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Abstract 

Background. Technological advances in high throughput DNA methylation microarrays have 

allowed dramatic growth of a new branch of epigenetic epidemiology. DNA methylation 

datasets are growing ever larger in terms of the number of samples profiled, the extent of 

genome coverage, and the number of studies being meta-analysed. Novel computational 

solutions are required to efficiently handle these data. 

Methods. We have developed meffil, an R package designed to quality control, normalize 

and perform epigenome-wide association studies (EWAS) efficiently on large samples of 

Illumina Infinium HumanMethylation450 and MethylationEPIC BeadChip microarrays. We 

tested meffil by applying it to 6000 450k microarrays generated from blood collected for 

two different datasets, Accessible Resource for Integrative Epigenomic Studies (ARIES) and 

The Genetics of Overweight Young Adults (GOYA) study. 

Results. A complete reimplementation of functional normalization minimizes computational 

memory requirements to 5% of that required by other R packages, without increasing 

running time. Incorporating fixed and random effects alongside functional normalization, 

and automated estimation of functional normalisation parameters reduces technical 

variation in DNA methylation levels, thus reducing false positive associations and improving 

power. We also demonstrate that the ability to normalize datasets distributed across 

physically different locations without sharing any biologically-based individual-level data 

may reduce heterogeneity in meta-analyses of epigenome-wide association studies. 

However, we show that when batch is perfectly confounded with cases and controls 

functional normalization is unable to prevent spurious associations. 

Conclusions. meffil is available online (https://github.com/perishky/meffil/) along with 

tutorials covering typical use cases. 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/125963doi: bioRxiv preprint 

https://github.com/perishky/meffil/
https://doi.org/10.1101/125963


Introduction 

DNA methylation is the addition of methyl groups to cytosine bases in the DNA sequence, 

most often in the context of a CpG dinucleotide cytosine followed by a guanine. The 

addition or loss of methyl groups is often associated with changes in gene expression, and 

through epigenome wide associations studies (EWAS) it has been shown to associate with a 

wide range of complex traits. A number of technologies have been developed for 

interrogating DNA methylation including microarrays and sequencing-based methods. The 

Illumina Infinium HumanMethylation450 BeadChip (450k array) can be used to measure 

DNA methylation of 485k CpG sites, comprising just under 2% of the total genomic CpG 

content and mainly clustered around the transcription start sites of genes [1].  The new 

Illumina Infinium MethylationEPIC BeadChip (EPIC array) expands this coverage to ~850k 

sites to include enhancer regions identified by ENCODE [2] and FANTOM5 [3].  

 

Batch effects present a well-known challenge to microarray analysis, particularly in datasets 

composed of thousands of samples since they cannot all possibly be processed at the same 

times and by the same technical personnel. This unwanted variation can increase both false 

negative and false positive rates, and controlling for this is not trivial, especially as sample 

sizes continue to grow. 

 

Following the popularity of quantile normalization for analyzing gene expression 

microarrays [4], many variations based on quantile normalization have been developed for 

DNA methylation microarrays (e.g. [5-7]), but they require that global methylation does not 

vary between samples [8]. When this does not hold, most notably between tumor and 

normal samples, between different tissue types, or when there are batch differences 

between cases and controls, quantile normalization can remove biological variation along 

with technical variation (e.g. [9, 10]). A feature of 450k and EPIC arrays is the inclusion of 

control probes - probes which do not assay biological variation and only vary due to 

technical effects. Functional normalization (FN) [9] exploits control probes to separate 

biological variation from technical variation, and its performance evaluated alongside other 

approaches is often favourable (e.g. [7, 9-12]). 

 

Many DNA methylation datasets have now been generated independently, and associations 

between CpGs and exposures, complex traits and disease risk continue to be discovered. 

This rapid growth in data is warranted to improve statistical power to detect associations, 

however, it comes with a number of challenges that have not been fully resolved. First, 

existing software tools for normalising DNA methylation levels cannot be used for datasets 

comprising thousands of samples. Second, sharing of individual-level data is prohibited due 

to ethical considerations, and so the use of meta-analysis is liable to introduce 

heterogeneity when datasets are normalised under different procedures. Other challenges 

include identifying low quality methylation measurements, discovering and rectifying 
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sample mismatches, harmonizing datasets containing both 450k and EPIC array data, 

removing confounding effects of cell type heterogeneity, and assessing the quality of 

observed associations. 

 

With all of these challenges in mind, we have developed meffil to provide solutions in a 

user-friendly and open source R package (https://github.com/perishky/meffil). Figure 1 

shows the meffil work-flow from raw data to quality control to normalized data to EWAS. In 

this paper we describe its implementation and evaluate the computational and statistical 

advantages that it achieves, while demonstrating where limitations might still exist. 

Results 

Automated normalisation for heterogeneous data with 

improved computational efficiency 

Computational efficiency 

Our original motivation for creating meffil was an inability to successfully normalize ~5400 

450k arrays using available software tools. The main impediment was the large memory 

requirement of loading all data into memory before normalization could be initiated.  We 

discovered, however, that functional normalization [9] could be reimplemented in a way 

that uses a small fraction (~1/20) of the memory required by the entire dataset. In 

particular, we realized that functional normalization could be completed one sample at a 

time while holding in memory a relatively small summary of probe intensities for each 

sample. The summary consists of a control probe matrix and probe intensity quantiles. After 

the summary has been collected, functional normalization then proceeds to normalize 

intensity quantiles by removing control probe variation. Normalized methylation levels for 

each sample can then be derived from the normalized quantiles independently of all other 

samples.  

 

To minimize running time, the meffil implementation makes use of the R parallel package to 

allow normalization of multiple samples simultaneously. Normalization of ~5400 450k arrays 

took 3 hours on a compute server with 64 Gb of RAM and 16 processors. The memory 

requirements to normalize the same dataset using other software tools were too large to 

complete on this server. Table 2 compares the memory requirements of meffil and minfi, 

the most popular R package for normalizing methylation data. Most other popular packages 

[13, 14] that provide functional normalization capability are simply wrappers for the minfi 

implementation. 

Scalable pipeline and reporting mechanisms 
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Normalization and analysis of datasets, particularly large datasets, is rarely automatic. Most 

of the time, problems or unexpected results are encountered requiring interactive problem-

solving. Ideally, then, analysis tools should reflect this, allowing for some level of 

automation while allowing high-level tasks to be broken down into more specific tasks with 

customizable solutions. Although it would be most convenient for users to follow and 

interact with analyses using graphical user interface packages [15, 16], such interfaces are 

often not available on computational servers, particularly when the servers are nodes in a 

high performance computing cluster. In meffil we address these challenges by providing 

functions that nearly completely automate the entire process but can be replaced with calls 

to a sets of functions that allow more detailed interaction with data processing. After each 

main processing step (quality control, normalization and EWAS), HTML reports are 

generated that summarize the results of each (Figures S1-3), allowing the user to evaluate 

the success of each step before proceeding to the next.  We also provide extensively tested 

QC protocols on the meffil wiki website (https://github.com/perishky/meffil/wiki).  

Analysis of mixed 450k and EPIC datasets 

Given the large number of datasets that have 450k DNA methylation profiles and the 

apparent popularity of the new EPIC microarray, it will likely be necessary to merge 450k 

and EPIC datasets for analysis. This is made possible in meffil by applying identical methods 

to probes common to both microarrays. We have yet to assess the performance of this 

approach due to the lack of an available mixed dataset. Fortin, et al. [17] have made a first 

attempt using the minfi package but their assessment dataset includes only three EPIC 

microarrays supplied by the manufacturer. 

Extending functional normalisation to reduce technical 

variation 

Upon experimentation with functional normalization, we discovered some weaknesses and 

inconvenient features. We therefore sought to incorporate improvements. We assessed the 

performance of proposed changes by using meffil to process original raw data from the 

Accessible Resource for Integrative Epigenomic Studies (ARIES, 

http://www.ariesepigenomics.org.uk/) [18] comprising 4,854 methylation measurements in 

whole blood sampled at three time points in the life course of study participants and two 

timepoints in the life course of their mothers, all members of the Avon Longitudinal Study of 

Parents and Children (ALSPAC). Although the utmost care was taken in the generation of the 

high quality methylation profiles in ARIES, practical constraints lead to inconsistencies in the 

way samples were collected and processed. For example, DNA was extracted from a variety 

different sample types: whole blood, white cells, peripheral blood lymphocytes and blood 

spots, each with slight differences in the resulting methylation measurements. We exploit 

this heterogeneity to evaluate the performance of functional normalization. An EWAS of 
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prenatal tobacco exposure was then applied to the cord blood samples comprising white 

cells and bloodspots (n=861). Performance was assessed by comparing resulting association 

statistics in ARIES to 5,801 associations of a large EWAS meta-analysis of prenatal smoking in 

6,685 samples [19] (see Methods). Our EWAS of prenatal tobacco exposure in ARIES is 

representative of most published EWAS of large numbers of human participants.  A prenatal 

tobacco exposure EWAS is also representative in that it identifies associations with a variety 

of effect sizes and significance levels, allowing us to assess the sensitivity and specificity of 

different analysis pipelines for identifying both strong and weak associations. As there are 

multiple options for selecting covariates to include in the EWAS regression model, we 

simplified the analysis by including only surrogate variables as covariates obtained by 

applying Independent Surrogate Variable Analysis (ISVA) [20]. As previously shown, these 

appear to sufficiently account for confounding factors including cell count heterogeneity 

[21].  

 

We note that EWAS in meffil actually fits four different regression models (no covariates and 

user-supplied covariates with or without surrogate variables obtained by applying ISVA or 

SVA) and compares the results in an EWAS report (see Methods for more details).  

Extending functional normalization to include fixed and random effects 

As noted above, functional normalization uses control probe summaries to identify and to 

remove technical variation in the data.  Due to microarray design, all technical variation 

must be captured by 42 control probe summaries, a number that will likely be too small for 

some of the large datasets that are currently being generated. In addition, we and others 

[22] have found that functional normalization often fails to completely remove slide effects 

(Table 2). We therefore revised our implementation of functional normalization to allow 

additional fixed and random effects to be included with the control matrix. Again, we used 

this implementation to compare EWAS performance of prenatal tobacco exposure against 

the associations of a large meta-analysis [19]. After explicitly including slide as a random 

effect, we observed increased specificity and sensitivity to detect known associations (Figure 

2). Area under the curve (AUC) increases from 0.628 to 0.653 (p < 2.2x10-16, DeLong’s test). 

Automated parameter selection 

Functional normalization has one main parameter that can be set by the user: the number 

of principal components of the control matrix to be used to normalize the probe quantiles 

[9]. The maximum number is 42, the number of features in the control matrix. The default 

number advised by Fortin et al. [9] is two, derived as the number maximizing discovery of 

differentially methylated signals in a few examples. They do describe, however, other 

examples for which large numbers are optimal. To remove uncertainty when presented with 

novel data, we implemented an approach that estimates the number of principal 

components as the number that best explains variation in the probe intensity quantiles. This 
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test is performed under cross validation in order to avoid overfitting. Figure 3a visualizes the 

unexplained variation in the probe intensity quantiles for the ARIES dataset, demonstrating 

a clear improvement in reducing unexplained variation at 10 principal components. 

 

To evaluate the performance of the automatic parameter selection we generated nine 

normalizations of ARIES cord blood samples, each normalized with a different number of 

control matrix principal components, and evaluated the sensitivity and specificity of 

identifying associations with prenatal tobacco exposure.  Receiver operating characteristic 

(ROC) curves show that parameter choice can have a large influence (Figure 3b), with the 

recommended choice of 10 performing well and 42 principal components returning the best 

performance. 

Reducing heterogeneity in meta-analyses with minimal data sharing 

Due to the way that functional normalization is reimplemented in meffil, it is possible to 

normalize datasets residing on distinct servers together while sharing only the control 

matrix and probe intensity quantiles between the two servers (Figure 4a). We evaluated the 

effect of this approach on heterogeneity in an EWAS meta-analysis of the Accessible 

Resource for Integrative Epigenomic Studies (ARIES) and The Genetics of Overweight Young 

Adults (GOYA) study. In one meta-analysis, ARIES and GOYA were normalized separately 

prior to EWAS in each. In the second meta-analysis, we normalized ARIES and GOYA 

together prior to EWAS in each.  We observed a decrease in meta-analysis heterogeneity 

statistics for the latter option, that is when datasets were normalized together (Figure 4b; I2 

p = 0.047, QE p = 0.058, tau2 p = 0.045, H2 p = 0.023, Wilcoxon rank sum test of 

heterogeneity statistics for the top 100 associations from each meta-analysis, 134 CpG sites 

in total).   

Perfect confounding between batch effects and biological phenotypes is not 

resolved by functional normalization 

A common problem in epidemiological datasets is perfect confounding with batch, 

particularly for opportunistic case-control studies in which data is generated for cases 

subsequent to data collected from a control population. We evaluated the efficacy of 

functional normalization to remove only technical variation based on control variation while 

leaving biological variation intact. To test this, we compared methylation differences 

between methylation profiles obtained from cord blood against peripheral blood collected 

in adolescence under two scenarios, one in which there was perfect confounding with 

batch, and another in which batch was randomised across different tissues. In the 

unconfounded analysis, only 14 DNA methylation differences were identified (Bonferroni 

adjusted p < 0.05) after adjusting for cell count heterogeneity. By contrast, in the 

confounded analysis, there were 38950 methylation differences and this included only 7 of 

the 14 differences from the unconfounded analysis. Of the 38950, 62% had effect sizes in 
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the same direction as in the unconfounded analysis. This suggests that the vast majority of 

the 38950 were false positives. 

 

We then asked if adjusting for controls directly in the EWAS regression model would reduce 

the number of apparent false positives while retaining some of the true positives. Under this 

model we obtained 199 differentially methylated CpG sites, of which 50 overlapped with the 

38950 from the confounded analysis and none with the unconfounded analysis. Of the 199, 

123 (62%) agreed on the direction of association. Once again, these results suggest that 

most or all of the 199 were false positives. This was not due to the control probes failing to 

fully account for batch variation as a few of the ‘hybridization’ controls perfectly 

differentiated between batches. The false positives were then possibly due to model 

instability due to high correlation between controls and the variable of interest. 

Discussion 

Illumina Infinium DNA methylation microarrays have been used in a number of large-scale 

epigenetic epidemiological studies due to their low cost and large coverage of the genome. 

Despite the extensive use of these arrays, memory efficient and comprehensive software 

are currently lacking. We have designed meffil to perform preprocessing, quality control, 

data harmonization, normalization and EWAS easily, flexibly and memory-efficiently. We 

have demonstrated that meffil can correct remove unwanted variation both using functional 

normalization and by including surrogate variables along with user variables as EWAS 

covariates. Automatic generation of comprehensive reports at each step allows users to 

assess the success of each and potentially repeat steps after tweaking parameters to 

improve performance. 

 

To evaluate different settings in meffil, we used the ARIES and GOYA datasets and compared 

associations with prenatal tobacco exposure under various normalization schemes against 

those published for a large meta-analysis [19] as an example. A limitation of this approach is 

that the meta-analyzed set of associations might be contaminated with false positives due 

to batch and confounding effects that replicate across meta-analyzed datasets. Although the 

meta-analysis appears to be well-powered and therefore able to identify associations with 

small effect sizes, there are undoubtedly false negatives due to the variety of different data 

generation, quality control and normalization procedures applied to meta-analyzed 

datasets. Furthermore, all studies relied on self-reported smoking during pregnancy raising 

the very likely possibility of misreporting and possibly biased reporting. 

 

We used prenatal smoking where multiple loci with small effect sizes contribute to the 

phenotypic variance rather than large case control effects (such as cancer). As batch effects 

will have the largest impact on such small effects, correcting for these effects in the most 

optimal way will improve power. In addition, integration and harmonization across different 
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studies will lead to increased power in EWAS. However, simulations with different sizes of 

batch, confounder, and case control effects are required to find out which method and 

settings work best but are not the scope of this paper. Especially, as for most traits the 

genomic architecture is unknown, different assumptions should be made for different traits. 

 

We and others [22] have noted that functional normalization may fail to completely remove 

certain technical effects, either because that variation is missing from microarray controls or 

because probe quantiles rather than probe intensities are directly adjusted. To address the 

former possibility, we allow the user to include additional technical variables as fixed or 

random effects. As shown in Table 1, the addition of a random ‘slide’ effect does indeed 

reduce variation associated with ‘slide’. For this reason, it might be better in some cases to 

employ a different normalization method. Crucially, we demonstrate that though functional 

normalization attempts to separate technical from biological variation, when batch and 

phenotype are perfectly confounded results can be extremely unreliable. We recommend 

that cases and controls be assayed jointly within a single experiment in order to obtain any 

value from these studies. 

 

We plan in future to provide alternative normalization approaches, reimplemented in order 

to preserve the current low memory requirements of meffil and ability to normalize 

datasets present on distinct servers. We note however that for some methods, the 

reimplementation will not produce identical results because they depend on the entire 

dataset being loaded into memory (e.g. [7]). Future directions also include the possibility of 

integrating meffil within systems like DataShield [23] that will allow not only combined 

normalization but also EWAS of datasets present on distinct servers. This will improve both 

the power of and the speed at which meta-analyses of multiple cohort studies can be 

completed. 

Methods  

Data 

Accessible Resource for Integrative Epigenomic Studies (ARIES) 

Samples were drawn from the Avon Longitudinal Study of Parents and Children (ALSPAC) 

[24, 25]. Blood from 1022 mother-child pairs (children at three time points and their 

mothers at two time points) were selected for analysis as part of the Accessible Resource for 

Integrative Epigenomic Studies [18] (ARIES, http://www.ariesepigenomics.org.uk/).  Written 

informed consent has been obtained for all ALSPAC participants. Ethical approval for the 

study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees. Data are available from by request from the Avon Longitudinal Study of 

Parents and Children Executive Committee 
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(http://www.bristol.ac.uk/alspac/researchers/access/) for researchers who meet the criteria 

for access to confidential data. Please note that the study website contains details of all the 

data that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). 

 

Following DNA extraction, samples were bisulfite converted using the Zymo EZ DNA 

MethylationTM kit (Zymo, Irvine, CA). Following conversion genome-wide methylation was 

measured using the Illumina HumanMethylation450 BeadChip. The arrays were scanned 

using an Illumina iScan, with initial quality review using GenomeStudio. During the data 

generation process a wide range of batch variables were recorded in a purpose-built 

laboratory information management system (LIMS).  The LIMS also reported quality control 

(QC) metrics from the standard control probes on the 450k BeadChip for each sample. 

Samples failing QC were excluded from further analysis and the assay repeated.  In total 

there are 5469 samples for five timepoints (birth=1127; childhood=1086; 

adolescence=1073; pregnancy=1100; middle aged mums=1083) measured belonging to the 

1022 mother-child pairs. Sample QC and normalization was completed using with meffil in R 

version 3.2.0. Briefly, 4904/5469 ARIES samples have been successfully genotyped [26]. 

112/5469 samples failed genotype QC due to sample swaps, gender mismatches, high IBD or 

relatedness issues between mums and kids and were removed from ARIES. We found 411 

genotype mismatches (with a concordance below 80%) between the 65 snp probes on the 

450k array and the genotype arrays with a concordance below 80% and these samples are 

removed. Furthermore, samples were removed if: i) mum samples had more than 90% 

concordance with a kids sample (22 samples) ii) concordance was below 80% between 

duplicates and less than 80% concordance with at least one other mums of kids sample 

(N=200). iii) mums samples of which concordance was below 80% between duplicates 

(N=10) iv) samples with low concordance (below 80%) with other timepoints (N=10). v) 

mums samples with low concordance (below 80%) with other timepoints (N=24). 

Methylation quality was checked by: sex check (N=191), the median intensity methylated vs 

unmethylated signal for all control probes (N=63), dyebias (N=14), detection pvalue 

(N=166), low bead numbers (N=2) and post normalization checks (N=13). Finally, 4593 

samples passed QC. Samples were normalized using functional normalization using meffil 

(see below).  
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ARIES was normalised using 10 control probe principal components derived from the 

technical probes informed by meffil scree plots (Figure 3).  These plots are not generated by 

other packages but shows that more than the default value of 2 PCs may be used.  PCA of 

the normalized data using the 20,000 most variable probes shows that slide and sample 

type effects in cord blood were not fully eliminated by normalization (Table 2). Further 

investigation of these batch effects showed that slide/plate effects were confounded by 

sample type in this data set because, for example, different sample types were not 

randomized across slides and plate. 

Genetics of Overweight Young Adults (GOYA) 

The Genetics of Overweight Young Adults (GOYA) study is described in [27]. It includes a 

subset of 91,387 pregnant women recruited to the Danish National Birth Cohort during 

1996–2002. Of 67,853 women who had given birth to a live born infant, had provided a 

blood sample during pregnancy and had BMI information available, 3.6% of these women 

with the largest residuals from the regression of BMI on age and parity (all entered as 

continuous variables) were selected for GOYA. The BMI for these 2451 women ranged from 

32.6 to 64.4. From the remaining cohort, a random sample of similar size (2450) was also 

selected. In total, 3908 mothers were successfully genotyped. DNA methylation data were 

generated for the offspring of 1000 mothers in the GOYA study, equally distributed between 

“cases” with a BMI>32 and “controls” who were sampled from the remaining BMI 

distribution. 

 

All data was imported into R version 3.2.0 and processed using meffil. In total there are 

1010 samples belonging to 1000 children. Samples were extracted from cord blood. Ten 

samples were poor quality samples and were therefore repeated in the lab. 933/1010 GOYA 

samples have been successfully genotyped. Samples were removed due to i) genotype 

mismatches between 65 genotypes extracted from the genotype and 65 snp probes 

extracted from methylation arrays. Furthermore methylation quality was checked by: sex 

mismatches (23 samples), the median intensity methylated vs unmethylated signal for all 

control probes (N=8), bisulfate 1 probes (N=8), bisulfate II probes (N=2), dyebias (N=0), 

detection pvalue (N=7), low bead numbers (N=0) and post normalization checks (N=5). The 

data was normalized using functional normalization (Fortin et al.) and 15 PCs were used to 

capture technical variation. We found that slide effects and slide row were large even after 

normalization and we adjusted for slide and row in all analyses. After cleanup, we have 957 

samples including 4 replicates. GOYA was normalized using 15 control probe principal 

components based on meffil scree plots. In our analysis we included 535 samples with a 

normal BMI distribution. 

Implementation of functional normalization 

Approaches to improving efficiency 
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meffil is designed around a reimplementation of functional normalization as implemented in 

the minfi R package [9].  Output using default settings and without enhancements is 

therefore identical to minfi. 

 

meffil uses the illuminaio R package [28] to parse Illumina IDAT files into QC objects (Figure 

1). These objects play a central role in all downstream normalization procedures in meffil. 

They contain raw control probe summaries, quantile distributions of raw probe intensities, 

poor quality probes based on detection p-values and number of beads, predicted sex, 

predicted cell counts when a cell type reference is specified, and batch variable values.  As in 

functional normalization, control probes are summarized as 42 different control types which 

are organized as a control matrix with one row for each control type and one column for 

each sample. 

 

Quality control and normalization is made memory efficient by retaining only this small 

summary of the IDAT for each sample. Each is at least ~20x smaller than the complete data. 

This summary object is all that is needed to perform quality control, sample and CpG site 

filtering, identification of batch effects, and the normalization of sample quantiles, the first 

normalization step of functional normalization. In this step, probe intensity quantiles are 

normalized between samples by fitting linear models with these quantiles to the top 

principal components of the control matrix. The resulting quantile residuals for each QC 

object are retained as a set of normalized quantiles. The normalized quantiles are then used 

in the second normalization step where the raw probe intensities for each sample are 

adjusted to conform to its set of normalized quantiles. Thus, at this point, each sample is 

normalized independently of all other samples. 

 

This memory-reducing innovation makes it possible to perform the second normalization 

step on small subsets of the dataset, each at different times or on different compute 

servers. Obviously parallelization of the normalization is possible when either a single 

compute server has multiple processors or the normalization is being performed on a 

compute cluster. After the second normalization step has been completed for each 

individual sample, the resulting normalized methylation data subsets may be merged into a 

single dataset for DNA methylation analyses. The order or server on which the samples were 

normalized does not affect the final normalized values in any way.  

Quality control features 

meffil includes several features for identifying and addressing problems in the data. Quality 

control reports can be generated in order to uncover variation due to technical artefacts, 

identify outliers and flag poor quality probes and samples using detection p-values, number 

of beads, ratio of unmethylated/methylated signal, dye-bias and control probe checks. The 

report also provides checks for sample swap detection using SNP discordance between 

methylation and GWAS array SNP data as well as a gender check (Figure S1).  
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To assess the quality of a normalization, meffil generates a report comparing the strength of 

associations between batch variables with control probes and with normalized data.  

ANOVA and posthoc tests are used to identify problematic batches, e.g. a specific slide with 

technical artefacts that are not sufficiently resolved by normalization. The normalization 

report visualises these results with coefficient plots and a table with ANOVA F and posthoc 

t-statistics that pass a user-defined significance threshold (Figure S2). 

 

All reports are generated in markdown and HTML. It is possible to convert markdown 

(http://daringfireball.net/projects/markdown/) output files to wide variety of other formats 

using tools such as pandoc (http://pandoc.org/).  

Automatic selection of normalization parameters 

Different to the implementation in minfi, meffil provides two new features for improved 

outputs.  First, in the original implementation of functional normalization, the number of 

principal components of the control matrix to be included in the normalization is left as a 

user-defined parameter and is set to a default value of 2. meffil provides a method to 

identify the number of principal components that minimizes the residual variance 

unexplained by the given number of principal components. Residual variance is calculated 

under a 10-fold cross-validation scheme in order to avoid overfitting (Figure 3).  

Adjusting for measured batch effects 

A second feature was introduced because we observed that functional normalization failed 

to completely remove the variance due to certain technical artefacts such as sample slide or 

slide row. To address this, we allow the user to normalize sample quantiles using additional 

fixed and random effects.  Random effects are handled using the lme4 R package [29]. 

EWAS implementations 

To deliver a comprehensive and integrated toolkit for methylation analysis, meffil also 

provides a epigenome-wide association study (EWAS) pipeline. Confounding effects are 

handled by including appropriate covariates in the EWAS, either as known entities or as 

unknown and obtained by surrogate variable analysis [20, 30, 31]. In order to better 

understand how each type of covariate is influencing model fitting, meffil in fact fits four 

different regression models: no covariates, only supplied covariates, supplied and surrogate 

variables obtained by SVA [30, 31], and supplied and surrogate variables obtained by ISVA 

[20]. If cell counts for samples are known, they can be included with supplied covariates. 

Otherwise, meffil allows estimation of cell counts from DNA methylation profiles based on 

several publicly available blood reference datasets including three cord blood references 

[32-34] and one peripheral blood reference [35]. Estimates may also be calculated from 

user-supplied references. 
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EWAS results are summarized in a report that includes quantile-quantile, Manhattan, 

covariate and variable-of-interest plots as well as tables and scatterplots showing the 

strongest as well as user-defined candidate CpG site associations. Outputs are displayed to 

allow comparison between each of the different EWAS models (Figure S3). 

Analysis that protects study participant privacy 

Because the control probes capture only technical variation, they are fundamentally non-

disclosive. Given that datasets are functionally normalized in meffil one sample at a time 

and with only the control matrix and probe intensity quantiles for all samples in the datasets 

loaded in memory, it is possible to use meffil to normalize datasets residing on distinct 

servers together while sharing only the control matrix and probe intensity quantiles 

between the two servers (Figure 3a). Actual phenotype or DNA methylation levels need 

never be shared. The normalization proceeds by first generating QC objects for each sample 

in each dataset containing the control matrix and probe intensity quantiles and sending 

these to a single server to normalize the probe intensity quantiles. The normalized quantiles 

would then be sent back to each server and used to derive normalized methylation values 

within each corresponding dataset.  The sharing of this small amount of control and probe 

quantile information should not violate most cohort participant privacy agreements because 

the information cannot be used to identify individuals.  

 

We normalized 861 ARIES and 535 GOYA cord blood samples both separately and together 

and performed an EWAS of prenatal tobacco exposure in each dataset normalization. All 

regression models included surrogate variables and covariates as described below. We then 

meta-analyzed (inverse variance fixed effects) the associations, obtaining association 

statistics for each CpG site for the two datasets normalized separately and together.  

 

EWAS of prenatal tobacco exposure in ARIES and GOYA 

Before analysis, samples were removed if they were replicates or due to population 

stratification in the genotype data. We then used three iterations to remove methylation 

values that were 10 SD from the mean. Associations of maternal tobacco exposure were 

tested in cord blood DNA methylation. In all EWAS, surrogate variables obtained by applying 

Independent Surrogate Variable Analysis were included as covariates [20]. 

Performance evaluation 

To evaluate the performance of normalization parameters and statistical methods, an 

appropriate gold standard for analysis output is required. Ideally, the gold standard would 

be a set of EWAS associations discovered in a well powered dataset and replicated in 

independent data. A close approximation is the 6,073 associations of prenatal tobacco 
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exposure in cord blood DNA methylation discovered in a recent meta-analysis of 13 birth 

cohorts [19], one of the largest EWAS studies to date. It is not, however, a perfect standard 

(which may not exist) due to different normalization and analysis methods used for each 

dataset and lack of replication testing. To ensure that the associations were not 

contaminated with false positives due to genetic and technical artefacts, we retained the 

5,801 of the 6,073 not linked to probes potentially affected by genetic variants (MAF > 0.01 

in the European subset of 1000 Genomes) or prone to non-specific binding [36].  

 

We evaluated performance by constructing Receiver Operating Characteristic (ROC) curves 

using the truth data described above. We used the CRAN ROCR package [37] and code 

provided by [12] to construct the ROC curves. For all ISVA analyses we set the seed to 

160815 (15 August 2016). Meta analyses were conducted using an inverse variance fixed 

effects model using the metafor R package [38]. 
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Figures  

Figure 1. The workflow of meffil. 

 

Figure 2. Effect of including ‘slide’ as a random effect. 

True positive rates are consistently higher in a downstream EWAS when variation due to 

‘slide’ is removed from probe quantiles along with control variation in functional 

normalization.  Analysis was performed in ARIES cord blood samples and associations with 

prenatal tobacco exposure tested. Surrogate variables obtained by applying ISVA were 

included as EWAS covariates. True positive rates were estimated by comparison to 

associations from a large meta-analysis {Joubert, 2016 #3}. Area under the curve (AUC) 

when slide is regressed out is larger than when it is not (AUC = 0.653 vs 0.628, p < 2.2x10-16, 

DeLong’s test). 

 

Figure 3. Parameter selection for functional normalization. 

The main parameter for functional normalization is the number of principal components of 

control variation with which to normalize probe quantiles. Screeplot (a) shows the metric 

used to meffil for choosing the optimal number of principal components, the amount of 

probe quantile variation unexplained by the principal components under 10-fold cross 

validation.  Plot (b) compares true and false positive rates in a downstream EWAS of 

prenatal smoking in the ARIES dataset after normalizing with different numbers of principal 

components and regressing out slide as a random effect.  True positive rates were estimated 

by comparison to associations from a large meta-analysis {Joubert, 2016 #3}. Both plots 

indicate that 10 is a reasonable choice. 

 

Figure 4. Meta-analysis with normalized data. 

Data can be normalized using meffil as illustrated in (a) by generating QC objects for each 

dataset, sending them to a normalization server for normalization and then sending them 

back to each dataset to complete normalization of each sample. Heterogeneity statistics are 

shown for meta-analyses of prenatal tobacco exposure performed on ARIES and GOYA cord 

samples with and without normalising the two datasets together prior to meta-analysis.  

Only the top 100 associations from each meta-analysis are shown comprising 134 total CpG 

sites.  The dark diagonal line shows y=x and the gray line the regression line. 

 

Figure S1. meffil QC report 

Plots generated in the QC report. Results are shown for 5469 samples from the ARIES 

resource. A. Gender prediction. B. Comparison of methylated versus unmethylated signal C. 

GWA discordance using 65 SNP probes D. Proportion of detected probes by sample. E. 

Proportion of detected samples by probe. F. Methylation levels used to estimate cell counts 

for each sample versus reference methylation profiles. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/125963doi: bioRxiv preprint 

https://doi.org/10.1101/125963


Figure S2. meffil normalisation report 

Plots generated in the normalization report. A. PCA plot colored by batch variable. B. Anova 

test pvalues between PCs extracted from the normalized betas and batch variable. C. 

Coefficient plots for associations between PCs and a batch variable.  

 

Figure S3. meffil EWAS report 

Plots generated in the EWAS report.  Results are shown for an EWAS on prenatal smoking in 

ARIES (777 cord samples). A. Manhattan plot. B. QQ plot C. Methylation differences 

between cases and controls for a CpG of interest. D. Association between confounder and 

phenotype (variable of interest). 
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Tables 

Table 1. Comparison between Minfi and Meffil applied to 1000 microarrays on a server with 

16 processors and 64Gb memory. 

 Minfi Meffil 

Size of summary object 2.8Gb 194Mb 

Memory to normalize 0.15 0.05 

Time 54 min 16 min 

Size of normalization object 6.8G 3.5G 

 

 

Table 2. Association of normalized data with ‘slide’. 

 

 Association between slide and data 

principal component (F-statistic) 

Principal 

component 

Default FN FN with slide random 

effect 

PC1 3.72 3.36 

PC2 5.53 4.07 

PC3 3.43 3.92 

PC4 13.39 11.20 

PC5 2.99 3.99 
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