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Abstract: Fibroblasts mediate normal tissue matrix remodeling, but they can cause 

fibrosis or tissue destruction following chronic inflammation. In rheumatoid arthritis (RA), 

synovial fibroblasts expand, degrade cartilage, and drive joint inflammation. Little is 

known about fibroblast heterogeneity or if aberrations in fibroblast subsets relate to 

disease pathology. Here, we used an integrative strategy, including bulk transcriptomics 

on targeted subpopulations and unbiased single-cell transcriptomics, to analyze 

fibroblasts from synovial tissues. We identify 7 phenotypic fibroblast subsets with 

distinct surface protein phenotypes, and these collapsed into 3 subsets based on 

transcriptomics data. One subset expressing PDPN, THY1, but lacking CD34 was 3-fold 

expanded in RA relative to osteoarthritis (P=0.007); most of these cells expressed 

CDH11. The subsets were found to differ in expression of cytokines and matrix 

metalloproteinases, localization in synovial microanatomy, and in response to TNF.  Our 

approach provides a template to identify pathogenic stromal cellular subsets in complex 

diseases. 
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Main Text: 

Fibroblasts are key mediators of end organ pathology and inflammation in many 

diseases. Although they mediate normal matrix deposition and inflammation in wound 

healing, chronically activated fibroblasts can differentiate into myofibroblasts that lay 

down collagen and are responsible for fibrosis in lung, liver, gut, skin, and other tissues 

(1). Conversely, chronically activated fibroblasts are responsible for excessive matrix 

degradation that destroys cartilage and causes permanent joint damage in rheumatoid 

arthritis (2–4). Moreover, recent studies have emphasized the role of fibroblasts as 

stromal cells that regulate immune responses in lymph nodes and tumor stroma (5, 6). 

Unlike hematopoietic cell types that are known to be comprised of a variety of 

functionally different cellular types and subsets, fibroblasts have generally been 

considered to have little heterogeneity: functionally distinct subpopulations have yet to 

be clearly defined.  

Recent advances in high-throughput technologies enable investigators to query 

complex diseases in humans in new ways. For example, global transcriptomic analysis 

revealed distinct activation states and cellular subsets of immune cells (7). These 

approaches offer an opportunity to determine how stromal cells mediate various types 

of local tissue pathology. Transcriptomics of small numbers of cells, and even single 

cells, from human pathological samples can advance the understanding of tissue 

dynamics in disease. For example, single cell RNA-seq has revealed heterogeneity of 

tumor cells and identified a mechanism for drug resistance in cancer (8, 9). 

Here, we focus on mesenchymal cell heterogeneity in RA, a complex 

autoimmune disease affecting up to 1% of the world's population (10). In RA, the 
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synovium changes dramatically: the thin membrane encapsulating the joint becomes an 

inflamed, hyperplastic, and invasive tissue mass that causes joint destruction (4). 

Synovial fibroblasts secrete inflammatory cytokines and chemokines, invade and 

degrade cartilage, and stimulate osteoclasts that cause bone erosion (2, 4).  

We hypothesized that these different functions might be carried out by distinct 

cellular subsets of fibroblasts, analogous to functionally distinct subsets of leukocytes. If 

fibroblast subsets exist, we thought that altered proportions of fibroblast subsets might 

underlie pathological observations in tissues (11). Since there are no approved drugs 

that directly target fibroblasts, identifying pathogenic fibroblast subsets may reveal 

therapeutic targets broadly applicable across a range of diseases. In RA, targeting 

fibroblast subsets might complement anti-inflammatory therapies that target leukocytes 

and their cytokines (4).  

 

Results 

Fibroblasts in synovial tissue have distinct surface markers 

To examine the heterogeneity of fibroblasts in joint tissue, we isolated cells by 

enzymatic digestion of synovial specimens from joint replacement surgery. We 

compared RA samples to osteoarthritis (OA) samples. OA samples have been widely 

used as controls or comparators in the studies of RA, since OA is a degenerative joint 

disease while RA is an autoimmune disease associated with synovial hypertrophy and 

inflammation. We first examined protein expression of a variety of surface markers on 

fibroblasts including podoplanin (PDPN), cadherin 11 (CDH11), THY1 (CD90), and 
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CD34 by flow cytometry (see Supplementary Methods). To isolate fibroblasts, we first 

gated PTPRC(CD45)–GYPA(CD235a)–PECAM1(CD31)– cells to remove hematopoietic 

lineage cells, red blood cells (RBCs), and endothelial cells, and further removed 

MCAM(CD146)+ pericytes. The remaining cells had high PDPN expression, consistent 

with fibroblasts in the synovium (Fig 1A). We identified two major populations based on 

the expression of CD34. In 42 donors (26 OA and 16 RA), we observed medians of 

34.7% CD34+ and 54.7% CD34– cells (Fig 1A, Table S1). CD34– and CD34+ fibroblasts 

could further be divided into 4 and 3 populations, respectively, based on THY1 and 

CDH11 expression. However, we remained uncertain about which of these divisions 

were functionally meaningful. This result prompted us to further investigate if the gated 

fibroblast populations might have different gene expression profiles and effector 

functions. 

 

Fibroblast subpopulations have three distinct gene expression signatures 

We used two complementary strategies to investigate synovial fibroblast 

populations obtained after tissue disaggregation: (1) fluorescence sorting using a set of 

candidate protein markers followed by bulk transcriptomics of gated populations and (2) 

unbiased single cell transcriptomics without gating. 

First, we assayed each of the 7 gated populations from 3 OA and 3 RA donors 

with the Affymetrix HuGene 2.0 ST microarray, using Robust Multichip Average to 

normalize 53,617 probesets and 20,452 genes. As expected, we observed that all of the 

samples expressed genes typically expressed in fibroblasts and lacked expression of 

other lineage specific genes (Fig. S1A). However, after controlling for variation between 
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donors, we observed 2,986 genes with significant variation across the 7 distinct 

populations gated based on surface protein marker expression (FDR<1%, analysis of 

variance (ANOVA)), suggesting notable transcriptional differences across these putative 

subsets. To validate these microarray findings, we applied RNA-seq to the same 7 

subsets from 4 independent RA donors. We prepared libraries with Smart-Seq2, 

sequenced to an average depth of 5.6M fragments per sample, and quantified 

expression for 19,532 genes. These samples were also enriched with fibroblast lineage 

genes (Fig. S1B). Those genes that were significantly differentially expressed in the 

microarray experiment and that overlapped with the RNA-seq experiment (n=2,659 

genes) had similar expression profiles across the 7 subsets (Fig. S2). In total, 436 

genes were measured on both platforms and had significant variation across the 7 

putative subpopulations in both experiments (1% FDR, ANOVA) (Fig. 1B). The 

concordance of these results suggests that the gene expression differences reflect 

biological variation rather than technical or stochastic artifacts. We reasoned that these 

expression profiles could serve as proxies for molecular functions to define putative 

cellular subsets with distinct biological roles. 

Principal component analysis revealed that 7 phenotypic populations fall into 3 

distinct major subsets: CD34–THY1–, CD34–THY1+, and CD34+. Principal component 1 

(PC1) clearly separates CD34– and CD34+ samples and PC2 separates the CD34– 

samples that are THY1+ and CDH11+ (Fig. 1C). The 3 subsets were also clearly 

apparent by hierarchical clustering on pairwise Pearson correlations (Fig. 1D). CD34– 

and CD34+ samples were positively correlated within subsets and negatively correlated 

between subsets. CD34–THY1+ sample correlations were less consistent between the 3 
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subsets and within this subset, indicating that this subset may be more heterogeneous 

than the other two (Fig. 1D). We decided to group CD34–THY1–CDH11– and CD34–

THY1–CDH11+ samples because they had similar gene expression profiles overall. 

 

Single cell RNA-seq confirmed the presence of three major fibroblast subsets 

Next, since our observation from gated fibroblast populations may be potentially 

biased by our a priori selection of surface markers, we performed single cell mRNA 

sequencing to obtain an unbiased characterization of transcriptional heterogeneity in 

fibroblasts. We depleted hematopoietic cells, RBCs, and endothelial cells, and selected 

cells positive for PDPN (PTPRC– GYPA– PECAM1– PDPN+) (Fig. S1C). We used 

Illumina Smart-Seq2 to prepare single cell libraries from fibroblasts from 4 additional 

donors, 2 RA and 2 OA; we sequenced to an average depth of 5.4M fragments per cell, 

and detected an average of 8,842 genes per cell with at least 1 transcript per million 

(TPM) (Fig. S3). We selected 337 cells with at least 5,000 detected genes, and then 

used Single Cell Differential Expression (SCDE) to estimate error models for each cell, 

normalize expression values, remove aspects of variation due to library complexity, and 

correct for batch effects across donors (12). We measured protein levels on the single 

cells by flow cytometry at the time of single cell sorting for comparison with the single 

cell transcriptomic analyses. Remarkably, unbiased subsets (defined by hierarchical 

clustering of single cells with 23 genes that show high mean and variance across cells) 

were concordant with the three subsets defined by protein levels of CD34 and THY1 

surface markers (permutation P<10-4) (Fig. 2A, B). 
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Next, we assessed whether the bulk and single cell RNA-seq profiles were 

marking similar cellular subpopulations. We trained a linear discriminant analysis (LDA) 

classifier on 968 genes in the bulk RNA-seq data and predicted the classes of single 

cells (see Supplementary methods). The LDA classifier produced a probability of 

belonging to each class (CD34-THY1-, CD34-THY1+, and CD34+). The classifications 

were confident (median probability 0.8) and consistent with the three subsets (Fig. 2A). 

We compared mRNA classification with flow cytometric protein marker data recorded at 

the time of unbiased single cell sorting and found concordant cell identities and 

proportions (Fig. 2C, S4). These single-cell RNA-seq results provide an unbiased and 

independent validation of the 3 major subsets defined with bulk transcriptomics of 

samples gated by protein surface markers. 

 

Fibroblast subsets localize to specific regions of lymphoid structures in the 

synovium 

Next, we characterized the anatomical localization of fibroblast subsets in 

synovial tissue and assessed differences between OA and RA (Fig. 3A, B). CD34–

THY1+ fibroblasts in RA samples appeared as expanded masses of cells in the deeper 

sublining layer of the synovium surrounding blood vessels, especially near 

accumulations of lymphocytes. In OA samples, the CD34–THY1+ fibroblasts comprise a 

thin layer with fewer cells surrounding blood vessels than in RA samples. CD34+ 

fibroblasts were observed in both superficial lining and deeper sublining areas of the 

synovium. CD34–THY1– fibroblasts were mostly observed in lining area.   
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Fibroblast subset proportions are different between RA and OA 

We hypothesized that if pathological fibroblast subsets exist, then some subsets 

might be more or less abundant in RA relative to OA synovial tissues. Indeed, 

proportions of fibroblast subsets defined by flow cytometry with protein surface markers 

were different between RA synovial tissue (n=16) and OA (n=26) (Fig. 3C, Table S1). 

The proportion of CD34–THY1+ fibroblasts comprised a median of 22% of total 

fibroblasts in RA compared to 8% in OA (OR=3 (95% CI 1.33-6.48), P=0.007). By 

contrast, CD34–THY1– cells were less abundant in RA at 15% compared to 48% in OA 

(OR=0.48 (95% CI 0.23-1.03), P=0.06). Within 12 RA samples, the 7 samples that were 

obtained from swollen joints (according to a rheumatologist's assessment) had different 

subpopulation proportions than 5 samples from non-swollen joints (Fig. S5). The 

swollen joints had fewer CD34–THY1– (P=0.02), more CD34–THY1+ (P=0.09), and more 

CD34+ fibroblasts (P=0.01). Notably, most cells in the expanded CD34–THY1+ 

population in RA also were positive for surface protein levels of CDH11 (median 84%), 

and CDH11 was also expressed on the other fibroblast subsets including CD34–THY1– 

(median 64%) and CD34+ (median 94%) cells. These results suggest that synovial 

fibroblast subpopulation proportions are closely related to disease type and activity. 

We note that all OA samples were taken from the knee, while RA samples 

included those from the knee (n=8) as well as other smaller joints (n=8) (Table S1). To 

confirm that the altered proportion of fibroblast subsets in RA reflects the level of tissue 

inflammation, rather than joint location of origin, we collected independent RA synovial 

tissue biopsies from only knee joints and examined the proportion of fibroblast subsets 

and infiltrated leukocytes by flow cytometry (Table S2). We selected only samples with 
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synovial hypertrophy on ultrasound images. Similar to our RA versus OA comparison, 

we observed that the proportion of CD34–THY1+ fibroblasts is positively correlated with 

the proportion of infiltrated leukocytes by flow cytometry (Fig. 4A). In addition, the 

proportion of CD34–THY1+ fibroblasts correlated with both histological synovitis and 

synovial hypertrophy assessed by ultrasound (Fig. 4B, C). These results indicate that 

the altered proportion of fibroblast subsets in RA reflects tissue inflammation at both the 

molecular and clinical level. In contrast, the correlation between the proportion of CD34-

THY1+ fibroblasts and disease duration was not observed, suggesting that the altered 

proportion of fibroblast subsets is not a secondary effect of chronic tissue damage (Fig. 

4D).  

 

Proportion of fibroblast subsets is associated with accumulation of lymphocytes   

We employed mass cytometry to simultaneously assess abundances of fibroblast 

subsets and infiltrated immune cells in synovial tissues obtained from 18 RA patients 

with a variety of clinical characteristics (Table S3). This enabled us to analyze how the 

abundances of fibroblast subsets correlated with abundances of infiltrated immune cells 

in the synovial tissue. The ratio of the number of CD34–THY1+ to CD34–THY1– 

fibroblasts is positively correlated with the proportion of B cells (P=0.02) and shows a 

similar trend with the proportion of CD4+ T cells (P=0.06) in the synovial tissue (Fig. 

S6).  Correlations with other cellular proportions (CD8+ T cells, CD14+ macrophages) 

were not observed (Fig. S6). These results suggest that increased abundance of CD34–

THY1+ fibroblasts is associated with accumulation of certain types of lymphocytes within 

synovial tissue. 
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Fibroblast subsets are functionally different 

We used gene expression profiles as proxies for molecular functions to 

investigate functional differences between fibroblast subsets. Gene set enrichment 

analysis prompted us to investigate how the expression patterns of cytokines are 

different between fibroblast subsets (Fig. 5A) (13, 14). Each fibroblast subset expresses 

distinct types of cytokines and matrix metalloproteinases (MMPs) (Fig. 5B). CD34–

THY1+ fibroblasts express TNFSF11 (RANKL), and lowly express TNFRSF11B (OPG), 

a decoy receptor for TNFSF11 (Fig. 5B). The increase of CD34–THY1+ fibroblasts in RA 

may explain the increased bone destruction and accumulation of lymphocytes in RA 

synovial tissue, since RANKL is	essential for osteoclastogenesis and is involved in T 

cell trafficking in autoimmune inflammation (15, 16). 

CD34–THY1– fibroblasts express high levels of CXCL1 and CXCL8, essential for 

neutrophil recruitment and activation (Fig. 5B)(17). They also express BMP6, known to 

promote osteoblastic bone formation (Fig. 5B)(18). Depletion of CD34–THY1– 

fibroblasts may explain the decreased bone formation activity in RA. CD34+ fibroblasts 

express a variety of cytokines including IL6, CXCL12 and CCL2, crucial cytokines that 

cause tissue inflammation (Fig. 5B)(2, 4). 

To validate our transcriptional analysis, we expanded sorted fibroblast subsets in 

vitro and analyzed their protein expression by ELISA and mRNA expression by qPCR. 

Consistent with microarray and RNA-seq data in freshly isolated cells, CD34–THY1– 

fibroblasts express high levels of MMP1 and MMP3 in response to TNF stimulation; 

whereas, CD34+ fibroblasts express high levels of IL6 and CXCL12 in response to TNF 
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stimulation (Fig. 5C, D and Fig. S7). CD34–THY1+ fibroblasts express high levels of 

TNFSF11 (RANKL) and low levels of TNFRSF11B (OPG) relative to CD34–THY1– or 

CD34+ fibroblasts (Fig. 5E and Fig. S7). 

We hypothesized that the differential expression of TNFSF11 and TNFRSF11B 

between freshly isolated fibroblast subsets would affect their ability to promote 

osteoclastogenesis, an important effector function for fibroblasts. Indeed, when we co-

cultured fibroblast subsets with monocytes in osteoclastogenic conditions in vitro, we 

observed that the number of osteoclastic cells developed from monocytes was greater 

in the co-culture with CD34–THY1– fibroblasts or CD34–THY1+ fibroblasts compared to 

CD34+ fibroblasts (Fig. 5F). This suggests that fibroblast subsets differ in their ability to 

promote osteoclastogenesis and that this function can be detected during short term in 

vitro culture. 

 

Discussion 

This study identifies subsets of fibroblasts in fresh human synovium, including a 

distinct subset of PDPN+CD34–THY1+ fibroblasts that is expanded in RA and may be 

pathogenic. These cells are enriched around blood vessels in RA synovium, and their 

expression profile reveals potential pathogenic roles in lymphocyte recruitment and 

osteoclastogenesis. We note that almost all of these cells are positive for CDH11, which 

we have previously shown to be associated with pathological behavior of fibroblasts in 

in vitro studies and RA mouse models (3). 
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Expansion of fibroblasts is a dynamic component of RA synovitis. An increase in 

synovial lining fibroblasts was noted previously to correlate with disease activity score in 

28 joints (DAS28), disease duration, and the level of macrophage infiltration (19). 

Expansion of synovial sublining fibroblasts is also observed in RA, but no previous 

literature reports significant correlation between sublining fibroblasts and other clinical 

or pathological findings, except for a negative correlation with DAS28 in one study (19). 

Here, by separating fibroblasts into subsets based on the expression patterns of 

multiple markers, we found that the increase of CD34–THY1+ fibroblasts around blood 

vessels in the sublining area is a dominant change in fibroblasts in RA synovium. 

Moreover, this expansion distinguishes RA from OA, reflects RA disease activity, and 

correlates with lymphocyte infiltration in the synovium. Previous studies have shown 

that mesenchymal CDH11 determines adhesion between fibroblasts, increases their 

migration and invasion and synergizes in the activation of fibroblasts to produce MMPs, 

cytokines, and chemokines (3, 20, 21). Since a large majority of the expanded fibroblast 

population expresses this cadherin, it also may contribute to their pathologic behavior in 

RA (Fig. 3E). 

 There is a real need for strategies to define fibroblast heterogeneity and 

pathogenic fibroblast populations in order to understand the complex nature of tissue 

pathology and the role of tissue resident cells in end organ damage. Our approach 

involves an integrative analysis of cell surface markers, bulk transcriptomes, single-cell 

transcriptomics, and histological imaging of human tissues that identified a disease-

related fibroblast subpopulation that may ultimately serve as a specific target for 
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therapy. We anticipate that such an approach may serve as a template for future 

studies to identify pathogenic subsets of tissue cells in other human diseases. 

 

Materials and Methods 
 
Patient recruitment and isolation of synovial cells 
 
We obtained synovial tissue from joint replacement surgeries, synovectomy surgeries or 
synovial biopsies of OA or RA patients with appropriate informed consent as required. 
The study protocols are Institutional Review Board approved at Partners HealthCare, 
Hospital for Special Surgery, and the University of Birmingham Local Ethical Review 
Committee. We modified previously described protocols to isolate synovial cells (22, 
23). Briefly, we obtained tissue immediately after the surgeries. We removed bone and 
adipose tissues with scissors. We cut synovial tissues into small pieces, and then 
subjected these pieces to enzymatic digestion. For microarray analysis, low input bulk 
RNA-seq and in vitro assays, we digested tissues with 4 mg/ml collagenase type 4 
(Worthington, NJ), 0.8 mg/ml DispaseII, 0.1 mg/ml DNaseI (Roche) in DMEM at 37°C. 
After 15 minutes, we collected the supernatant and replaced with fresh enzyme mix. We 
repeated these procedures every 15 minutes for total 1 hour. For the analysis of 
synovial biopsy samples, we digested the tissues with 0.05 mg/ml Liberase TM (Roche) 
and 0.04 mg/ml DNaseI at 37°C for 30 minutes. For mass cytometry analysis, we 
digested tissues with 0.2 mg/ml Liberase TL (Roche), 0.1 mg/ml DNaseI in RPMI at 
37°C for 20 minutes to minimize the cleavage of surface markers of lymphocytes during 
the enzymatic digestion. The same protocol was used to isolate synovial cells for single 
cell RNA-seq. After lysing red blood cells with ACK-lysing buffer, we stained cells with 
antibodies, and sorted by FACSAria Fusion (BD) with 100 µm nozzle at 20 psi. For the 
analysis with microarray and low input RNA-seq, the cells were sorted into 2% FBS 
HBS+ buffer, spun down, and lysed with TRIzol (Invitrogen). We extracted RNA and 
cleaned up by RNeasy micro kit (QIAGEN) with DNaseI treatment. For single cell RNA-
seq, the cells were stained with antibodies and directly sorted into 5 µl of TCL buffer 
(QIAGEN) with 1% β-mercaptoethanol (SIGMA) in 96 well plates. For the analysis with 
mass cytometry, we froze isolated synovial cells in CryoStor CS10 (STEMCELL 
Technologies, Vancouver, Canada) for batched analysis. 
 
Fibroblast markers.  
 
Selection of markers. We selected fibroblast markers for separation of putative 
fibroblast subsets on the basis of published literatures. PDPN is known to be a marker 
for fibroblastic reticular cells (FRCs) in lymph nodes and is highly expressed in 
fibroblasts in synovial tissues, especially in lining fibroblasts (24, 25). CDH11 is also 
highly expressed in FRCs and lining fibroblasts in RA synovial tissue (24, 26). THY1 
has been widely used as a fibroblast marker in cultured cells, and is highly expressed in 
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sublining fibroblasts in synovial tissue (25, 27). Expression of CD34 has been 
documented in fibroblasts and endothelial cells (28, 29). CD146 has been used as a 
marker for pericytes (29). 
 
Antibodies and reagents. The following antibodies and reagents were used for the 
analysis of synovial cells with flow cytometry and cell sorting: anti-CD45-APC-H7 (2D1, 
BD Pharmingen), anti-CD235a-APC-Alexa Fluor750 (11E4B-7-6(KC16), Beckman 
Coulter), anti-CD31-PE-Cyanine7 (WM-59, eBioscience), anti-CD146-BV450 (P1H12, 
BD Horizon), anti-CD34-PE (4H11, eBioscience), anti-Podoplanin-PerCP-eFluor710 
(NZ-1.3, eBioscience), anti-THY1-FITC (5E10, BD Pharmingen), anti-Cadherin11-Biotin 
(23C6), human TruStain FcX (Biolegend), Streptavidin-APC (Jackson 
ImmunoResearch), Live/Dead fixable aqua dead cell stain kits (Molecular probes).  
For immunofluorescence staining of synovial tissue, following antibodies and reagents 
were used: anti-CD45 (135-4C5, Abd serotec), anti-CD34 (EP373Y, Abcam), anti-
Podoplanin (NZ-1.3, eBioscience), anti-THY1 (F15-42-1, Merck Millipore), anti-mouse 
IgG1-FITC (Southern Biotech), anti-mouse IgG2b-Alexa Fluor 647 (Life Technologies), 
anti-rat IgG-Alexa Fluor 594 (Life Technologies), anti-rabbit IgG-Alexa Fluor 546 (Life 
Technologies), and Hoechst 33258 (Life Technologies). 
 
 
Transcriptional analysis. 
 
Gene expression microarrays. We evaluated the integrity of RNA with Bioanalyzer or 
by Tapestation (Agilent). We used only RNA with more than RIN score of 7. We 
prepared cDNA from 38.1 µg total RNA using Ovation Pico WTA (NuGEN), followed by 
labeling 5 µg cDNA using Biotin Module (Nugen).  We assayed gene expression using 
the GeneChip Human 2.0 ST microarray (Affymetrix). We normalized expression by 
Robust Multiarray Averaging (RMA). We identified and removed two outlier arrays by 
principal components analysis (PCA). We assigned probes to Entrez Gene IDs using 
Ensembl BioMart on March 17, 2015. In the instance where there were multiple 
probesets assigned to a single gene, we averaged them to obtain a single gene value. 
 
RNA-seq library preparation and sequencing. We used 1,250 cells per sample for 
library preparation. We prepared sequencing libraries using the Smart-Seq2 protocol. 
We pooled and sequenced libraries were pooled and sequenced with the Illumina HiSeq 
2500 to a depth of 8-14M reads per library.  
 
Single-cell RNA-seq sequencing. We assayed 384 fibroblasts from 4 donors, 2 with 
OA and 2 with RA. For each donor, we collected fresh synovial tissue, isolated synovial 
cells by enzymatic digestion, and stained with antibodies against CD45, CD235a, CD31, 
CD146, PDPN, CD34, THY1 and CDH11. We sorted 96 single CD45-CD235a-CD31-
PDPN+ cells by FACSAria Fusion (BD), and assayed mRNA expression with the Smart-
Seq2 protocol (30). Single-cell libraries were also prepared with the same protocol, and 
we aimed to sequence to a depth of 200K-12M reads per library (31). On average, we 
sequenced 5.4M fragments and detected 8,153 genes per cell with at least 1 TPM. We 
discarded 47 cells (12%) with fewer than 5,000 genes detected from further analysis.  
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RNA-seq gene expression quantification. We quantified cDNAs on canonical 
chromosomes in Ensembl release 83 with Kallisto v0.42.4 (32) in transcripts per million 
(TPM) and summed to get gene-level expression values. We quantified gene 
expression the same way for bulk and single cell RNA-seq samples. For differential 
expression analysis, hierarchical clustering, and principal components analysis (PCA), 
we log (base 2) transformed TPM values.  
 
Lineage marker analysis of microarrays, bulk RNA-seq, and single-cell RNA-seq. 
We selected lineage markers for fibroblast, endothelial, and hematopoietic cells (33) 
and checked their expression levels to confirm that our samples are from the fibroblast 
lineage (Fig. S1). 
 
Differential expression analysis with microarrays. We used the R package limma to 
assess differential expression analysis on RMA normalized expression values (34) 
Before performing differential expression analysis, donor-specific variation was 
regressed out by obtaining the residuals from linear models. Each gene was modeled 
as a linear combination of donor-specific effects, and the residuals from these models 
were used for differential expression analysis, hierarchical clustering, and PCA. We 
expected differences in gene expression between RA and OA. However, we lacked 
power to see these differences within fibroblast subsets. 
 
Differential expression analysis with RNA-seq. RNA-seq data was analyzed the 
same way as the microarray data, starting with log2 transformed TPM expression 
values. Donor-specific variation was similarly regressed out before differential 
expression analysis, hierarchical clustering, and PCA. 
 
Gene set enrichment analysis. Terms from MSigDB Hallmark Gene Signatures were 
used for enrichment analysis with Gene Set Enrichment Analysis (35). We tested gene 
sets for enrichment with differential expression (DE) between the 3 major subsets in 
order to assess how they might differ from each other in terms of molecular pathways. 
MSigDB hallmark pathways enriched with DE signal for CD34-THY1+ population, 
expanded in RA joints, include "epithelial to mesenchymal transition", "hypoxia", and 
"glycolysis" (36). 
 
Principal components analysis (PCA). After gene selection by ANOVA or differential 
expression analysis, we scaled each sample and then scaled each gene across the 
samples to obtain a specificity of the gene to each sample. Next, we used the prcomp 
function in R to perform PCA with centered and scaled log2 expression values. 
 
Linear discriminant analysis (LDA). We checked if transcriptional profiles of single 
cells are similar to profiles of the 3 major subsets we defined by bulk transcriptomics. 
First, we selected 1,171 genes with significant (5% FDR) differential expression 
between any pair of the 3 subsets in bulk RNA-seq data. We selected a subset of 968 
genes with high expression in single cells (mean log2(TPM) > log2(10)). We used the 
bulk RNA-seq data to train a linear discriminant analysis (LDA) model with these genes, 
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and then classified each single cell's expression profile to predict each single cell’s 
identity. The confidence of each classification is represented by a posterior probability. 
 
 
Histological analysis.  
RA synovial tissues were obtained by biopsies from RA patients in the BEACON 
Birmingham early arthritis cohort, which is an early arthritis cohort recruiting patients 
with new onset arthritis prior to treatment with disease-modifying antirheumatic drugs. 
Synovial tissues for staining were frozen in OCT compound. Sections were made in 
6 µm thickness, fixed with acetone, and frozen prior to use. Slides were rehydrated in 
PBS, blocked with 10% normal goat serum in PBS for 10 minutes, and then incubated 
with primary antibodies, followed by secondary antibodies. Slides were mounted using 
ProLong Diamond (Life Technologies), and imaged using a Zeiss LSM 780 confocal 
microscope. Images were processed using Zen Black and Zen lite (Zeiss). 
Representative images were shown. Synovial tissues for histological analysis and 
haematoxylin and eosin staining were fixed in formaldehyde then mounted in paraffin, 
sectioned and stained by the Hospital Pathology service. 
 
Histological evaluation of inflammatory infiltrate. 
Hematoxylin and eosin-stained sections of knee synovial biopsy samples were 
examined histologically for the severity of inflammatory infiltrate using the inflammatory 
component of the Krenn synovitis score (37). Inflammatory infiltrates were graded from 
0-3 (0=no inflammatory infiltrate, 1=few mostly perivascular situated lymphocytes or 
plasma cells, 2=numerous lymphocytes or plasma cells sometimes forming follicle-like 
aggregates, and 3= dense band-like inflammatory infiltrate or numerous large follicle-
like aggregates). The tissues were graded in a blinded manner by two trained 
individuals then consensus agreed. 
 
Clinical evaluation of synovitis by ultrasound. 
The joint to be biopsied was assessed using ultrasound immediately prior to the 
procedure using a Siemens Acuson Antares scanner (Siemens PLC, Bracknell, UK) and 
multifrequency (5-13MHz) linear array transducers. Synovitis and power Doppler (PD) 
positivity were defined using consensus OMERACT definitions (38). Greyscale synovial 
hypertrophy and Power Doppler ultrasound variables were graded on 0-3 semi-
quantitative scales as previously reported (39).  
 
 
Functional analysis. 
 
Cell culture. We sorted CD34-THY1- fibroblasts, CD34-THY1+CDH11+ fibroblasts, and 
CD34+THY1+CDH11+ fibroblasts, and cultured them in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Gemini), 2 mM L-
glutamine, antibiotics (penicillin and streptomycin), and essential and nonessential 
amino acids (Life Technologies). The cells were expanded for 3-20 days for assays in 
vitro. The cells with one or two passages were used. The cells were cultured in the 
presence or absence of 1 ng/ml of TNF-α (R and D) for 24 hours for ELISA of IL-6, 
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CXCL12, MMP-1, MMP-3 and MMP-14, or for 72 hours for qPCR of TNFSF11 and 
TNFRSF11B. 
 
ELISA. The levels of IL-6, CXCL12, MMP-1, MMP-3 and TNFRSF11B in the 
supernatant or the levels of MMP-14 in the cell lysate were evaluated by ELISA kit as 
described in manufacturer's instructions (Duo Set, R and D). 
 
Quantitative Real-Time PCR (qPCR). cDNA was synthesized with QuantiTect Reverse 
Transcription kit (QIAGEN). qPCR was performed with Brilliant III Ultra-Fast SYBR 
Green qPCR master mix (Agilent Technologies) on a Mx3000 (Stratagene). Following 
primers were used; TNFSF11, forward; 5’-GGA GAG GAA ATC AGC ATC GAG, 
reverse; 5’-CCA AAC ATC CAG GAA ATA CAT AAC AC, TNFRSF11B, forward; 5’-CAA 
CAC AGC TCA CAA GAA CAG, reverse, 5’-GAA GGT GAG GTT AGC ATG TCC, 
GAPDH forward; 5’-AAT CCC ATC ACC ATC TTC CAG, reverse; 5’-AAA TGA GCC 
CCA GCC TTC. 
 
Osteoclastogenesis assay. Osteoclast progenitors were prepared by culturing PBMC 
in the presence of 20 ng/ml of M-CSF (PeproTech) in DMEM supplemented with 10% 
FBS (GE Healthcare), 2 mM L-glutamine and antibiotics for 5-6 days. Expanded 
fibroblasts were seeded at 5,000 cells/well in 96 well plate. On the next day, osteoclast 
progenitors were added at 5,000 cells/well, and were co-cultures with fibroblasts in the 
presence of 20 ng/ml M-CSF and 5-20 ng/ml RANKL (PeproTech). The media was 
replaced every 2 days. After 6 days of the co-culture, the cells were fixed by 4% PFA. 
After TRAP staining, TRAP positive multinucleated cells were counted as osteoclasts.  
 
Mass cytometry. After thawing cryopreserved synovial cells, the cells were first stained 
with cisplatin for the assessment of viability, and then stained with antibody cocktails as 
described previously (40). The cells were fixed and permed with intracellular fixation 
and permeabilization buffer (eBioscience), stained for intracellular markers, and re-fixed 
with formalin (Sigma). The stained cells were analyzed with Helios (Fluidigm, CA, USA). 
Data were normalized using EQTM Four Element Calibration Beads (Fluidigm), and were 
analyzed with FlowJo 10.1 (FlowJo, OR, USA).  
 
Statistical analysis. The statistical analysis for each experiment was described in 
sections of results, figure legends, and supplementary materials. 
 
 

Supplementary Materials 

Fig. S1. Heatmap of expression data for genes characteristic of cell types in synovial 

tissues. 
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Fig. S2. Concordance of differential expression between microarrays and low-input 

RNA-seq. 

Fig. S3. Assessing quality of RNA-seq data by visualizing the distributions of number of 

cDNA fragments assigned to mRNA transcripts and the number of genes detected with 

at least 1 transcript per million (TPM). 

Fig. S4. Agreement between protein gating and LDA classification based on single cell 

RNA-seq. 

Fig. S5. Proportion of fibroblast subsets in swollen and non-swollen joints in RA 

patients. 

Fig. S6. Correlations between the ratio of CD34-THY1+ to CD34-THY1- synovial 

fibroblasts and other cellular and clinical parameters. 

Fig. S7. The expression of cytokines and MMPs in vitro. 

Table S1. Clinical characteristics of evaluated patients with flow cytometry. 

Table S2. Clinical characteristics of patients who donated synovial biopsy samples from 

knee joint. 

Table S3. Clinical characteristics of evaluated patients with mass cytometry.  
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Data and materials availability: Microarray, RNA-seq, flow cytometry, and mass 
cytometry data will be made publicly available at GEO. 
Code availability: R source code for the analysis is available upon request. 
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Fig. 1. Fibroblast subsets have distinct protein and mRNA expression. (A) Gating 
strategy for synovial fibroblasts with heterogeneous expression of surface proteins. (B) 
Analysis of variance (ANOVA) reveals 436 genes with significant (1% FDR) variation 
across 7 gated populations that are measured and statistically significant in both 
microarray and RNA-seq datasets. Squares beneath each column indicate number of 
samples for that phenotypic subset. (C) Principal components analysis (PCA) with 2,986 
genes (1% FDR, ANOVA) in microarray data separates the 32 microarray samples into 
3 subsets: CD34–THY1–, CD34–THY1+, and CD34+. (D) Pairwise Pearson correlation of 
microarrays also suggests 3 major subsets of fibroblasts. 
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Fig. 2. Single-cell RNA-seq validates findings in bulk assays. (A) Hierarchical 
clustering is concordant with our surface protein gating. Bottom tracks show linear 
discriminant analysis (LDA) classification by mRNA expression of 968 genes and 
posterior probabilities. (B) For the heatmap, we selected 23 genes with greatest 1% 
mean and greatest 1% variance in expression levels. (C) Number of cells in each 
subset as determined by surface protein levels (x-axis) and by LDA classification (y-
axis). Root mean squared error (RMSE). 
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Fig. 3. The anatomical localization and the proportion of fibroblast subsets in 
synovial tissue are different between OA and RA. (A, B) Anatomical localization of 
fibroblast subsets in RA and OA synovial tissue. Hoechst 33258: White, CD45: Cyan, 
PDPN: Blue, CD34: Green, THY1: Red. Small arrow heads: CD34–THY1– fibroblasts. 
Big arrow heads: CD34–THY1+ fibroblasts. Arrows: CD34+ fibroblasts. L: Lining area. S: 
Sublining area. Scale = 100 µm. (C) Proportions of fibroblast subsets in synovial tissue 
in OA (n=26) and RA (n=16) evaluated by flow cytometry. (D) Proportions of CDH11+ 
cells in CD34–THY1– fibroblasts, CD34–THY1+ fibroblasts and CD34+ fibroblasts.  
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Fig. 4. Knee biopsies revealed the correlation between the proportion of fibroblast 
subsets and synovial inflammation. (A) The Spearman correlation between the 
proportion of CD34–THY1+ fibroblasts in total fibroblasts and the proportion of CD45+ 
cells in total live cells in synovial tissue biopsies from RA knee joints. (B, C, D) The 
linear correlation coefficient between the proportion of CD34–THY1+ fibroblasts and 
Krenn inflammation score (B), ultrasound synovial hypertrophy score (C), and disease 
duration (years) (D). Proportion of cells were evaluated by flow cytometry. 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 26, 2017. ; https://doi.org/10.1101/126193doi: bioRxiv preprint 

https://doi.org/10.1101/126193


 28 

 

 

Fig. 5. Gene expression profiles in freshly isolated cells and functional assays of 
cultured cells indicate functional differences between fibroblast subsets. (A) 
Gene set enrichment analysis with RNA-seq samples and MSigDB Hallmark Gene 
Signatures. Terms with <5% FDR are displayed. (B) Expression of selected genes. (C, 
D) Protein expression of IL6 and MMP3 in the supernatant of expanded fibroblast 
subsets in the presence or absence of 1 ng/ml TNFα. (E) The ratio of TNFSF11 
(RANKL) and TNFRSF11B (OPG) in mRNA level in expanded fibroblast subsets. (F) 
Co-culture of osteoclast progenitors with fibroblast subsets in osteoclastogenic 
conditions. Bars show means and error bars show standard deviations. One-way 
ANOVA, Tukey post-hoc: * P < 0.05; ** P < 0.01. 
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