complex, consequently newly encountered situations are never 

exactly the same as previously experienced ones [2,3]. Therefore, for aversive learning to be effective a careful 

balance between stimulus generalization and selectivity is needed [4,5]. While generalization makes it possible 

to promptly deploy defensive behavior when similar situations are encountered anew [6–8], selectivity ensures 

that only truly aversive stimuli are recognized as aversive [9,10], thus avoiding costly false alarms. In real-world 

situations adversity predictions are based on sensory samples collected through active exploration [11,12]. A 

central part of active exploration are eye-movements [12–16] which can rapidly determine what information is 

available in a scene for recognizing adversity [17]. Yet, it is not known in how far representations of adversity 

interact with active exploration during viewing of complex visual information. Here we investigated this 

question by comparing exploration strategies during viewing of faces before and after aversive learning.  

Face viewing behavior offers an ideal test bed for investigating changes in active exploration strategies 

through learning. First, active viewing of faces is a key ability during daily social interactions [18,19] where 

detecting minute differences in the configuration of facial elements is crucial for inferring the identity or 

emotional content of a face [20–22]. For humans, it is therefore a natural choice of stimuli to investigate how 

exploration strategies change with learning. Second, the universal spatial configuration of facial elements makes 

it easily possible to generate faces with subtle differences that globally form a perceptual similarity continuum 

[10,23]. These key features make it possible to use a task that mimics a real-world exploration context, and 

therefore offers the possibility to probe changes in exploration strategies with aversive learning along a 

parametrically controlled stimulus continuum. For aversive learning, one randomly chosen face along this 

continuum (CS+) was paired with a mild electric shock (UCS) through a simple Pavlovian procedure, which 

introduced an adversity gradient based on physical similarity to the CS+ face. The most dissimilar face (CS–) 

separated by 180° on the circular continuum was not reinforced and thus stayed neutral. Using this approach, we 

investigated how exploration strategies were modified by both the physical similarity relationships between 

faces, as well as the adversity gradient introduced through the aversive learning. 

Necessity for model-based fixation-pattern similarity analysis 
Exploration strategies for faces are typically investigated by counting the number of fixations within 

predefined regions of interest, such as regions centered on the eyes, mouth and nose elements. Modifications of 

exploration strategies with aversive learning can therefore be characterized by relative changes in the number of 

fixations within these regions. However, this approach can detect changes only when modifications in fixation 

locations are spatially consistent across participants. For example, this approach might fail finding a true effect 

of aversive learning when one group of participants focuses more on the right eye after learning and another on 

the left eye. In such cases it is possible that the net change in both regions of interest is small. Additionally, 

aversive learning might influence exploration behavior by optimizing fixation locations in order to collect 

diagnostic information about adversity in a more precise manner. This could lead to small shifts in location of 

fixation points that may not necessarily result in major differences in fixation counts across regions of interest. 
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Because of these drawbacks, we complemented count-based analyses with a variant of representational similarity 

analysis [24] that we term “fixation-pattern similarity analysis” (FPSA, Fig 1A). FPSA considers exploration 

patterns as multivariate entities [25–31] and assesses the between-condition dissimilarity of the entire fixation 

pattern for individual participants (Fig 1A). FPSA thereby eliminates the requirement for arbitrarily defined 

regions of interest, while at the same time being sensitive for fine-grained changes in exploration patterns. 

Furthermore, FPSA has the added benefit that it can cope with large inter-individual differences on facial 

exploration patterns that occur naturally [29,31–33]. While this inter-individual variability in exploration 

patterns can dilute the sensitivity of count-based approaches, FPSA would only require a consistent change in the 

similarity relationships of exploration patterns with aversive learning. 
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Fig 1. Model-Based Fixation-Pattern Similarity Analysis.  

(A) 8 exploration patterns (colored frames) from a representative individual overlaid on 8 face stimuli 
(numbered 1 to 8) calibrated to span a circular similarity continuum across two dimensions (gender and identity; 
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see also SFig 1 for original stimuli). A pair of maximally dissimilar faces was randomly selected as CS+ (red 
border) and CS– (cyan border; see color wheel for color code). The similarity relationships among the 8 faces 
and the resulting exploration patterns are depicted as two 8×8 matrices. Physical similarity (top right panel) 
between all pair-wise combination of faces were calibrated (see methods and SFig 2A) to have a perfect circular 
similarity, characterized by highest similarity (blue) between neighbors, and lowest similarity (yellow) for 
opposing pairs (see also SFig 2 for calibration). FPSA summarizes the similarity relationship between the 8 
exploration patterns as a symmetric 8×8 matrix (bottom right panel). Here and in the following, 4th and 8th 
columns (and rows) are aligned with the CS+ and CS–, respectively. (B-E) Multidimensional scaling 
representation of four theoretical similarity relationships between exploration maps (top row). Each colored node 
represents one exploration pattern (same color scheme; red: CS+; cyan: CS–), where internode distances are 
proportional to dissimilarity between exploration patterns, depicted as 8×8 matrices (bottom row). Shaded nodes 
in (C-E) depict the first hypothesis shown in (B). These matrices are further decomposed onto basic similarity 
components (middle row) centered either on the CS+/CS– (specific component) or +90°/–90° faces (unspecific 
component). A third component (middle row, leftmost panel) is uniquely centered on the CS+ face (adversity 
component). In (B), equal contribution of individual components results in circularly similar exploration 
patterns. In (C), a stronger equal contribution results in a better global separation of all exploration patterns 
(denoted by radial arrows second column). In (D), a stronger contribution of the specific component results in a 
biased separation of exploration patterns specifically along the adversity gradient defined between the CS+ and 
CS– nodes. In (E), the adversity component centered on the CS+ face can specifically decrease the dissimilarity 
of exploration patterns for faces similar to the CS+, resulting in circularly shifted nodes (circular arrows) while 
preserving the global circularity of the similarity relationships. 

 
Hypotheses on learning-induced changes in the similarity of exploration patterns. 

Using model-based FPSA we formulated parametric hypotheses on how aversive learning might alter 

the similarity relationships between exploration patterns when one face on the continuum started to predict 

adversity (Fig 1B-E, top and bottom panels). Importantly, the circular organization of stimuli allowed us to 

examine the similarity structure along radial and circular directions by decomposing the similarity structure into 

three basic components [34] (Fig 1B-E, middle panels). The specific and unspecific components (Fig 1B, middle 

panel) model radial changes along two orthogonal axes, separating on the one hand the adversity and safety 

predicting faces, and on the other faces located ±90° in relation to the CS+, serving as control independent of 

adversity. Hence, a stronger contribution of the specific component can capture increased pattern dissimilarity 

along the adversity gradient. The third adversity component (Fig 1E, middle panel) models local changes in 

dissimilarity of exploration patterns only around the CS+ in a symmetrical manner. We formulated four mutually 

non-exclusive hypotheses about the dissimilarity of fixation patterns across stimuli that differentially affect these 

components. 

First, if the fixation selection mechanism during face viewing is based on salient low-level features 

[11,35], we would expect exploration patterns to track the circular similarity relationships between faces 

irrespective of aversive learning (Fig 1B). Therefore, the bottom-up saliency hypothesis predicts that a circular 

relationship between exploration patterns is already present before aversive learning has taken place. This would 

be characterized by low dissimilarity between neighboring faces (1st off-diagonal) and high dissimilarity between 

opposing faces separated by 180° (4th off-diagonal, Fig 1B bottom panel), i.e. the adversity specific and 

unspecific components would have about equal weight. Second, aversive learning might lead to heightened 

arousal, resulting in an increased contribution of low-level image features to the selection of fixation locations 

with the objective of collecting increased sensory evidence [36]. This would result in exploration strategies that 

more strongly mirror the physical similarity relationships between faces (Fig 1C) and leads to a globally 
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increased dissimilarity between all exploration patterns. The increased arousal hypothesis therefore predicts an 

equal but stronger contribution of the underlying specific and unspecific components (Fig 1C, middle panel), 

leading to a better separation of all exploration patterns globally in comparison to pre-learning period. Third, 

eye-movements may reflect a categorization process for faces as aversive vs. safe [37–41]. To achieve this, 

exploration strategies can be tailored to collect relevant information to predict adversity and safety. Such a 

fixation strategy would preferentially target locations that are maximally discriminative of the CS+ and CS– 

faces. This would lead to exploration patterns becoming more similar for faces sharing similar features with the 

CS+ and CS– faces, while simultaneously predicting an increased dissimilarity between these two sets of 

exploration patterns. Therefore, the adversity categorization hypothesis would lead to an increase of the 

adversity specific component without influencing the unspecific component (Fig 1D, middle panel). As a fourth 

possible scenario, aversive learning might result in the deployment of a new sensorimotor strategy only for the 

adversity predicting face, thereby leading to a localized change in the similarity relationships around the 

adversity-predicting CS+ face (Fig 1E). This is supported by evidence from univariate behavioral readouts such 

as autonomic skin-conductance responses [23], subjective ratings of subjective adversity [42] and startle 

responses [43] that show canonical generalization profiles consisting of gradually decaying responses with 

increasing dissimilarity to the CS+ stimulus. In a similar line, the adversity tuning hypothesis predicts an 

increased similarity of exploration patterns for faces closely neighboring the CS+ face, decaying proportionally 

with increasing dissimilarity to the CS+ face. This strategy would selectively increase the weight of the CS+ 

centered component without changing either the adversity specific or unspecific components. 

In sum, using FPSA we analyzed the similarity relationships between exploration patterns during 

viewing of faces. We provide first evidence that exploration patterns during viewing of faces can be adaptively 

tailored during generalization following an aversive learning. First, aversive learning changed exploration 

patterns in subtle ways that were not captured by fixation counts. Second, before learning, exploration patterns 

showed an approximately circular similarity structure that followed the physical stimulus similarity structure. 

Third, after learning the similarity structure changed specifically along the adversity gradient, indicating that 

CS+ and CS– exploration patterns were jointly modified, while the similarity between other faces remained 

largely unchanged.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/125682doi: bioRxiv preprint 

https://doi.org/10.1101/125682
http://creativecommons.org/licenses/by/4.0/


9 

Results 

Univariate generalization profiles in ratings, autonomic responses and fixation counts 
We created 8 face stimuli that were organized along a circular similarity continuum characterized by 

subtle physical differences in facial elements across two dimensions (gender and identity; see SFig 1 for stimuli). 

We carefully calibrated the degree of similarity between all pairwise combinations of these faces using a simple 

model of the primary visual cortex known to mirror human similarity judgments [44] (see SFig 2 for calibration). 

The similarity relationship between all pair-wise faces conformed to a near perfect circular organization (Fig 1A, 

top right panel), such that dissimilarity varied with angular difference between faces (lowest for left and right 

neighbors and highest for opposing faces) with equidistant angular steps. Participants (n = 61) viewed these faces 

before and after an aversive associative learning procedure (Fig 2A) while we measured their eye-movements. 

During the conditioning phase, only the CS+ and CS– faces were presented and the CS+ face was partially 

reinforced with an aversive outcome (UCS, mild electric shock in ~30% trials). The CS– was the face most 

dissimilar to the CS+ (separated by 180°) and was not reinforced. During the subsequent generalization phase, 

all faces were presented and the CS+ continued to be partially reinforced to prevent extinction of the previously 

learnt association. These reinforced trials were excluded from the analysis. To ensure comparable arousal states 

between the baseline and generalization phases, we administered UCSs also during the baseline period, however 

they were fully predictable as their occurrence was indicated by a shock symbol (Fig 2A). Furthermore, we 

inserted null trials during all phases (i.e. trials without stimulus presentation but otherwise exactly the same) in 

order to obtain reliable baseline levels. 

To monitor aversive learning we used autonomic skin-conductance responses (SCR; during each phase; 

Fig 2B) and subjective ratings of UCS expectancy (at the end of each phase; Fig 2C) as univariate behavioral 

readouts evoked by individual faces. As expected, the aversive association had a profound effect on these 

univariate measurements. SCR recorded during the conditioning phase were on average 4.4 times higher for the 

CS+ face than CS– (Fig 2B, middle panel, paired t-test, p < .001). In agreement with autonomic responses, UCS 

expectancy ratings gathered at the end of the conditioning phase were also highest for the CS+ face (Fig 2C, 

middle panel). The CS+ face therefore gained an aversive quality that was stronger than the CS– face during the 

conditioning phase, as shown by both subjective reports as well as autonomic measures. In the subsequent 

generalization phase, amplitudes in both measurements decayed with increasing dissimilarity to the CS+ face 

(Fig 2B-C, right panel) leading to an adversity-tuned profile which was well captured by a circular Gaussian 

curve in both recording modalities (comparison to flat null model, p < .001, log-likelihood ratio test). Notably, 

during the generalization phase, subjective ratings for both the CS+ and CS– faces differed from their respective 

values in the baseline phase (Fig 2B-C). This suggests that aversive learning simultaneously modified the 

adversity associated with the CS+ and CS– faces in opposite directions. In line with this, arousal levels measured 

by SCR evoked by the CS– were indistinguishable from neutral null trials (t-test; p > .01; shown as gray area in 

Fig 2B). This suggests that CS– faces were devoid of any aversive associations during the generalization phase. 

Furthermore, we ruled out that aversive associations were already present before learning, i.e. during the baseline 

phase. Here model comparison favored the flat null model in both recording modalities (comparison of flat null 

model and Gaussian model p = .54, log-likelihood ratio test; black horizontal lines in Fig 2B-C). In summary, 
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these univariate measurements confirmed that aversive learning was successfully established and transferred 

towards other perceptually similar stimuli, providing evidence for generalization following aversive learning. 

 
Fig 2. Univariate Characterization of Aversive Learning  

(A) On every trial, one out of 8 faces was presented for 1.5 seconds preceded by a fixation cross which was 
randomly placed outside of the face on either the left or right side and with minimum presentation of 850ms 
(jittered). In some trials, no face was shown (null trial, gray), resulting in a SOA of 6 or 12s. For each volunteer, 
a pair of most dissimilar faces was randomly selected as the CS+ (red) and CS– (cyan, see color wheel). During 
baseline, UCSs (indicated by shock sign) were completely predictable by a triangular signboard. During 
conditioning and generalization, the CS+ face was paired with an aversive outcome in ~30% of CS+ trials. (B) 
Group-level z-scored skin-conductance responses (n = 51) and (C) subjective ratings of UCS expectancy (n = 
61) for baseline, conditioning and generalization phases for individual faces (same color code). Responses are 
aligned to the CS+ for each volunteer separately. In (B), the gray shaded area indicates response amplitudes 
evoked by the null trials (mean and 95% CI). For baseline and generalization phases, the winning model (circular 
Gaussian vs. flat null model) is depicted as either a black line (null model) or curve (circular Gaussian model). In 
(C) the average ratings for the baseline period are depicted as dashed line also for conditioning and 
generalization phases. Asterisks depict significant differences between responses to CS+ and CS– stimuli. (***: 
p < .001, t-test). Error bars denote SEM. 

 

Whether complex behavior such as eye movement patterns during viewing of faces also exhibits 

learning-induced changes, and if so, whether it exhibits generalization during viewing of similar faces is an open 

question [17]. We first investigated this using a fixation count-based approach. To this end, we computed 
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fixation density maps (FDMs) for every participant and face separately (Fig 3A for FDMs from two 

representative participants) and evaluated fixation probability within the 4 different regions of interest (left and 

right eyes of the face, nose and mouth [45,46]; ROIs shown in Fig 3B as insets). We reasoned that if aversive 

learning had a specific influence on exploration of faces, this would result in a bell-shaped modulation of 

fixation counts around the CS+ face, similar to SCR and subjective ratings. In line with previous reports [32], 

left and right eyes together with the nose region were the most salient locations across the baseline and 

generalization phases, and attracted ~84% of all fixation density, whereas the mouth region had only a marginal 

contribution with ~3%. Overall, aversive learning increased the number of fixations directed at the nose (+4%) 

and mouth (+0.6%) regions at the expense of left (-3.5%) and right (-2.8%) eyes (Fig 3B). Repeating the same 

group-level analysis as for SCR and subjective ratings, we examined the presence of adversity tuning in fixation 

counts by testing whether a circular Gaussian could explain fixation counts along the similarity continuum, 

separately for each ROI. Model comparison on percentage changes (Fig 3B, black lines and curves) favored the 

flat null model for all regions (p > 0.05, log-likelihood test), with the exception of the mouth region where the 

Gaussian model was marginally favored (p = .012 uncorrected, log-likelihood ratio test). Therefore, using the 

fixation count-based approach, we were able to show a weak specific effect at the mouth region, which however 

accounted for only a small percentage of fixations overall. Thus, facial locations that accounted for most of the 

fixation density showed only unspecific changes that were independent of the adversity gradient. 

Fig 3 Impact of Aversive Learning on Fixation Counts at Four Different Regions of Interest.  

(A) Fixation density maps (FDMs) of two exemplary volunteers preferentially fixating on the left (top row) or 
right eye (bottom row) during the generalization phase. FDMs for the 8 faces are aligned to individual CS+ face 
(colored frame), and smoothed with a Gaussian kernel of 1 visual degree. To emphasize differences between 
conditions, the average pattern is subtracted from single-conditions for each volunteer separately (dark blue: 
fewer density than average, yellow: more density than average). (B) Percentage change in fixation density for 
different faces (colored bars) within 4 different regions of interest (black contours in inset). Y-axis shows the 
difference between generalization and baseline phases (values > 0 represent more fixations during 
generalization). Lines or curves indicate the winning model (Flat null model vs. Gaussian model). Errorbars: 
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SEM. 

Multivariate pattern analysis of exploration patterns  
Despite the lack of an adversity-specific effect at the most salient locations, a careful examination of 

single-subject FDMs revealed fine-grained changes in exploration patterns that lawfully changed along the 

dissimilarity continuum (Fig 3A). Notably, these differences existed within the regions of interest for which 

fixation count analyses didn’t detect any difference. This suggests that classification-based multivariate pattern 

analysis methods [31] might be more appropriate for investigating the impact of aversive learning on fixation 

patterns during viewing of faces. We thus examined multivariate information content within FDMs and tested 

whether eye-movements deployed for the exploration of the CS+ face could be differentiated from the CS– face 

beyond what could already be accounted by physical differences between the faces. We thus evaluated how 

accurately a cross-validated linear classifier could discriminate FDMs on these faces before and after learning, 

expecting decoding accuracy to increase if aversive learning led to a differentiation of exploration patterns (using 

a 50% holdout cross-validation with 1000 random splits of FDMs into test and training sets). We report the 

proportion of trials held out from training that were classified as CS+ trials, corresponding to correct 

classification for actual CS+ trials, but false alarms for actual CS- trials. After aversive learning, the average 

classification performance for CS+ (57.4 ± 1.8 %; mean ± SEM across subjects) was significantly better than 

before learning (53.1 ± 1.3 %; paired t-test, p = .02) as well as chance-level decoding (based on label 

permutation: 50.0 ± 0.1 %). This indicates that aversive learning introduced changes in the exploration patterns 

that were not present before learning. We next measured the performance of the same classifier to discriminate 

intermediate faces between the CS+ and CS–. The proportion of trials classified as CS+ decayed according to the 

typical bell-shaped curve with decreasing similarity to the CS+ face (Fig 4A middle panel, see SFig 3 for 

classification results for single runs), suggesting a gradual deployment of the adversity specific exploration 

strategy with increasing similarity to the CS+. In order to understand whether this increased decoding 

performance was driven by the mouth region, as it exhibited adversity-tuned changes already in fixation counts, 

we repeated the same analysis but this time excluding the data from this region. This yielded undistinguishable 

results both in terms of CS+ classification (57.7 ± 1.8 %, p >.05 comparison to classification including mouth 

ROI) as well as its generalization along the continuum (Fig 4A, rightmost panel). This excludes the possibility 

that decoding performance was solely driven by adversity-tuned fixation counts in the mouth region found in the 

previous group-level analysis. Hence, it suggests that aversive learning influenced eye-movement patterns in a 

distinct manner for different participants, given that group-level adversity tuning was not a requisite for above-

chance level decoding performance. Altogether these results show that exploration patterns during viewing of 

faces were affected by aversive learning. Furthermore, these effects could not be explained by physical 

differences between neutral faces before learning or the adversity-tuning present in the mouth region at the 

group-level after learning has taken place. This corroborates the notion that aversive learning was associated 

with new exploration strategies that were gradually deployed during generalization. 
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Fig 4. Classifier- and Similarity-based Multivariate Analysis of Exploration Patterns 

(A) Classification accuracies for a cross-validated linear support-vector machine trained to discriminate CS+ and 
CS–. Bars (M ± SEM) show the mean proportion of trials classified as CS+ (red), i.e. correct classification for 
the actual CS+ condition, and false alarms for CS– trials (cyan). Dotted lines mark the chance level. The last 
panel shows the same analysis excluding fixations coming from the mouth region (Fig 3, rightmost panel) (B) 
Dissimilarity matrices of exploration patterns for baseline (left panel) and generalization phases (right panel). 
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Fourth and eight columns (and rows) are aligned with each volunteer’s CS+ and CS– faces, respectively. 
Asterisks on the upper diagonal denote significant differences in dissimilarity values for the corresponding 
element between baseline and generalization phases. (C) Multidimensional representational similarity analysis 
conducted jointly on 16×16 dissimilarity matrix (not shown) comprising baseline and generalization phases. 
Distances between nodes are proportional to the dissimilarity between corresponding FDMs (open circles: 
baseline; filled circles: generalization phase; same color scheme). (D) Bar plots (M ± SEM) depict predictor 
weights estimated for single-participants before (white bars) and after (gray bars) learning for different models. 
(Left: bottom-up saliency and arousal models; middle: adversity categorization; right: adversity tuning). wcircle: 
weight for the circular component, which is the sum of equally weighted specific and unspecific components; 
wspecific/wunspecific: weights for specific and unspecific components centered; wGauss: weight for adversity 
component centered uniquely on the CS+. (**: p < .01; ***: p < .001, paired t-test). 

Model-based fixation-pattern similarity analysis 
However, these results cannot disentangle different scenarios about learning-induced changes in the 

exploration patterns, as all the outlined scenarios predict smoothly increasing dissimilarity values between the 

CS+ and CS– faces. To gain further insights, we therefore used model-based FPSA, which exploits similarity 

relationships between all pairwise combinations of exploration patterns. We computed a dissimilarity matrix 

consisting of all pairwise comparisons of FDMs for individual volunteers (using 1 - Pearson correlation as a 

pattern distance measure) and averaged these after separately aligning them to each volunteer’s CS+ face (shown 

always at the 4th column and row in Fig 4B). Furthermore, in order to gather an intuitive understanding of the 

learning-induced changes in the similarity geometry we used multidimensional scaling (jointly computed on the 

16×16 matrices). Multidimensional scaling (MDS) summarizes similarity matrices by transforming observed 

dissimilarities as closely as possible onto distances between different nodes (Fig 4C) representing different 

viewing patterns, therefore making it easily understandable at a descriptive level. 

Already during the baseline period the dissimilarity matrix was highly structured (Fig 4B). In agreement 

with a circular similarity geometry and the MDS depiction, lowest dissimilarity values (1.04 ± .01; M ± SEM) 

were found between FDMs of neighboring faces (i.e. first off-diagonal), whereas FDMs for faces separated by 

180° exhibited significantly higher dissimilarity values (1.21 ± .01; paired t-test, t(60) = 7.03, p < .001). Using 

the bottom-up saliency model, we investigated the contribution of physical characteristics of the stimulus set to 

the observed pre-learning dissimilarity structure (Fig 1B). This model uses a theoretically circular similarity 

matrix (consisting of equally weighted sums of specific and unspecific components) as a linear predictor,  this 

way estimating the global dissimilarity between exploration patterns in accordance with a circular organization. 

The circular bottom-up saliency model performed significantly better compared to a null model consisting of a 

constant similarity for all pairwise FDMs comparisons (for bottom-up model adjusted r2 = .09; log-likelihood-

ratio test for the alternative null model: p < 10-5; BICNullModel = -1529.3, BICBottomUp = -1650; see S1 Table for the 

results of model fitting). We additionally fitted the bottom-up model for every volunteer separately (Fig 4D). 

Model parameters at the aggregate level were significantly different from zero (Fig 4C; w Circle = .063 ± 0.008, M 

± SEM; t(60) = 7.89, p < 10-5) indicating that exploration strategies prior to learning mirrored the physical 

similarity structure of the stimulus set. This provides evidence that fixation selection strategies are, at least to 

some extent, guided by physical stimulus properties during viewing of neutral faces. 

However, we observed significant changes when comparing baseline and generalization dissimilarity 

values element-by-element (Fig 4B, indicated by asterisks) providing evidence for learning-induced changes in 

the similarity relationships. The same bottom-up saliency model was again significant (adjusted r2 = .33; p < 10-
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5, log-likelihood ratio test), but now even performed notably better compared to the baseline phase (BICBottomUp = 

-1650 for the baseline vs. BICBottomUp = -2715.5 for the generalization phase; see S2 Table for model fitting 

results). Critically, we found a significant increase in the model parameter from baseline to generalization phase 

(w Circle = 0.092 ± 0.01; paired t-test, t(60) = 9.13, p < 10-5; Fig 4D compare two leftmost bars) suggesting a 

global increase in dissimilarity between FDMs. Overall, these results are compatible with the view that aversive 

learning led to a better separation of exploration patterns globally, in agreement with the heightened arousal 

model (Fig 1C), which predicted an increased contribution of the bottom-up saliency to the similarity of 

exploration patterns as shown by larger model parameters.  

However, the MDS method suggested that the separation of exploration patterns might have occurred 

mainly along the adversity gradient defined by the CS+ and CS– faces, whereas the separation along the 

orthogonal direction did not exhibit any noticeable changes (Fig 4C). We thus extended the circular bottom-up 

model to capture independent variance along the two orthogonal directions using the adversity categorization 

model (Fig 1D). Model comparison indicated that this model performed better than the bottom-up model (BIC 

BottomUp = -2715 vs. BICAdversityCateg. = -2897.3; adjusted r2 = .44; see S3/4 Table for fitting results with the 

adversity categorization model on baseline and generalization phases, respectively). Notably, this difference was 

accompanied by a nearly two times stronger contribution of the specific component (w Specific = 0.12 ± 0.014, 

t(60) = 21.034; w Unspecific = 0.063 ± 0.01, t(60) = 11.07; Fig 4D), which was significantly larger than the 

unspecific component (pair-wise t-test, t(60) = -3.81, p = 3.2 x 10-4,). Additionally, the weight of the unspecific 

similarity component did not exhibit a significant modification with learning. This provides evidence that 

increased overall dissimilarity with learning was driven by changes in the scanning behavior specifically along 

the task-relevant adversity direction.  

The remodeling of the similarity geometry along the adversity gradient can also be accompanied by 

exploration strategies that are specifically deployed for the adversity predicting face, which would result in 

localized changes in the similarity geometry only around the CS+ face. We subjected this view to model 

comparison by augmenting the previous model with a similarity component that consisted of a two-dimensional 

Gaussian centered on the CS+ face. The width parameter of the Gaussian was adjusted to be around 65°, a value 

close to the width of adversity tuning in subjective ratings. Positive contribution of this predictor would lead to 

more similar exploration patterns around the CS+ (Fig 1E). It can thus capture changes in similarity relationships 

that are specific to the CS+ face. The model comparison procedure favored the simpler adversity categorization 

model over the augmented adversity tuning model (BICAdversityCateg. = -2897.3 vs. BICAdversityTuning.= -2864.4 

during the generalization phase; adjusted r2 = .44; see S5/6 Table for fitting results with adversity tuning model 

in baseline and generalization phases, respectively). Hence the increase in the number of predictors did not result 

in a significant reduction in explained variance. In line with this result, the parameter estimates for the adversity 

component were not significantly different than zero neither in baseline or generalization phases (wGaussian = 

0.015 ± 0.04 in baseline, p = .72, t = 0.35; wGaussian = 0.07 ± 0.04 in generalization, p = 0.12, t = 1.56; Fig 4C). 

Also, pair-wise differences between parameter estimates did not reach significance (p = 0.37, t = 0.89). We 

therefore conclude that further improvements of the adversity categorization model to include adversity-specific 

changes did not result in a better understanding of the adversity-induced changes in the similarity geometry of 

exploration strategies. 
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Discussion  
We aimed to characterize the effect of aversive learning at the systems level, by examining changes in 

eye movement strategies during viewing of faces organized along a similarity continuum. As expected, 

subjective ratings of shock expectancy and autonomic recordings of arousal exhibited adversity-tuned responses 

that peaked on the CS+ face and decayed smoothly with increasing dissimilarity. Adversity tuning of subjective 

ratings emerged as a differentiation of responses to both the CS+ and CS– face, in line with the view that 

learning entails formation of both safe and harmful associations. However, in contrast to SCR and subjective 

ratings we observed only weak evidence in favor of adversity-tuned changes in the fixation counts associated 

with different facial elements. This could arise due to individually distinct modifications in overt behavior 

strategies with aversive learning, which are diluted when averaging fixation counts across large regions of 

interest. This view was supported by above-chance level classification between the CS+ and CS–, which was 

based on single-subject exploration patterns. In sum, our results provide evidence that active exploration patterns 

during viewing of faces are flexible and can be adaptively tailored following aversive learning to explore 

adversity- and safety-related facial prototypes. 

We investigated the nature of these adaptive changes in exploration strategies using a similarity-based 

multivariate technique that we call fixation-pattern similarity analysis. In combination with a set of stimuli that 

were parametrically controlled, this had several advantages over typically used approaches to the phenomenon of 

generalization. When responses (e.g. neuronal or behavioral) are tested along a single dimension, this results in 

smoothly decaying response amplitudes with increasing dissimilarity to the adversity predicting stimulus. These 

generalization profiles can provide important clues about the selectivity of aversive representations [10] and may 

help understanding cognitive impairments such as anxiety disorders characterized by less selective 

generalization profiles [47–49]. However, the different hypotheses we could test here are difficult to be 

distinguished based on univariate generalization profiles, as they all predict monotonously decaying 

generalization profiles with increasing dissimilarity to the CS+. The exact distinction between different 

hypotheses would require an extensive characterization of the decay components with increasing dissimilarity 

[3]. For example, in comparison to the adversity-tuning hypothesis, the categorization hypothesis might result in 

a faster decaying generalization profile, and a thus more selective tuning. Nevertheless, the exact relationships 

between pattern dissimilarities and the decay rate in univariate generalization profiles cannot be established 

straightforwardly. Fixation-pattern similarity analysis, in the same spirit as representational similarity analysis 

[24] exploits information present in all pair-wise combinations between multivariate patterns. In comparison to 

univariate generalization profiles, FPSA can disambiguate between these hypotheses as they differ in how they 

predict pair-wise relationships between exploration patterns. In other words, FPSA disambiguates different 

models by how well they predict multivariate patterns instead of univariate response amplitudes. 

We therefore characterized learning-associated changes using model-based FPSA in conjunction with a 

stimulus set that was parametrically controlled. Already before learning, the similarity of exploration patterns 

was highly structured and reflected the circularity of the face continuum. This is compatible with the view that 

exploration of neutral faces is, at least to some extent, guided by physical characteristics—in contradiction with a 

purely holistic viewing strategy for faces. Following aversive learning, we observed a significant remodeling of 

the similarity structure leading to an increase in dissimilarity. This was caused by an increased separation of 
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exploration patterns along the adversity gradient, indicated by a stronger contribution of the adversity-specific 

component. Modeling of the similarity relationships indicated an increase of dissimilarity between the CS+ and 

CS– faces, which was concomitant to a joint increase in similarity around the CS+ and CS–. This points to the 

fact that aversive learning jointly influenced exploration patterns at both ends of the stimulus continuum. This is 

compatible with the view that following an aversive learning, the nervous system achieves a categorization 

process along the smoothly changing perceptual continuum [37,39,41,50]. Our results show that this 

categorization process results also in detectable changes at the behavioral level. These changes in exploration 

patterns would presumably lead to an increased efficiency of information transmission downstream and help the 

categorization process of faces. Here, the key contribution of the FPSA was providing insights onto how active 

exploration strategies were remodeled with aversive learning in a way that could not have been easily predicted 

based on univariate generalization profiles. Furthermore, FPSA allowed us to better understand these changes as 

adaptive modifications in exploration strategies that were specifically tailored along the adversity gradient. 

Multivariate pattern analysis methods provide a set of powerful tools for extracting information in eye-

movements recordings. For example, classifier-based methods can successfully decode the identity of different 

observers [31,33], or task-dependent changes in eye-movements strategies within the same observers 

[27,28,30,31,52]. Furthermore, they might contribute to improve mental health screening when used as 

behavioral biomarkers [25,53]. We complemented classifier-based analyses with a similarity-based pattern 

analysis to gather insights on the specific ways eye-movement patterns changed during viewing of faces with 

learning. In this report, use of a calibrated stimulus continuum enabled us modeling of similarity relationships in 

a parametric manner. This provided an understanding of the increased decoding performance with aversive 

learning as an increase in dissimilarity along the task-relevant direction. In a similar line, Kietzmann et al. [54] 

parametrically modeled similarity relationships as a sanity-check for electro-encephalogram recordings, which 

are extremely sensitive to eye-movement induced artifacts.  

While skin-conductance responses and subjective ratings inform about the aggregate cognitive 

evaluations of a given stimulus, eye-movements can be informative about the temporal evolution of the 

information sampling process [55]. In so far, they allow to reason about how changes in viewing strategies from 

learning might produce the observed changes in pattern similarities. In this respect an interesting question is how 

the fixation selection process produces changes in viewing strategies selectively along the CS+/CS– axis. 

Clearly, following aversive learning the selection of fixation locations must become sensitive to the adversity 

introduced with the learning procedure. One possibility is that participants quickly judge the risk of being 

shocked with the first landing fixation, and consequently that they are more aroused and attentive with higher 

adversity. Therefore, adversity could selectively increase the influence of salient stimulus features. Such a 

process would explain why exploration patterns change on the CS+ stimulus and other stimuli sharing similar 

features. This suggestion is also compatible with effects of aversive learning on overt attention. For example, 

fearful faces are more salient and attract more fixations than neutral ones [56–58]. Furthermore, elementary 

visual features can benefit higher priority when they predict adversity, to the point of distracting an on-going 

task [17]. Most importantly, their strength gradually increases with similarity to the adversity predicting features 

[17]. These oculomotor saliency gradients indicate that stimuli predicting adversity receive higher priority during 

sensorimotor processing. Yet, this view does not give an account of why exploration patterns also change on the 
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CS– stimulus, which presumably would be classified as safe soon after stimulus onset and should therefore not 

lead to an increase in saliency. Therefore, a second possibility is that sensory information provided by the first 

fixation is not enough to predict adversity with high certainty. In this case, it is plausible that subsequent 

fixations sample areas that are informative for both adversity and safety in order to resolve the remaining 

uncertainty. Such a strategy would result in separation of exploration patterns only along the CS+ and CS– axis. 

The benefit of this strategy would presumably be increased information transmission to better categorize faces as 

either safe or aversive. 

Eye-movements patterns can provide important insights about what the nervous system tries to achieve 

as they summarize the final outcome of complex interactions at the neuronal level [59]. Our results demonstrate 

that changes induced by aversive generalization extend beyond autonomous systems or explicit subjective 

evaluations, but can also affect an entire sensory-motor loop at the systems level [17]. Furthermore the 

methodology applied here can easily be extended to neuronal recordings, where gradients of activity during 

generalization have been successfully used to characterize selectivity of aversive representations. Therefore, it 

will be highly informative to test different hypotheses we outlined here using neuronal recordings with 

representational similarity analysis during the emergence of aversive representations.  
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Materials and Methods 

Participants 
Participants were 74 naïve healthy males and females (n = 37 each) with normal (or corrected-to-

normal) vision (age = 27 ± 4, M ± SD) and without history of psychiatric or neurological diseases, any medical 

condition or use of medication that would alter pain perception. Out of 74 participants, we discarded 13 

participants who did not successfully associate the CS+ face with the UCS based on their subjective ratings. This 

exclusion criterion was based on a model comparison procedure testing whether ratings at the end of the 

generalization phase could be significantly better modeled with a circular Gaussian in comparison to a flat null 

model (see Nonlinear modeling and model comparison section). We furthermore required that the peak of the 

fitted circular Gaussian was within the ±45° degrees of the CS+ face. We thus conducted the analyses of eye-

movements on a homogenous set of participants who were aversively conditioned (n = 61, 31 males) and could 

reliably detect the CS+ face. Participants had not participated in any other study using facial stimuli in 

combination with aversive learning before. They were paid 12 Euros per hour for their participation in the 

experiment and provided written informed consent. All experimental procedures were approved by the Ethics 

committee of the Chamber of Physicians in Hamburg. 

Data sharing 
 The dataset used in this manuscript has been published as a dataset publication [62]. We publicly 

provide the stimuli as well as the code ([63] developed with Matlab 2016b, MathWorks, Natick MA) necessary 

to download the dataset, conduct all analyses and prepare the figures reported here. 

Stimulus preparation and calibration of generalization gradient  
Using a two-step procedure, we created a final set of 8 calibrated faces (Fig 1A, see also SFig 1) that 

were perceptually organized along a circular similarity continuum based on a model of the primary visual (V1) 

cortex. Using the FaceGen software (FaceGen Modeller 2.0, Singular Inversion, Ontario Canada) we created two 

gender-neutral facial identities and mixed these identities (0%/100% to 100%/0%) while simultaneously 

changing the gender parameters in two directions (more male or female). In the first step, we created a total of 

160 faces by appropriately mixing the gender and identity parameters to form 5 concentric circles (see SFig 1) 

based on FaceGen defined parameter values for gender and identity. Using a simple model of the primary visual 

cortex known to closely mirror human perceptual similarity judgments [44], we computed V1 representations for 

each face after converting them to grayscale. The spatial frequency sensitivity of the V1 model was adjusted to 

match human contrast sensitivity function with bandpass characteristics between 1 and 12 cycles/degree, peaking 

at 6 cycles/degrees [64]. The V1 model consists of pair of Gabor filters in quadrature at five different spatial 

scales and eight orientations. The activity of these 40 channels were averaged in order to obtain one single V1 

representation per face. We characterized the similarity relationship between the V1 representations of 160 faces 

using multidimensional scaling analysis with 2 dimensions (SFig 2). As expected, while two dimensions 

explained a large variance, the improvement with the addition of a third dimension was only minor, providing 

thus evidence that the physical properties of the faces were indeed organized along two-dimensions (stress 
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values for 1D, 2D and 3D resulting from the MDS analysis were 0.42, .04, .03, respectively). The transformation 

between the coordinates of the FaceGen software values (gender and identity mixing values) and coordinates 

returned by the MDS analysis allowed us to gather FaceGen coordinates that would correspond to a perfect circle 

in the V1 model. In the second step, we thus generated 8 faces that corresponded to a perfect circle. This 

procedure ensured that faces used in this study were organized perfectly along a circular similarity continuum 

according to a simple model of primary visual cortex with well-defined bandpass characteristics known to mirror 

human similarity judgments. Furthermore it ensured that dimensions of gender and identity introduced 

independent variance on the faces. 

To present these stimuli we resized them to 1000x1000 pixels (originals: 400x400) using bilinear 

interpolation, and slightly smoothed with a Gaussian kernel of 5 pixels with full-width at half maximum of 1.4 

pixels to remove any possible pixel artifacts that could potentially lead participants to identify faces. Faces were 

then normalized to have equal luminance and root-mean-square contrast. The gray background was set to the 

same luminance level ensuring equal brightness throughout of the experiment. Faces were presented on a 20” 

monitor (1600 x 1200 pixels, 60 Hz) using Matlab R2013a (Mathworks, Natick MA) with psychophysics 

toolbox [65,66]. The distance of the participants’ eyes to the stimulus presentation screen was 50 cm. The center 

of the screen was at the same level as the participants’ eyes. Faces spanned horizontally ~17° and vertically 

~30°, aiming to mimic a typical face-to-face social situation. Stimuli are available in [63]. 

Experimental paradigm 
The fear conditioning paradigm (similar to [10]) consisted of baseline, conditioning and test (or 

generalization) phases (Fig 2A). Four equivalent runs with exactly same number of trials were used during 

baseline (1 run) and generalization phases (3 runs) consisting of 120 trials per run (~10 minutes). Every run 

started with an eye-tracker calibration. Between runs participants took a break and continued with the next run in 

a self-paced manner. We avoided having more than 1 runs in the baseline period in order not to induce fatigue in 

participants. This consisted of a blurred unrecognizable face. At each run during the baseline and generalization 

phases, 8 faces were repeated 11 times, UCS trials occurred 5 times and one oddball was presented. We 

presented 26 null trials with no face presentation but otherwise the same trial structure (see below sequence 

optimization). In order to keep arousal levels comparable to the generalization phase, UCSs were also delivered 

during baseline, however they were fully predictable by a shock symbol therefore avoiding any face to UCS 

associations. During the conditioning phase, participants saw only the CS+ and the CS– faces (and null trials). 

These consisted of 2 maximally dissimilar faces separated by 180° on the circular similarity continuum and 

randomly assigned for every participant in a balanced manner. The conditioning was 124 trials long (~10 

minutes) and CS+ and CS– faces were repeated 25 times. CS+ faces were additionally presented 11 times with 

the UCSs, resulting in a reinforcement rate of ~30 %. The same reinforcement ratio was used during the 

subsequent generalization phase in order to avoid extinction of the learnt associations. Participants were 

instructed that the delivery of UCSs during baseline would not be associated with faces, however in the 

following conditioning and generalization phases they were instructed that shocks would be delivered after 

particular faces have been presented. In all three phases, subjects were instructed to press a button when an 

oddball stimulus appeared on the screen. 
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Faces were presented using a rapid-event design with a stimulus onset asynchrony of 6 seconds and 

stimulus duration of 1.5 seconds. The presentation sequence was optimized using a modified m-sequence with 

11 different conditions [67,68] (8 faces, UCS, oddball, null). An m-sequence is preferred as it balances all 

transitions from condition n to m (thus making the sequence as unpredictable as possible for the participant) 

while providing an optimal design efficiency (thus making deconvolution of autonomic skin conductance 

responses more reliable). However all conditions in an m-sequences appear equally number of times. Therefore, 

in order to achieve the required reinforcement ratio (~30%), we randomly pruned UCS trials and transformed 

them to null trials. Similarly oddball trials were pruned to have an overall rate of ~1%. This resulted in a total of 

26 null trials. While this deteriorated the efficiency of the m-sequence, it was a still good compromise as the 

resulting sequence was much more efficient than a random sequence. Resulting from the intermittent null trials, 

SAOs were 6 or 12 seconds approximately exponentially distributed.  

Face onsets were preceded by a fixation-cross, which appeared randomly outside of the face either on 

the left or right side along an imaginary circle (r = 19.6°, +/- 15° above and below the horizontal center of the 

image). The side of fixation-cross was balanced across conditions to avoid confounds that might occur [55].  

Calibration and delivery of electric stimulation 
Mild electric shocks were delivered by a direct current stimulator (Digitimer Constant Current 

Stimulator, Hertfordshire UK), applied by a concentric electrode (WASP type, Speciality Developments, Kent 

UK) that was firmly connected to the back of the right hand and fixated by a rubber glove to ensure constant 

contact with the skin. Shocks were trains of 5-ms pulses at 66Hz, with a total duration of 100 ms. During the 

experiment they were delivered right before the offset of the face stimulus. The intensity of the electric shock 

applied during the experiment was calibrated for each participant before the start of the experiment. Participants 

underwent a QUEST procedure [69] presenting UCSs with varying amplitudes selected by an adaptive algorithm 

and were required to report whether a given trial was “painful” or “not painful” in a binary fashion using a 

sliding bar. The QUEST procedure was repeated twice to account for sensitization/habituation effects, thus 

obtaining a reliable estimate. Each session consisted of 12 stimuli, starting at an amplitude of 1mA. The 

subjective pain threshold was the intensity that participants would rate as “painful” with a probability of 50%. 

The amplitude used during the experiment was 2 times this threshold value. Before starting the actual 

experiment, participants were asked to confirm whether the resulting intensity was bearable. If not then the 

amplitude was incrementally reduced and the final amplitude was used for the rest of the experiment. 

Eye tracking and fixation density maps 
Eye tracking was done using an Eyelink 1000 Desktop Mount system (SR Research, Ontario Canada) 

recording the right eye at 1000 Hz. Participants placed their head on a headrest supported under the chin and 

forehead to keep a stable position. Participants underwent a 13 point calibration / validation procedure at the 

beginning of each run (1 Baseline run, 1 Conditioning run and 3 runs of Generalization). The average mean-

calibration error across all runs was Mean = 0.36°, Median = .34°, SD = 0.11. 91% of all runs had a calibration 

better than or equal to .5°.  

Fixation events were identified using commonly used parameter definitions [62] (Eyelink cognitive 

configuration: saccade velocity threshold = 30° / second, saccade acceleration threshold = 8000° per second2, 
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motion threshold = .1°). Fixation density maps (FDMs) were computed by spatially smoothing (Gaussian kernel 

of 1° of full width at half maximum) a 2D histogram of fixation locations, and were transformed to probability 

densities by normalizing to unit sum. FDMs included the center 500x500 pixels, including all facial elements 

where fixations were mostly concentrated (~95% of all fixations). 

Shock expectancy ratings and autonomic recordings 
 After baseline, conditioning and generalization phases, participants rated different faces for subjective 

shock expectancy by answering the following question, “How likely is it to receive a shock for this face?”. Faces 

were presented in a random order and rated twice. Subjects answered using a 10 steps scale ranging from “very 

unlikely” to “very likely” and confirmed by a button press in a self-paced manner. 

 Electrodermal activity evoked by individual faces was recorded throughout the three phases. Reusable 

Ag/AgCl electrodes filled with isotonic gel were connected to the palm of the subject’s left hand using adhesive 

collars, placed in thenar/hypothenar configuration. Skin-conductance responses were continuously recorded 

using a Biopac MP100 AD converter and amplifier system at a sampling rate of 500 Hz. Using the Ledalab 

toolbox [70,71], we decomposed the raw data to phasic and tonic response components after downsampling it to 

100 Hz. Ledalab applies a positively constrained deconvolution technique in order to obtain phasic responses for 

each single trial. We averaged single-trial phasic responses separately for each condition and experimental phase 

to obtained 21 average values (9 (8 faces + 1 null condition) from baseline and generalization and 3 (2 faces + 1 

null condition) from the conditioning phase). CS+ trials with UCS were excluded from this analysis. These 

values were first log-transformed (log10(1+SCR)) and subsequently z-scored for every subject separately (across 

all conditions and phases), then averaged across subjects. Therefore, negative values indicate phasic responses 

that are smaller than the average responses recorded throughout the experiment. Due to technical problems, SCR 

data could only be analyzed for n = 51 out of the 61 participants. 

Nonlinear modelling and model comparison 
We fitted a von Mises function (circular Gaussian) to generalization profiles obtained from subjective 

ratings, skin-conductance responses and fixation counts at different ROIs by minimizing the following likelihood 

term in (1) following an initial grid-search for parameters 

L( D(x) | θ, σ) = Σ – log [ N( D(x) – G (x | θ ) | 0, σ)]       (1) 

where x represents signed angular distances from a given volunteer’s CS+ face; G(x|θ) is a von Mises-

like function that was used to model the adversity tuning. It is defined by the parameter vector θ, which codes for 

the amplitude (difference between peak and base), location (peak position), precision and offset (base value) of 

the resulting generalization profile; D(x) represents the observed generalization profile for different angular 

distances; and N(x| 0, σ) is the normal probability density function with mean zero and standard deviation of σ. 

The fitting procedure consisted of finding parameters values that minimized the sum of negative log-transformed 

probability values. Using log-likelihood ratio test we tested whether this model performed better than a null 

model consisting of a horizontal line, effectively testing the significance of the additional variance explained by 

the model. G(x) was a scaled and shifted version of a normalized von Mises function in the form  
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G(x) =  α · V(x | K, µ) + θ          (2) 

α represents the depth of adversity tuning which corresponds to the difference between peak and baseline 

responses, and θ sets to the baseline level. Κ and µ controls the precision of the tuning and the peak position of 

adversity tuning, respectively. V(x) is a modified von Mises function that is scaled to fit between 0 and 1 using 

the following equality, 

V(x) =  [exp( K·cos(x-µ)) – exp(–K) ] / exp(K) – exp(–K)      (3) 

Classification with linear support vector machine 
We used single trial FDMs for validation of linear support vector machines [72] that were trained to 

classify exploration patterns obtained during viewing of CS+ and CS– conditions. As the generalization phase 

had more trials than the baseline phase (3 runs vs. 1 run), we took precautions to make a fair comparison 

between these phases so that differences between number of trials do not invalidate comparison of accuracies 

between the baseline and generalization phases. To this end, we trained and tested a linear SVM classifiers 

always within a given run, and averaged classification accuracy for the generalization phase across the three 

runs. This effectively kept signal-to-noise ratio of FDMs in comparable levels between the baseline and 

generalization phases, therefore avoiding any possible favor of the generalization phase. We trained a classifier 

on randomly drawn 50% of the CS + and CS– trials, and tested on the remaining 50% and averaged 

classification performance across 1000 repetitions using this procedure. To reduce the dimensionality, FDMs 

were first downscaled 10 times resulting in a vector of 2500 pixels. We further reduced dimensionality by 

projecting FDMs onto their principal components using two different approaches. We identified the number of N 

principal components corresponding to the elbow where the slope of eigenvalues was levelling off substantially 

(N = 14, 19, 17, 20 for the 4 runs). We also repeated the analysis simply using N principal components that 

explained 90% of total variance in each run (N = 63, 69, 74, 75). Both approaches yielded similar results, we 

report numbers from the first approach in the results section, but present results obtained with both approaches in 

SFig 3. Principal components were computed excluding null trials, UCS trials and oddballs. Loadings on these 

principal components were scaled using the inverse of the square root of eigenvalues, thus effectively whitening 

their contributions. 

Fixation-pattern similarity analysis 
FPSA was conducted on single participants. Condition specific FDMs (8 faces per baseline and 

generalization phases) were computed by collecting all fixations across trials on a single map which was then 

normalized to unit sum. We corrected FDMs by removing the common mean pattern (done separately for 

baseline and generalization phases). We used 1 - Pearson correlation as the similarity metric. This resulted in a 

16x16 similarity matrix per subject. Statistical tests for element-wise comparison of the similarity values were 

conducted after Fisher transformation of correlation values. The multidimensional scaling was conducted on the 

baseline and generalization phases jointly using the 16x16 similarity matrix as input (mdscale in MATLAB). 

Importantly, as the similarity metric is extremely sensitive to the signal to noise ratio [34] present in the FDMs, 

we took precautions that the number of trials between generalization and baseline phases were exactly the same 

in order to avoid differences that would have been caused by different signal to noise ratios. To account for 
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unequal number of trials during the baseline (11 repetitions) and generalization (3 runs x 11 = 33 repetitions) 

phases, we computed a similarity matrix for each run separately in the generalization phase. These were later 

averaged across runs for a given participant. This ensured that FDMs of the baseline and generalization phases 

had comparable signal-to-noise ratios, therefore not favoring the generalization phase for having more trials. 

We generated 3 different models based on a quadrature decomposition of a circular similarity matrix. A 

circular similarity matrix of 8x8 can be obtained using the term M⊗M, where M is a 8x2 matrix in form of 

[cos(x) sin(x)], and the operator ⊗ denotes the outer product. x represents angular distances from the CS+ face, is 

equal to 0 for CS+ and π for CS–. Therefore, while cos(x) is symmetric around the CS+ face, sin(x) is shifted by 

90°. For the bottom-up saliency and increased arousal models (Fig 1B and C) we used M⊗M as a predictor 

together with a constant intercept. For the tuned exploration model depicted in Fig 1D, we used cos(x) ⊗cos(x) 

and sin(x)⊗sin(x) to independently model ellipsoid expansion along the specific and unspecific directions, 

respectively. Together with the intercept this model comprised 3 predictors. Finally the aversive generalization 

model (Fig 1E) was created using the predictors of the tuned exploration model in conjunction with a two-

dimensional Gaussian centered on the CS+ face (in total 4 predictors). We tested different widths for the 

Gaussian and took the one that resulted in the best fit. This was equal to 65° of FWHM and similar to the values 

we observed for univariate explicit ratings and SCR responses.  

All linear modeling was conducted using non-redundant, vectorized forms of the symmetric 

dissimilarity matrices. For a 8x8 dissimilarity matrix this resulted in a vector of 28 entries. Different models 

were fitted as mixed-effects, where intercept and slope contributed both as fixed- and random-effects (fitlme in 

Matlab). We selected mixed-effect models as these performed better than models defined uniquely with fixed-

effects on intercept and slope. To do model selection, we used Bayesian information criterion (BIC) as it 

compensates for an increase in the number of predictors between different models. Additionally, different 

models were also fitted to single participants (fitlm in Matlab) and the parameter estimates were separately tested 

for significance using t-test.  
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Supporting Information  

SFig 1  

Face Stimuli. Set of 8 faces that were calibrated to form a circular similarity continuum. Faces vary along the 
two dimensions of gender (vertical axis) and identity (horizontal axis). See SFig 2 for the calibration process. 
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SFig 2 

Calibration of faces using a V1 model tuned to human psychophysics. (A) Using the FaceGen software, 160 
faces forming five concentric circles were generated with coordinates varying in gender and identity dimensions 
(connected black dots in the left panel). Maximally male faces are located at 12 o’clock direction and indicated 
with the male symbol. (B) V1 representations of faces were modelled according to [44]. This is illustrated for 
faces 69 and 93. The difference between these two faces resulted in a Euclidean distance of 110. The pair-wise 
Euclidean distance for all the 160 faces are shown in (C) as a dissimilarity matrix. The resulting dissimilarity 
matrix exhibits 5 major bands corresponding to 5 concentric circles. By applying MDS, we obtained the 
representational space of V1 shown in (A, right panel). Note that the most male face is 45° counter-clockwise 
rotated with respect to the main axes of in V1 representation. The mapping between FaceGen coordinates and 
V1 representational space thus involved a rotation and scaling which was captured by the matrix M. We 
therefore used the inverse of M, to achieve coordinates of perfect circularity based on this V1 model. This 
ensured that faces along the similarity continuum were characterized by controlled changes for every angular 
step based on the model used. 
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SFig 3 

Multivariate Classification of FDMs. Classification results for a linear SVM trained to differentiate between 
CS+ and CS–. Bars (M ± SEM) show the average proportion of trials of all 8 conditions classified as CS+, i.e. 
correct classification for the actual CS+ (red) condition and false alarms for CS– trials (cyan). Baseline and three 
generalization runs are plotted separately. The last column (GeneralizationM) depicts the average across the three 
generalization runs. Dotted lines indicate chance level obtained by classification of random label permutation. 
Results are depicted based on two different dimension reduction methods (see Material and Methods): (A) 
Classification results based on N eigenvectors explaining 90% of total variance. (B) Results based on elbow 
criterion, i.e. choosing N eigenvectors where the slope of eigenvalues levelled off substantially.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/125682doi: bioRxiv preprint 

https://doi.org/10.1101/125682
http://creativecommons.org/licenses/by/4.0/


34 

S1 Table  

Mixed-effects modeling of the similarity matrices during the baseline phase with the bottom-up model shown in 
Fig 1B. 

 

Model information: 
    Number of observations            1708 
    Fixed effects coefficients           2 
    Random effects coefficients        122 
    Covariance parameters                4 
 
Formula: 
    FPSA_baseline ~ 1 + circle + (1 + circle | subject) 
 
Model fit statistics: 
    AIC        BIC      LogLikelihood    Deviance 
    -1682.7    -1650    847.34           -1694.7  
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE           tStat     DF      pValue        Lower       Upper    
    '(Intercept)'         0.24944    0.0037375    66.741    1706             0     0.24211     0.25677 
    'circle'             0.063345    0.0079565    7.9614    1706    3.0776e-15    0.047739    0.078951 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate     Lower    Upper 
    '(Intercept)'        '(Intercept)'        'std'         0.0076928    NaN      NaN   
    'circle'             '(Intercept)'        'corr'              NaN    NaN      NaN   
    'circle'             'circle'             'std'          0.044851    NaN      NaN   
Group: Error 
    Name             Estimate    Lower    Upper 
    'Res Std'        0.14541     NaN      NaN   
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S2 Table   
Mixed-effects modeling of the similarity matrices during the generalization phase with the arousal model shown 
in Fig 1C. 

 
Model information: 
    Number of observations            1708 
    Fixed effects coefficients           2 
    Random effects coefficients        122 
    Covariance parameters                4 
 
Formula: 
    FPSA_generalization ~ 1 + circle + (1 + circle | subject) 
 
Model fit statistics: 
    AIC        BIC        LogLikelihood    Deviance 
    -2748.2    -2715.5    1380.1           -2760.2  
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE           tStat     DF      pValue        Lower      Upper   
    '(Intercept)'         0.25395    0.0029798    85.222    1706             0    0.24811    0.25979 
    'circle'             0.091957    0.0099814    9.2129    1706    9.0388e-20    0.07238    0.11153 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate    Lower        Upper    
    '(Intercept)'        '(Intercept)'        'std'         0.011548    0.0071814     0.01857 
    'circle'             '(Intercept)'        'corr'               1          NaN         NaN 
    'circle'             'circle'             'std'         0.071586     0.057996    0.088361 
Group: Error 
    Name             Estimate    Lower      Upper   
    'Res Std'        0.10434     0.10084    0.10797 
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S3 Table 
Mixed-effects modeling of the similarity matrices during the baseline phase with the adversity categorization 
model shown in Fig 1D. 

 
Model information: 
    Number of observations            1708 
    Fixed effects coefficients           3 
    Random effects coefficients        183 
    Covariance parameters                7 
 
Formula: 
    FPSA_baseline ~ 1 + specific + unspecific + (1 + specific + unspecific | subject) 
 
Model fit statistics: 
    AIC      BIC        LogLikelihood    Deviance 
    -1764    -1709.6    892.01           -1784    
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE           tStat     DF      pValue        Lower       Upper    
    '(Intercept)'         0.24944    0.0035811    69.654    1705             0     0.24242     0.25646 
    'specific'           0.057755     0.013652    4.2304    1705     2.457e-05    0.030977    0.084532 
    'unspecific'         0.068935     0.010663    6.4647    1705    1.3216e-10    0.048021     0.08985 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate     Lower         Upper     
    '(Intercept)'        '(Intercept)'        'std'         0.0081486     0.0035081     0.018928 
    'specific'           '(Intercept)'        'corr'          0.81502       0.80893      0.82093 
    'unspecific'         '(Intercept)'        'corr'          0.30346    -0.0053757      0.55945 
    'specific'           'specific'           'std'            0.0913      0.071842      0.11603 
    'unspecific'         'specific'           'corr'         -0.30479      -0.56025    0.0036179 
    'unspecific'         'unspecific'         'std'          0.062467      0.045811     0.085177 
Group: Error 
    Name             Estimate    Lower      Upper   
    'Res Std'        0.13817     0.13344    0.14306 
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S4 Table 
Mixed-effects modeling of the similarity matrices during the generalization phase with the adversity 
categorization model shown in Fig 1D. 

 
Model information: 
    Number of observations            1708 
    Fixed effects coefficients           3 
    Random effects coefficients        183 
    Covariance parameters                7 
 
Formula: 
    FPSA_generalization ~ 1 + specific + unspecific + (1 + specific + unspecific | subject) 
 
Model fit statistics: 
    AIC        BIC        LogLikelihood    Deviance 
    -2951.7    -2897.3    1485.9           -2971.7  
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE           tStat     DF      pValue        Lower       Upper    
    '(Intercept)'         0.25395    0.0028004    90.683    1705             0     0.24846     0.25944 
    'specific'             0.1205     0.014472    8.3259    1705    1.6951e-16     0.09211     0.14888 
    'unspecific'         0.063418     0.010001    6.3412    1705    2.9123e-10    0.043803    0.083034 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate    Lower        Upper    
    '(Intercept)'        '(Intercept)'        'std'         0.011778    0.0077913    0.017805 
    'specific'           '(Intercept)'        'corr'         0.91907          NaN         NaN 
    'unspecific'         '(Intercept)'        'corr'          0.6935          NaN         NaN 
    'specific'           'specific'           'std'          0.10647     0.087673     0.12931 
    'unspecific'         'specific'           'corr'         0.35345      0.34746     0.35941 
    'unspecific'         'unspecific'         'std'         0.068277     0.054449    0.085617 
Group: Error 
    Name             Estimate    Lower       Upper   
    'Res Std'        0.09517     0.091916    0.09854 
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S5 Table 
Mixed-effects modeling of the similarity matrices during the baseline phase with the adversity tuning model 
shown in Fig 1E. 

 
Model information: 
    Number of observations            1708 
    Fixed effects coefficients           4 
    Random effects coefficients        244 
    Covariance parameters               11 
 
Formula: 
    FPSA_baseline ~ 1 + specific + unspecific + Gaussian + (1 + specific + unspecific + Gaussian | subject) 
 
Model fit statistics: 
    AIC        BIC        LogLikelihood    Deviance 
    -1755.5    -1673.9    892.76           -1785.5  
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE          tStat      DF      pValue        Lower       Upper    
    '(Intercept)'         0.24181    0.046873     5.1589    1704    2.7749e-07     0.14988     0.33374 
    'specific'           0.057483    0.013761     4.1774    1704    3.0984e-05    0.030494    0.084473 
    'unspecific'         0.069013    0.010773     6.4063    1704    1.9241e-10    0.047884    0.090142 
    'Gaussian'           0.015884    0.097484    0.16294    1704       0.87058    -0.17532     0.20709 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate     Lower       Upper    
    '(Intercept)'        '(Intercept)'        'std'          0.054362    0.022712     0.13012 
    'specific'           '(Intercept)'        'corr'          0.16475         NaN         NaN 
    'unspecific'         '(Intercept)'        'corr'         -0.98746     -0.9876    -0.98731 
    'Gaussian'           '(Intercept)'        'corr'         -0.99227    -0.99237    -0.99216 
    'specific'           'specific'           'std'          0.091417     0.07191     0.11622 
    'unspecific'         'specific'           'corr'         -0.31842    -0.32004    -0.31681 
    'Gaussian'           'specific'           'corr'        -0.041041         NaN         NaN 
    'unspecific'         'unspecific'         'std'          0.063537    0.046652    0.086532 
    'Gaussian'           'unspecific'         'corr'          0.96022         NaN         NaN 
    'Gaussian'           'Gaussian'           'std'           0.12196    0.054259     0.27414 
Group: Error 
    Name             Estimate    Lower      Upper   
    'Res Std'        0.13805     0.13333    0.14293 
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S6 Table 
Mixed-effects modeling of the similarity matrices during the generalization phase with the adversity tuning 
model shown in Fig 1E. 

 
Model information: 
    Number of observations            1708 
    Fixed effects coefficients           4 
    Random effects coefficients        244 
    Covariance parameters               11 
 
Formula: 
    FPSA_generalization ~ 1 + specific + unspecific + Gaussian + (1 + specific + unspecific + Gaussian | 
subject) 
 
Model fit statistics: 
    AIC        BIC        LogLikelihood    Deviance 
    -2945.9    -2864.2    1487.9           -2975.9  
 
Fixed effects coefficients (95% CIs): 
    Name                 Estimate    SE          tStat     DF      pValue        Lower        Upper    
    '(Intercept)'            0.22    0.032419     6.786    1704    1.5856e-11      0.15641     0.28359 
    'specific'            0.11929    0.014301    8.3414    1704    1.4959e-16     0.091239     0.14734 
    'unspecific'         0.063765    0.010056    6.3412    1704     2.913e-10     0.044042    0.083488 
    'Gaussian'           0.070672    0.067933    1.0403    1704       0.29834    -0.062568     0.20391 
 
Random effects covariance parameters (95% CIs): 
Group: subject (61 Levels) 
    Name1                Name2                Type          Estimate    Lower       Upper    
    '(Intercept)'        '(Intercept)'        'std'         0.044693    0.010711     0.18649 
    'specific'           '(Intercept)'        'corr'        -0.89633    -0.89679    -0.89586 
    'unspecific'         '(Intercept)'        'corr'        -0.73005    -0.73122    -0.72888 
    'Gaussian'           '(Intercept)'        'corr'        -0.99995    -0.99996    -0.99995 
    'specific'           'specific'           'std'           0.1047     0.08608     0.12734 
    'unspecific'         'specific'           'corr'         0.35136     0.35001      0.3527 
    'Gaussian'           'specific'           'corr'          0.9005     0.90014     0.90086 
    'unspecific'         'unspecific'         'std'         0.068748    0.054885    0.086113 
    'Gaussian'           'unspecific'         'corr'         0.72353      0.7229     0.72415 
    'Gaussian'           'Gaussian'           'std'          0.11757     0.03792     0.36454 
Group: Error 
    Name             Estimate    Lower       Upper    
    'Res Std'        0.095034    0.091784    0.098399 
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