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Abstract 

Somatic mutations accumulate in non-coding regions of the genome during 

tumorigenesis, but their functional characterization presents a challenge.  Somatic non-coding 

mutations rarely overlap among patients, which necessitates large sample sizes to detect 

associations.  We analysed somatic mutations called from whole-genome sequencing (WGS) and 

RNA sequencing (RNAseq) from 3000 tumors across the Pan-Cancer Analysis of Whole 

Genomes to identify and functionally characterize mutation accumulation and its impact on gene 

dysregulation in cancer.  We identified 1.5 million motif disruption domains (MDDs) across 40 

cancer types, which we characterized as pan-cancer targets for recurrent mutation 

accumulation.  These MDDs deregulate gene expression in cancer-specific and pan-cancer 

patterns by disrupting transcription factor binding sites in regulatory and insulator 

elements.  Disruption is most recurrent across individuals at MDDs in conserved open chromatin, 

revealing potential drivers.  This accumulation of somatic variants targeting regulatory and 

structural elements in MDDs generates gene expression dysregulation during tumorigenesis. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 3

Introduction 

The discovery of many disease-associated loci in non-coding regions of the genome1–3 

suggests that these regions are home to a variety of important functions. Recently, evidence has 

accumulated suggesting a role for non-coding variants in disrupting regulatory elements in 

cancer, leading to aberrant gene expression and tumorigenesis. Silencing of enhancers and 

insulators can lead to the dysregulation of epigenetic programs4,5, notably in colorectal6 and 

prostate cancers7.  Mutations arising in promoters through the accumulation of somatic single 

nucleotide variants (SNVs) can affect downstream gene expression8, and may even generate 

driver mutations when arising in certain key promoters such as TERT8,9.   In addition, SNVs 

arising in structural elements like insulators can affect gene regulation through the modification 

of 3D chromatin structure5,10,11. However, our understanding of the consequences of SNV 

accumulation and their clustering in specific regulatory and structural elements of the genome 

across cancers is incomplete, despite their well documented role in altering gene expression in 

cancer.  

Somatic non-coding variants tend not to be recurrent among patients, which makes the 

characterization of their functional impact particularly challenging.  As a result, large whole-

genome sequencing (WGS) and gene expression datasets from paired normal and tumor data are 

required to capture rare SNVs in order to provide sufficient power to detect their effects on gene 

regulation.  Recent studies have addressed this problem by focusing on regions of SNV 

accumulation rather than individual SNVs, which greatly increases the power of detection of 

associations.  Two main approaches include the use of functional annotations to identify regions 

of interest (mainly known regulatory regions), and identifying regions based on clustering of 

SNVs in the genome across samples.  Limiting the scope of a study to known functional 

regions2,3,13–15, allows for greater power, but relies on our limited understanding of the functional 

role of the non-coding genome16.  Allowing the data to inform the identification of regions using 

clustering algorithms3,17 prevents the limitations of functional annotation from impacting resulting 

regions.  Here we provide a more comprehensive examination of the impact of SNVs on the gene 

regulatory program in cancer in several ways.  First, whereas previous studies have limited their 

analyses to either specific mutational targets (e.g. those in previously annotated regulatory 

elements) or specific targets of dysregulation (e.g. TERT), we used a genome-wide clustering 

algorithm to identify regions of mutational accumulation, and included all genes as potential 
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targets of dysregulation. In addition to analyzing both WGS and RNA-sequencing data, we 

incorporate chromatin accessibility data into our analyses in order to identify regions with a 

higher probability of impacting gene activity.  We also take a multi-faceted approach to gene 

expression regulation by focusing on both regulatory and structural elements as potential targets 

of mutation.   

We performed a comprehensive analysis of SNVs in WGS from paired germline and 

tumor biopsies of 2835 donors collected from the Pan-Cancer Analysis of Whole Genomes 

project (PCAWG), as well as RNAseq data from 1188 donors including 121 paired tumor and 

normal tissue biopsies from the same individuals. Here we show that while the vast majority of 

non-coding SNVs are observed at low frequency across individuals, the majority cluster in 

recurrent regions of high mutation density across cancers, which we call motif disruption 

domains (MDDs).  Analyzing MDDs enabled us to uncover novel pan-cancer associations 

between motif disruption and gene dysregulation, which the analysis of non-recurrent individual 

SNVs would have made undetectable.  Additionally, we discovered extremely recurrent 

disruptions at MDDs we classify as potential novel driver domains, some of which colocalize 

with known cancer regulators such as MYC and HMGIY. 
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Results 

Motif disruption domains colocalize with regulatory and structural elements  

The vast majority of SNVs in the PCAWG data are non-recurrent (96.8% singletons), as 

previously observed16,17. In order to detect clustering of SNVs across the genome, we concatenated 

continuous genomic areas encompassing at least two SNVs no more than 100bp apart across all 

tumor samples.  100bp was found to be the distance at which we no longer saw a substantial 

change in the number of MDDs identified when we tested a range of distances from 25bp to 

1600bp.  This approach allowed us to identify 1,507,105 pan-cancer densely mutated genomic 

domains of median size 1.2kb, which we will refer to as motif disruption domains 

(MDDs).  Among these MDDs were previously reported highly mutated non-coding regions, 

such as the TERT promoter9 (MDD at chr5:1295032-1295670). Despite the non-recurrence of 

individual SNVs, 53.7% of all SNVs fall into an MDD, which tend to accumulate outside of 

genes, primarily in distal intergenic regions (Fig. 1a), at a median distance of 21,395bp to a 

TSS.  MDDs fall primarily in heterochromatin (19-32% within each cancer type) and quiescent 

DNA (53-72%), concordant with the accumulation of SNVs in DNAse free regions18. However, 

10% to 22% of MDDs overlap with active transcription start sites (TSS) or enhancers (Fig. 

1b).  These results show that while individual SNVs may not be recurrent among individual 

tumours, they fall into regions of high SNV density that may have functional importance during 

tumorigenesis, and using MDDs as the unit of analysis increases our power of detecting those 

functional associations. 

The non-coding genome is the target of almost 1400 transcription factors (TFs)19 that 

contribute to the regulation of transcription of nearby genes by binding to specific motifs. To 

investigate the TF binding motifs in MDDs that have been targeted by SNVs, we computed a 

motif disruption score for each TF motif.  The scores for all motifs within each MDD were 

summarized to produce a “MDD disruption score”. MDD disruption scores were negatively 

correlated with distance to a TSS (p < 2×10-16, � = -0.10; Fig. 1c), supporting their potential role 

in the regulation of gene expression. Interestingly, MDDs within the top 1% of motif disruption 

scores capture binding sites of TFs and cofactors known to bind to promoter or enhancer regions 

(Fig. 1d; Supplementary Table 1). Those associated with promoters include binding sites of 

general TFs, core elements of the proximal promoter (TATA box), and known proto-oncogenes 

such as MYC, STAT, SPI1 from the E26 transformation-specific family, and those associated 
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with enhancers include binding sites of pioneer TFs (FOXA and GATA) and chromatin 

remodeler binding sites (EP300). We also found that CTCF (CCCTC-binding factor) binding 

sites were included in the top 25 most drastically disrupted motifs across cancer (Fig. 1d). SNV 

accumulation at binding sites of CTCF 5,10,11, a boundary element that recruits cohesin to stabilize 

the chromatin loop12, confirms the frequent disruption through mutation of CTCF in various 

cancers5,11. The relationship between disruption at an MDD and colocalization with regulatory 

elements critical to proper gene regulation points toward a disruptive role of MDDs in the gene 

expression program though structural and/or regulatory element disruption, likely to affect long-

range enhancer-promoter interactions. 

MDDs may alter transcription through two main processes in cancer: MDDs overlapping 

with regulatory regions disrupt TF binding sites, resulting in the alteration of the normal gene 

expression program of the cell, and MDDs at chromosome structural elements impact the 

integrity of larger cohesin-mediated loops called insulated neighborhoods and topologically 

associated domains (TAD).  We focus specifically on the structural element CTCF, as it has been 

previously shown to be the target of mutation accumulation in cancer5,10,11,15.  Moreover, somatic 

mutations impact the binding affinity of CTCF20, and deletions  overlapping CTCF binding sites 

in T-cell acute lymphoblastic leukemia was associated with aberrant expression of TAL1 and 

LMO2 genes5,10,11.  However, a relationship between mutation accumulation at CTCF and aberrant 

gene activity in the surrounding neighborhood has not previously been shown.  By examining 

associations between TF motif disruption at MDDs and the gene activity of neighbor genes in the 

context of overlap with regulatory elements we can identify MDDs that are important to the gene 

regulatory program during tumorigenesis. 

MDDs disrupt the cell gene expression program 

To test whether MDDs impact TF binding sites or chromosomal structural elements 

within and among cancer types, we first investigated the MDDs located in accessible regions of 

the genome, as assessed by their enrichment for DNase1 in 7 cancer types for which we have 

paired normal and tumor gene expression data. We looked for associations between motif 

disruption scores and changes in gene expression between tumour and normal samples using 

Coinertia Analyses (COIA)21. 33,485 MDDs contained regulatory elements overlapping 

accessible DNA. The pattern of DNase1 enrichment at MDDs is generally tissue specific, with a 

maximum of 64.8% overlap at an MDD among all tumour and normal tissues (Fig. 2c, Figure 
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S1).  COIA of each cancer type revealed a number of associations between differential gene 

expression between normal and tumor biopsies and the disruption scores of MDDs overlapping 

DNase1 (Fig. 2c), suggesting that MDDs influence the deregulation of gene expression between 

normal and tumor tissue in accessible chromatin regions. Second, we investigated MDDs that 

overlap with neighborhood domains identified using chromatin interaction analysis by paired-end 

tag sequencing (ChIA-PET) for SMC1, a subunit of cohesin22 in the 7 cancer types for which we 

have paired normal and tumor gene expression data.  Similarly, we observed significant 

associations between CTCF disruptions in the 746 MDDs overlapping these elements and gene 

dysregulation within the topologically associated domain of that neighborhood (Fig. 2d). In both 

cases we observe a cancer-specific pattern of association between MDD disruption and gene 

expression alteration (Fig. 2c, 2d), suggesting that tissue-specific gene regulation in the cell of 

origin is a predictor of the dysregulation in gene expression during tumorigenesis. While the 

interaction network between MDDs and gene expression differs among tumors, a recurrent 

analysis of correlation coefficients from gene-MDD associations reveals a commonality of 

dysregulation associated with specific MDDs among cancers (Fig. 2c, 2d).  

MDDs impact important biological functions in cancer 

An interesting result from the COIAs is the frequent number of associations we observed 

between disruption in MDDs and dysregulation of non-coding RNAs.  For example, we found 

that disruption led to dysregulation in the microRNA miR-187, which has previously been 

associated with tumorigenesis in several cancers (e.g. prostate24, nasopharyngeal25, renal26, 

pancreatic27, thyroid28, breast29, and oesophageal30) and is known to increase tumor invasiveness29, as 

well as miR-8, which also was shown to promote tumorigenesis31,32. We also observed associations 

between MDD disruption and dysregulation of small nucleolar RNAs (snoRNAs), which perform 

housekeeping functions by regulating translation of other RNAs and can also represent cancer 

diagnostic/prognostic markers (e.g. SNORD89).  snoRNAs are regulated by the MYC 

transcription factor, which are found to be highly disrupted and associated with dysregulation of 

gene expression. 

We characterized the 300 genes with the strongest correlations with MDD disruptions 

from each COIA using molecular interaction networks to visualize interactions between the genes 

and their regulators (Supplementary Tables 2a and 2b).  Although the COIAs included both 

protein-forming as well as non-translated genes, we only included protein-forming genes in  the 
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networks.  In addition to known associations with cancer among the genes impacted by disruption 

at an MDD enriched with DNase1, including TRIM23, SAA1, LTBR, CHEK2, and SMAD3, we 

observed a number of interactions between our query genes and cancer-associated genes or TFs 

(e.g. MYC, CDK4, EP300, FOXO1, and RHOA) (Fig. 3a).  Though we found fewer correlations 

between disruptions at MDDs overlapping with CTCF binding sites and gene expression changes 

than MDDs enriched for DNase1, they also included genes with known associations with cancer 

(e.g. TSPAN1, DES, and SFTPA) as well as interactions with known cancer regulators (e.g. 

SOX2, EP300, CD14) (Fig. 3b.).  Interestingly, there was substantial overlap between connecting 

nodes in the network and transcription factors we found to be highly disrupted (Fig. 1d.), 

including JUN, EP300, STAT3, NGF4A, and MYC in the DNase1 network (Fig. 3a.), and 

EP300, SOX2, and SP1 in the CTCF network (Fig. 3b.).  This suggests that these factors are not 

only highly disrupted among individuals, but that they are integral to the dysregulation of gene 

expression during tumorigenesis. 

MDDs enable the identification of potential non-coding cancer-specific and pan-cancer 

drivers 

For an MDD to contribute to the regulation of cancer progression, the chromatin (i) 

should be in an open state in the normal cell of origin and (ii) should not become inactivated 

during clonal range expansion. To identify potential regulatory driver MDDs, we studied motif 

disruption frequency in MDDs grouped by chromatin accessibility, as we expect disruptions in 

regions that are important to cancer development to be more recurrent. MDDs were grouped in 

four categories based on DNAse enrichment in different tissue types: enrichment in normal and 

tumor tissues, in normal tissue only, in tumor tissue only, and in neither normal nor tumor. We 

first tested whether disruption recurrence differs among DNase1 categories across all MDDs, and 

found that while the vast majority of MDDs were disrupted in very few individuals, the 

recurrence of disruptions across individuals within cancers was significantly different among 

DNase1 categories and cancers, with a significant interaction effect (p<0.0001 for all 

comparisons; for full model results see Supplementary Table S3a).  The increased recurrence 

among MDDs in open chromatin in both tumor and normal tissue suggests that we have captured 

potential drivers in this group. 

To examine potential driver MDDs more specifically, we focused on the outliers of the 

distribution of proportion of individuals with a disruption within each cancer and DNase1 
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category, i.e. the MDDs that are ‘extremely recurrent’.  We observed a pattern whereby, as with 

the full dataset, outlier MDDs are more frequently found across many samples when found in 

regions accessible in both tumour and normal tissues (Fig. 4a), with the highest recurrence 

(100%) being observed for an MDD among cutaneous melanoma patients (Fig. 4b).  This pattern 

is observed across cancer types, and recurrence is significant among DNase1 categories, cancers, 

and the interaction between them (p<0.0001 for all comparisons; for full model results see 

Supplementary Table S3b).  We consider ‘extremely recurrent’ MDD disruptions in regions of 

open chromatin in both tumor and normal tissue to represent potential non-coding cancer-specific 

drivers (Fig. 4a; Supplementary Table S4).  We identified gene ontology groups, biological 

pathways, regulatory motifs, and proteins statistically enriched in the outlier MDDs for each 

cancer (for full enrichment results, see Table S5a).  For example, outlier MDDs in breast cancer 

were enriched for ETF, a transcription factor associated with overexpression of the oncogene 

EGFR33, and E2F1, which has a crucial role in the control of the cell cycle and regulation of 

tumor suppressors, as well as being a target for DNA tumor viruses34. Furthermore, colorectal 

adenocarcinoma had a large number of significantly enriched transcription factors, including 

HOXB5, a known contributor to several cancers35,36, NFATC2, which is involved in cancer 

immune dysregulation37, Egr1, a regulator of multiple tumor suppressors38, and HMGIY, an 

architectural transcription factor associated with neoplastic transformation and metastatic 

progression39.  In most cancers we found enrichments of several homeobox binding sites (e.g. 

DLX1, GSX2, CRX, LMX1A, Ipf1, Pitx3, LMX1B, and NKX6-1) as well as other factors of 

importance such as TBP and OC-2, and GATA, and enrichments of gene ontology groups 

involved in important cell processes such as cell-cell adhesion, localization, and 

communication.   

We used a recurrence analysis to identify MDDs with high frequencies of disruptions 

across all cancers, potential pan-cancer drivers, by ranking MDDs by the proportion of 

individuals with a disruption for each cancer, then taking the median rank for all cancers for each 

MDD (Fig. 4c).  We found that regions associated with meiosis and meiotic regulation, 

recombination processes, and the regulation of RNA Polymerase I, as well as for known cancer 

regulators such as POU4F140, ETF33, and Oct-441 were among the processes and factors 

significantly enriched in the top 500 pan-cancer recurrently disrupted MDDs (for full enrichment 

results, see Table S5b).   
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To further characterize potential driver MDDs, we determined which transcription factor 

motifs were recurrently disrupted among them.  We identified all TF motifs in outlier MDDs in 

regions of conserved open chromatin, and extracted the most frequently disrupted motifs within 

each cancer (Supplementary Fig. S2).  The 25 most recurrently disrupted TF motifs across 

cancers were identified based on the number of times a TF motif was observed among the most 

disrupted TF motifs within each cancer  (Fig. 4d).  TFs in these most recurrently disrupted motifs 

overlapped with those with the highest disruption scores (Fig. 1d), as well as those associated 

with gene dysregulation in the COIAs (e.g. JUN, FOXO1, MYK, SOX2, and SP1). Among the 

most recurrently disrupted TF motifs are other factors of note such as ETS42, HNF443, and 

RUNX144.  We conclude that  these  MDDs may be classified as potential drivers, as they 

represent SNV targets of considerable importance to gene expression alterations involved  in 

cancer.   

 Next, to document further the roles of MDDs in tumorigenesis, we tested whether the 

strength of motif disruption or the motif disruption recurrence is a stronger predictor of 

alterations in gene expression.  We used a linear model to test the relationship between log-fold 

changes in gene expression and (1) mean disruption score at the associated MDD, (2) the 

proportion of individuals exhibiting disruption at the MDD, and (3) the interaction between the 

two.  We found that the model was significant, but explained very little of the variance (p = 

0.0268, R2 = 1.044x10-5).  Surprisingly, while there was a slight but significant relationship 

between change in expression and the proportion of individuals with a disruption (p = 0.027), 

there was no significant relationship between the change in gene expression and average 

disruption score (p = 0.348; for full model results see Supplementary Table 6).  Collectively, 

these results suggest that the disruption of regulatory elements may have a threshold rather than 

an additive effect, where after a disruption occurs the alteration in gene expression is not further 

exacerbated by additional disruptions.  
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Discussion 

           In this work we present a novel method of characterizing the functional impact of non-

coding somatic mutations. By integrating whole-genome sequencing, RNA sequencing, and 

chromatin accessibility data, we have developed a new classifier of non-coding mutation 

accumulations that disrupt regulatory and insulator elements, and present a comprehensive view 

of how mutation accumulation impacts gene expression in cancer. By identifying MDDs that are 

recurrent targets of mutation across all cancer types, and using these MDDs as units of analysis, 

we had sufficient power to detect associations between mutation accumulation and genome-wide 

gene expression dysregulation despite the non-recurrence of SNVs. We found that the determined 

regions of recurrence are targets of mutation accumulation that have direct impact on the 

regulation of gene expression both through regulatory and structural elements. The targeted 

transcription factor binding motifs at these MDDs include a wide array of well documented gene 

regulators such as TBP and structural elements like the insulator CTCF, the latter known to be a 

target of noncoding SNVs in colorectal and other cancers5,11.  The deletion of the entire CTCF 

binding site is known to lead to aberrant gene activity5,11, and here we show that the accumulation 

of point mutations leads to similar dysregulation.  This suggests a mechanism to explain the 

known contribution of dysfunction in topologically associated domains to cancer initiation and 

progression, and to other diseases45. 

        Our analysis of MDDs revealed potential cancer-specific and pan-cancer drivers through 

the examination of recurrently disrupted MDDs in regions of open chromatin. We found 

enrichments in these putative driver MDDs of both known cancer regulators such as HOXB5 and 

Egr-1 as well as biological processes and transcription factors without known associations with 

cancer. Our approach highlights the large benefit of considering recurrently mutated genomic 

regions, overpowering that of relying on individuals SNVs, to expose the role of non-coding 

somatic mutations in gene dysregulation in cancer. Interestingly, our comparison of the strength 

of disruption at an MDD, the recurrence of those disruptions, and their effect on gene 

dysregulation suggests that there is a threshold effect to gene dysregulation, where increasingly 

strong disruptions at an MDD do not contribute additively to the alteration in gene expression. 

Our results suggest that one or a small number of non-coding somatic mutations can cause 

aberrant gene activity leading to tumorigenesis, and that some of these regions of mutation 

accumulation are also recurrent targets across cancers, potentially having a role in driving the 
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cancer phenotype. Altogether, our identification of motif disruption domains revealed targets of 

somatic non-coding mutation accumulation that play a key role in the alteration of gene 

expression during cancer development, and which include potential novel drivers of 

tumorigenesis. 
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Methods 

Whole genome sequencing and somatic point mutation calling 

The PCAWG project sequenced the genomes of tumor biopsies and germline normal tissue 

(whole blood) with high quality standards for 2588 donors (freeze v1.4; syn5871617). Variants 

specific to the tumor were called excluding tissue-specific and individual-specific germline 

variants from all tumor variants by PCAWG working group 1.  From the 2588 white-listed tumor 

biopsies initially available, 959 had whole genome and RNA sequencing available for the same 

tumor, and 300 of these had RNAseq data available for the adjacent normal tissue.   

 

Mutational domains  

To determine the boundaries of the mutational domains, we used the bedtools merge function 

from bedtools49 (version 2.24.0). All single nucleotide variants (SNVs) from the 2588 whitelisted 

tumor biopsies available, falling within 100 bp of each other were clustered together in 

mutational domains. The 100bp distance between clustering SNVs was chosen by systematically 

identifying domains using different distances ranging from 25bp to 800bp, then choosing the 

distance where we observed a diminishing rate of change  on the asymptotic curve of the number 

of domains identified.  As some recurrent SNVs are neighbour-less, and would comprise 100% of 

1bp regions, giving undue weight to individual SNVs, all regions were extended by flanking 

50bp,  to be at least 101bp in length. These domains were discarded from subsequent analyses if 

unique to  a single donor. 

 

Motif search and motif disruption scores 

A transcription factor binding site (TFBS) search was done using the R50 package motifbreakR51 

(version 1.2.2) for each individual and each single nucleotide alteration, we searched for TFBS 

affected  by the variant, and computed disruption scores for each TFBS. The score of each motif 

was computed by comparison with the position probability matrices from the reference genome 

BSgenome.Hsapiens.UCSC.hg19 (version 1.40.1). The germline score was calculated using the 

SNVs called from the germline WGS sequences. Finally, the somatic score was calculated based 

on the somatic SNVs called from the tumor WGS sequences. 
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The motif disruption or relative entropy � was computed as per Equation 1, where i = 1, … n, M 

is a frequency matrix of width n (length of the motif sequence), and bi (set to 0.25, an 

approximation of the human background frequency 52) is the background frequency of the letter i: 

 

Equation 1: �� � ∑ ���� �
���

��
	����,
,�,�
   

 

Total motif disruption scores for each donor were computed using distance matrices that 

summarise the effects of somatic SNVs on all motifs when compared with the reference motifs 

from the germline sample of the same donor. Owing to the variation among conservation scores 

within TFBS motifs, we computed the percentage of disruption scores for the motif for the 

reference allele (WGS of the germline) and the somatic SNV, defined as:  

 

Equation 2: � �  
������� �	 
�	���
� ���	� � ��
���� ���	� �� ��� ��� 

������� ���	� �� ��� ���� ��
���� ���	� �� ��� ���
, 

where PWM is the position weight matrix.  

We then summed the absolute difference between the germline and somatic percentages 

of motif disruption (��) where multiple TF binding motifs overlap at a given single nucleotide 

alteration locus, and corrected for the size of the region to determine the score of the disruption 

within a given region for each donor. 

Most targeted motif in motif disruption domains (MDDs) 

MDDs in the top percentile of overall motif disruption scores were used to select the most 

targeted TFBS. We merged motifs associated with the same TF to avoid overestimation of 

redundant TFBS disruption scores at a same loci by taking the lowest disruption score for this 

motif. The scores of different TFBSpresent at the same loci were summed. Finally, only the 

scores of strongly disrupted motifs (as defined by motifbreakR 51) were selected in these MDDs. 

Annotation of the motif disruption domains and ChIPseq processing 

Gencode v19 was used as the reference for the gene and promoter annotation (Fig. 1a). Cancer-

specific chromatin state data were retrieved from the Epigenomic Roadmap consortium, and TF 

binding site locations in A549 (lung) and HepG2 (liver) cancer cell lines were extracted from 

ENCODE narrow peaks files. Chromatin state within each MDD was quantified by computing 

the ratio of nucleotides exhibiting each chromatin state. To functionally annotate the MDDs we 
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used DNase1 peaks from the ENCODE and Roadmap consortia (see Table 1) as well as SMC1 

ChIA-pet neighborhood domains (GSE68977). To assess if MDDs fall within potentially active 

regulatory regions, we computed the overlap between MDDs with DNase1 regions within tissue 

and cancer types. We considered MDDs to cause structural chromatin alteration only if they 

contained a disruption of CTCF binding motif, determined by computing the overlap between 

MDDs and SMC1 binding domains. 

  

RNAseq data preprocessing   

After excluding RNAseq data flagged for quality issues, our RNAseq dataset included 300 

normal and tumor paired biopsies from freeze v1.4 for which we also had WGS data, processed 

by the PCAWG consortium groups 3 and 14 (syn5871617). Raw sequencing FASTQ files were 

aligned using STAR and TOPhat aligners, and read counts per gene were calculated for both the 

STAR and TOPHAT pipeline using htseq-count with the PCAWG reference GTF, a modified 

version of Gencode v19 (syn3221170). We filtered out mitochondrial genes, and genes for which 

90% of the donor had FPKMuq values under 10. We used the SVA package to estimate one 

surrogate variable while controlling for the cancer type and tumor or normal status for analyses 

using both WGS and RNAseq data, and only for cancer type for analyses using only WGS data, 

followed by a GLM with a poisson distribution to regress out the surrogate batch effect. The 

residuals from the regression analysis were used to compute  the fold change in expression 

between paired tumor and normal tissue biopsies in analyses using WGS and RNAseq data. 

 

Coinertia analyses 

Coinertia analyses were performed using the R packages ade453 (version 3.3.0). The gene 

expression and disruption matrices were normalized to one unit variance and centered prior to 

running a principal component analysis (PCA). PCA was performed (center=TRUE, 

scale=TRUE, scannf=F, nf=2) on a matrix containing the total individual disruption scores 

calculated previously for each cancer type, and another was performed on  the gene expression 

fold change matrix . Then, we performed a coinertia analysis between the two PCAs (scannf = 

FALSE, nf=2). The coinertia analysis resulted in cross tabulated correlation coefficients between 

the normalized sum of the disruption scores (��) and the batch corrected fold change of 

expression of a gene. Then, we computed a Monte-Carlo Test on the sum of eigenvalues of a co-
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inertia analysis based on RV coefficient with permutation to assess the overall correlation 

between the gene expression and disruption matrices.  We extracted the 300 coding genes with 

the top correlations with an MDD disruption score for the DNase1 and CTCF COIAs, and 

visualized their interactions with molecular interaction networks using the Reactome database 

(2015) in Cytoscape23.  We included linkers in the visualization to examine regulators of the 

genes. 

 

Disruption recurrence analyses 

 Data for the disruption recurrence analyses was processed in R version 3.3.2.  We first 

used the packages GenomicFeatures54, GenomicRanges54, rtracklayer55, data.table56, reshape257, 

and tidyr58.  For each cancer type, we used ChIP-seq data (detailed previously) to determine 

whether each MDD fell into a region of DNase1 enrichment for both the tumour and normal 

state. These designations became our chromatin accessibility categories (DNase1 enrichment- 

Tumour/DNase1 enrichment- Normal; DNase1 enrichment- Tumour/No DNase1 enrichment- 

Normal; No DNase1 enrichment- Tumour/DNase1 enrichment- Normal; No DNase1 enrichment- 

Tumour/No DNase1 enrichment- Normal).  We then transformed our MDD disruption scores into 

a binary score (disrupted or not disrupted) for each individual at each MDD, and calculated the 

proportion of individuals with a disruption at each MDD for each cancer type.  We used an 

Analysis of Variance (ANOVA) to compare the proportions of individuals with a disruption 

among DNase1 categories, including cancer type in our model to control for inter-cancer 

differences in disruption recurrence.  As we are primarily interested in identifying drivers of 

tumorigenesis, and therefore in the most shared disruptions across individuals, we used the 

scores() function from the R package outliers59 to extract for each cancer and accessibility 

category the observations above the 99th percentile, based on normalized z scores.  We tested for 

differences among the proportion of individuals with disruptions among each accessibility and 

cancer type category in these outlier MDDs using ANOVA, and visualized the data using 

ggplot260.  

 We next used the MDDs falling in the DNase1 enrichment- Tumour/DNase1 enrichment- 

Normal category to identify those with the highest pan-cancer recurrence.  We only included 

MDDs with disruptions seen in at least 50% of cancers.  For each cancer, we ranked all MDDs 

based on the proportion of individuals with a disruption, then took the median ranking of all 
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cancers for each MDD.  This median value represents the combination of frequency of 

disruptions at an MDD both within a cancer and among cancers.  We visualized the top one 

hundred most recurrently disrupted MDDs across cancers using a heatmap of the proportion of 

individuals with disruptions for each cancer. 

 To characterize putative driver MDDs identified by the recurrence of disruptions within 

and among cancers in regions of conserved open chromatin, we used the web-based software 

program g:Profiler61 to search for statistical enrichment of gene ontology groups, biological 

pathways from KEGG and Reactome, and regulatory motifs from TRANSAC and 

miRBase.  Enrichment analysis was performed for each cancer-specific group of outlier MDDs 

and among the 500 most dysregulated pan-cancer recurrent MDDs. 

 In order to characterize the relationship between the recurrence of a disruption among 

individuals and the strength of that disruption (represented by the MDD’s disruption score), we 

calculated the average disruption score of an MDD for each cancer, excluding data from 

individuals with no disruption.  After visualizing the data, we tested for a relationship between 

the log-transformed average disruption scores and the proportion of individuals with a disruption 

using a linear regression.  We then tested for relationships between alterations in gene expression 

and both the average disruption score and the proportion of individuals with a disruption at an 

MDD, along with the interaction between the two, using a linear regression.   

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 18

References 

1. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory 

DNA. Science 337, 1190–1195 (2012). 

2. Khurana, E. et al. Integrative annotation of variants from 1092 humans: application to cancer 

genomics. Science 342, 1235587 (2013). 

3. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding 

regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014). 

4. Taberlay, P. C., Statham, A. L., Kelly, T. K., Clark, S. J. & Jones, P. A. Reconfiguration of 

nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of 

enhancers and insulators in cancer. Genome Res. 24, 1421–1432 (2014). 

5. Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 

818–821 (2015). 

6. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in 

colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011). 

7. Song, J. Z., Stirzaker, C., Harrison, J., Melki, J. R. & Clark, S. J. Hypermethylation trigger of the 

glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21, 1048–1061 (2002). 

8. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 

957–959 (2013). 

9. Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding somatic 

mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46, 1258–1263 (2014). 

10. Ji, X. et al. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells. Cell Stem Cell 18, 

262–275 (2016). 

11. Hnisz, D., Day, D. S. & Young, R. A. Insulated Neighborhoods: Structural and Functional Units of 

Mammalian Gene Control. Cell 167, 1188–1200 (2016). 

12. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. 

Nature 467, 430–435 (2010). 

13. Lehmann, K.-V. & Chen, T. Exploring functional variant discovery in non-coding regions with 

SInBaD. Nucleic Acids Res. 41, e7 (2013). 

14. Araya, C. L. et al. Identification of significantly mutated regions across cancer types highlights a rich 

landscape of functional molecular alterations. Nat. Genet. 48, 117–125 (2016). 

15. Lochovsky, L., Zhang, J., Fu, Y., Khurana, E. & Gerstein, M. LARVA: an integrative framework for 

large-scale analysis of recurrent variants in noncoding annotations. Nucleic Acids Res. 43, 8123–8134 

(2015). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 19

16. Piraino, S. W. & Furney, S. J. Beyond the exome: the role of non-coding somatic mutations in 

cancer. Ann. Oncol. 27, 240–248 (2016). 

17. Piraino, S. W. & Furney, S. J. Identification of coding and non-coding mutational hotspots in cancer 

genomes. BMC Genomics 18, 17 (2017). 

18. Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. 

Genet. 47, 822–826 (2015). 

19. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human 

transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009). 

20. Filippova, G. N. et al. Tumor-associated zinc finger mutations in the CTCF transcription factor 

selectively alter tts DNA-binding specificity. Cancer Res. 62, 48–52 (2002). 

21. Jeffery, I. B. et al. Integrating transcription factor binding site information with gene expression 

datasets. Bioinformatics 23, 298–305 (2007). 

22. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 

351, 1454–1458 (2016). 

23. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular 

interaction networks. Genome Res. 13, 2498–2504 (2003). 

24. Casanova-Salas, I. et al. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and 

prognosis in patients with prostate cancer treated with radical prostatectomy. J. Urol. 192, 252–259 

(2014). 

25. Chen, H.-C. et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br. 

J. Cancer 100, 1002–1011 (2009). 

26. Fridman, E. et al. Accurate molecular classification of renal tumors using microRNA expression. J. 

Mol. Diagn. 12, 687–696 (2010). 

27. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from 

normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007). 

28. Nikiforova, M. N., Tseng, G. C., Steward, D., Diorio, D. & Nikiforov, Y. E. MicroRNA expression 

profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 

93, 1600–1608 (2008). 

29. Mulrane, L. et al. miR-187 is an independent prognostic factor in breast cancer and confers increased 

invasive potential in vitro. Clin. Cancer Res. 18, 6702–6713 (2012). 

30. Wijnhoven, B. P. L. et al. MicroRNA profiling of Barrett’s oesophagus and oesophageal 

adenocarcinoma. Br. J. Surg. 97, 853–861 (2010). 

31. Eichenlaub, T., Cohen, S. M. & Herranz, H. Cell Competition Drives the Formation of Metastatic 

Tumors in a Drosophila Model of Epithelial Tumor Formation. Curr. Biol. 26, 419–427 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 20

32. Bolin, K. et al. miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial 

organization in Drosophila wings. Dev. Biol. 412, 83–98 (2016). 

33. Kageyama, R., Merlino, G. T. & Pastan, I. A transcription factor active on the epidermal growth 

factor receptor gene. Proc. Natl. Acad. Sci. U. S. A. 85, 5016–5020 (1988). 

34. Worku, D. et al. Evidence of a tumour suppressive function of E2F1 gene in human breast cancer. 

Anticancer Res. 28, 2135–2139 (2008). 

35. Lee, J.-Y. et al. HOXB5 Promotes the Proliferation and Invasion of Breast Cancer Cells. Int. J. Biol. 

Sci. 11, 701–711 (2015). 

36. Tucci, R. et al. HOXB5 expression in oral squamous cell carcinoma. J. Appl. Oral Sci. 19, 125–129 

(2011). 

37. Müller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. 

Immunol. 10, 645–656 (2010). 

38. Baron, V., Adamson, E. D., Calogero, A., Ragona, G. & Mercola, D. The transcription factor Egr1 is 

a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. 

Cancer Gene Ther. 13, 115–124 (2006). 

39. Reeves, R., Edberg, D. D. & Li, Y. Architectural transcription factor HMGI(Y) promotes tumor 

progression and mesenchymal transition of human epithelial cells. Mol. Cell. Biol. 21, 575–594 

(2001). 

40. Fortier, J. M. et al. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes 

directly to its unique transcriptional signature. Leukemia 24, 950–957 (2010). 

41. Zeineddine, D., Hammoud, A. A., Mortada, M. & Boeuf, H. The Oct4 protein: more than a magic 

stemness marker. Am. J. Stem Cells 3, 74–82 (2014). 

42. Seth, A. & Watson, D. K. ETS transcription factors and their emerging roles in human cancer. Eur. J. 

Cancer 41, 2462–2478 (2005). 

43. Walesky, C. & Apte, U. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and 

cancer. Gene Expr. 16, 101–108 (2015). 

44. Ito, Y., Bae, S.-C. & Chuang, L. S. H. The RUNX family: developmental regulators in cancer. Nat. 

Rev. Cancer 15, 81–95 (2015). 

45. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of 

gene-enhancer interactions. Cell 161, 1012–1025 (2015). 

46. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). 

47. Cleary, J. G. et al. Comparing Variant Call Files for Performance Benchmarking of Next-Generation 

Sequencing Variant Calling Pipelines. (2015). doi:10.1101/023754 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 21

48. Fan, Y. et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model 

improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 17, 

(2016). 

49. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. 

Bioinformatics 26, 841–842 (2010). 

50. Dessau, R. B. & Pipper, C. B. [’'R"--project for statistical computing]. Ugeskr. Laeger 170, 328–330 

(2008). 

51. Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR : an R/Bioconductor package for 

predicting variant effects at transcription factor binding sites: Fig. 1. Bioinformatics btv470 (2015). 

52. D’haeseleer, P. What are DNA sequence motifs? Nat. Biotechnol. 24, 423–425 (2006). 

53. Dray, S., Stéphane, D. & Anne-Béatrice, D. The ade4 Package: Implementing the Duality Diagram 

for Ecologists. J. Stat. Softw. 22, (2007). 

54. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, 

e1003118 (2013). 

55. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome 

browsers. Bioinformatics 25, 1841–1842 (2009). 

56. Dowle, M. et al. data.table: Extension of data.frame. (2014). 

57. Wickham, H. & Others. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007). 

58. Wickham, H. tidyr: Easily Tidy Data with spread () and gather () Functions. R package version 0. 2. 

0 (2014). 

59. Komsta, L. outliers: Tests for outliers. R package version 0. 14 (2011). 

60. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). 

61. Reimand, J. et al. g: Profiler—a web server for functional interpretation of gene lists (2016 update). 

Nucleic Acids Res. gkw199 (2016). 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126359doi: bioRxiv preprint 

https://doi.org/10.1101/126359


 22

Figure Legends 

Figure 1. MDD genomic landscape colocalize with regulatory and structural elements. (a) 

Genomic annotation of MDD using GENCODE v19. (b) Heatmap showing the percentage of 

overlap between MDDs containing disruption scores > 0 and the functional genome. The 

ChromHMM 18-state model in normal and tumor cells (see Methods) was used to characterize 

the functional genome. (c) MDD disruption scores compared to distance from a TSS. (d) Top 25 

most disrupted motifs in the 1% most disrupted MDDs 

Figure 2. MDDs disrupt regulatory and insulator elements leading to gene dysregulation. 

(a) Coding genes having their promoter in open chromatin in normal and tumor tissue and 

overlapping an MDD with disrupted TFBSs are over represented in extremely dysregulated 

genes. (b) Genes having the boundaries of their TAD disrupted are over represented in the 

extreme fold change values (c) The correlation between MDD disruption and gene expression 

alteration in regions overlapping DNase1. The left panel represents the overlap between the 

33,485 MDDs (in rows) and the DNase1 regions (blue = overlap, white = no overlap), 

specifically computed for the tumor and the associated normal tissue of each cancer (in column). 

Euclidean distance was used to cluster the columns and rows. Row order is consistent among all 

panels. The 7 middle panels represent the correlation between the disruption scores for the same 

MDDs (in rows) and fold-change in gene expression for the 11,243 genes with differential 

expression between tumour and normal pairs. Only the 10 genes with the highest correlations are 

shown for each cancer. All panels are on the same scale, from -1 to 1. The top 100 correlations 

for each cancer are shown in table S4. Finally, the right panel represents the logarithm of the 

recurrence score (+1) of each correlation between a MDD and a difference in gene expression 

across the 7 cancers. A higher log correlation score means that there is recurrent disruption-

dysregulation correlation (negative or positive) among the 7 cancers. (d) Correlation between 

disruption at MDDs overlapping CTCF and TAD boundary elements and neighborhood gene 

dysregulation. The left panel represents the overlap between the 746 MDDs (in rows) and the 

CTCF and TAD regions (blue = overlap, white = no overlap), specifically computed for the 

tumor and the associated normal tissue of each cancer (in columns). As in c, the columns and 

rows are clustered by euclidean distance and the row clustering is consistent across the other 

panels. The 7 middle panels again represent correlations between the MDDs (in rows) and fold-
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change in gene expression for the 20,801 genes found in insulated neighborhoods. Again, only 

the 10 genes with the highest correlations are shown in each panel and all are on the same scale (-

1 to +1). The right panel, as in c, represents the recurrence of a correlation between disruption 

and gene expression alteration at an MDD across the 7 cancers. 

Figure 3. Disrupted transcription factors within MDDs interactant with dysregulated genes. 

Recurrently dysregulated coding genes associated with MDD disruption (see Fig. 2c and 2d) are 

represented by circles alongside with their regulators (diamonds) in a network constructed using 

Reactome data, including the 300 strongest correlations resulting from coinertia analyses.  Two 

networks were constructed, one using genes associated with disruptions in MDDs enriched for 

DNase1 (a), and one with genes associated with disruptions in MDDs overlapping CTCF and 

TAD (b). Genes and regulators involved in tumorigenesis are highlighted in yellow. 

Figure 4.  Extremely recurrent MDDs are potential cancer divers. The proportion of 

individuals sharing a disruption at a particular MDD in each of four DNase1 enrichment 

categories were compared for each of eleven cancers. (a) While the vast majority of MDDs have 

a low proportion of disruptions shared among individuals, visualization of the outliers of the 

distribution of proportions reveals that for the majority of cancers, MDDs in open regions for 

both tumour and normal samples contain disruptions in a higher proportion of individuals than 

any other DNase1 category. (b) A profile of the genomic, chromatin, and ChiP-seq binding 

landscape underlying the top outlier in skin cutaneous melanoma (SKCM) from Fig. 4a. (c) 

Commonality of disruptions in these accessible domains suggests that these may include drivers 

that are critical to cancer genesis and maintenance. The proportion of individuals with disruptions 

in each tumour-open and normal-open MDD was compared across cancers with a recurrence 

analysis in order to identify commonly disrupted pan-cancer MDDs. (d) While disruption sharing 

across cancers was minimal, there was considerable overlap among the specific TF motifs where 

the most disruptions occurred among the cancers.  Here we show the most frequently disrupted 

motifs across cancers (for individual cancers see Supplementary Fig. S2). 
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