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Abstract

Neuronal membrane potential resonance (MPR) is associated with subthreshold and network
oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification
of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well
understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron
MPR is sensitive to blockers of H- (/) and calcium-currents (/c;). We used the impedance profile of the
biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based
model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases
of MPR, in these optimal models, the values of resonant- (f.es) and phasonant- (f,-0) frequencies were
almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their
amplitude, in order to provide a mechanistic explanation the dependence of MPR on the /¢, gating
variable time constants. Additionally, we found that distinct pairwise correlations between I,
parameters contributed to the maintenance of f..s and resonance power (Q;). Measurements of the PD
neuron MPR at more hyperpolarized voltages resulted in a reduction of f,es but no change in Q..
Constraining the optimal models using these data unmasked a positive correlation between the maximal
conductances of I and I¢,. Thus, although I, is not necessary for MPR in this neuron type, it contributes

indirectly by constraining the parameters of /c,.
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Author Summary

Many neuron types exhibit membrane potential resonance (MPR) in which the neuron produces the
largest response to oscillatory input at some preferred (resonant) frequency and, in many systems, the
network frequency is correlated with neuronal MPR. MPR is captured by a peak in the impedance vs.
frequency curve (Z-profile), which is shaped by the dynamics of voltage-gated ionic currents. Although
neuron types can express variable levels of ionic currents, they may have a stable resonant frequency.
We used the PD neuron of the crab pyloric network to understand how MPR emerges from the interplay
of the biophysical properties of multiple ionic currents, each capable of generating resonance. We show
the contribution of an inactivating current at the resonant frequency in terms of interacting time
constants. We measured the Z-profile of the PD neuron and explored possible combinations of model
parameters that fit this experimentally measured profile. We found that the Z-profile constrains and
defines correlations among parameters associated with ionic currents. Furthermore, the resonant
frequency and amplitude are sensitive to different parameter sets and can be preserved by co-varying
pairs of parameters along their correlation lines. Furthermore, although a resonant current may be
present in a neuron, it may not directly contribute to MPR, but constrain the properties of other
currents that generate MPR. Finally, constraining model parameters further to those that modify their

MPR properties to changes in voltage range produces maximal conductance correlations.
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Introduction

Neuronal network oscillations at characteristic frequency bands emerge from the coordinated activity of
the participating neurons. Membrane potential resonance (MPR) is defined as the ability of neurons to
exhibit a peak in their voltage response to oscillatory current inputs at a preferred or resonant
frequency (fres) [1]. MPR has been observed in many neuron types such as those in the hippocampus [2-
4] and entorhinal cortex [2-6], inferior olive [7, 8], thalamus [1, 9], striatum [10, 11], as well as in
invertebrate oscillatory networks such as the pyloric network of the crustacean stomatogastric ganglion
(STG) [12-14]. Neurons may also exhibit phasonance or a zero-phase response, which describes their
ability to synchronize with oscillatory inputs at a preferred phasonant frequency (f,-o) [4, 15-18].
Resonance, phasonance and intrinsic oscillations are related, but are different phenomena as one or

more of them may be present in the absence of the others [15, 16, 18].

Resonant and phasonant frequencies result from a combination of low- and high-pass filter mechanisms produced
by the interplay of the neuron’s passive properties and one or more ionic currents and their interaction with the
oscillatory inputs [1, 15, 18, 19]. The slow resonant currents (or currents having resonant gating variables) oppose
voltage changes and act as high-pass filters. They include the hyperpolarization-activated inward current (/y) and
the slow outward potassium current (/y). On the other hand, the fast amplifying currents (or currents having
amplifying gating variables) favor voltage changes and can make MPR more pronounced. They include the
persistent sodium current (/yap) and the inward rectifying potassium (l;) current. Most previous systematic
mechanistic studies have primarily examined models with one resonant and one amplifying current, such as /Iy and
Inap, respectively [15, 18-20]. Currents having both activating and inactivating gating variables (in a multiplicative
way) such as the low-threshold calcium current (/c,) are not included in this classification, but they are able to

produce resonance by mechanisms that are less understood [16, 21].

Although a causal relationship between the properties of MPR and network activity has not been established [but
see 22], resonant neurons have been implicated in the generation of network oscillations in a given frequency
band because the resonant and network frequencies often match up or are correlated. One example is in the
hippocampal theta oscillations [23] in which CA1 pyramidal cells exhibit MPR in vitro at theta frequencies of 4-10
Hz [2-4, 24] (but see [25]). Interestingly, MPR is not constant across the somatodendritic arbor in these neurons
[26]. Hippocampal interneurons also show MPR in vitro, but at gamma frequencies of 30-50 Hz [3, but see 4], and
gamma oscillations have been found to be particularly robust in network models containing resonant interneurons

[27, 28].
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The crab pyloric network produces stable oscillations at a frequency of ~1 Hz, driven by a pacemaker
group composed of two neuron types, the anterior burster (AB) and the pyloric dilator (PD), that
produce synchronized bursting oscillations through strong electrical-coupling [29]. The PD neuron shows
MPR, with f.es ~1 Hz that is positively correlated with the pyloric network frequency [12]. Previous work
has demonstrated that MPR in this neuron depends on two voltage-gated currents: Ic, and /3 [12]. lonic
current levels in pyloric neurons are highly variable across animals, even in the same cell type [30]. It is
therefore unclear how these currents may interact to produce a stable MPR in the PD neuron and

whether this variability persists or is increased or decreased in the presence of oscillatory inputs.

Traditionally, MPR is measured by applying ZAP current injection and recording the amplitude of the voltage
response [1, 31]. In some systems, depolarization can increase [32] or decrease [33], 1996) the preferred
frequency. Alternatively, resonance is measured by applying ZAP voltage inputs in voltage clamp and recording the
amplitude of the total current. Both approaches yield identical results for linear systems, but not necessarily for
nonlinear systems. A previous study from our lab using the voltage clamp technique showed that in the PD neuron
hyperpolarization decreases both f..s and network frequencies [14]. Since MPR results from the outcome of the
dynamics of voltage-gated ionic currents activated in different voltage ranges, changing the input voltage
amplitude is expected to change f. in an input amplitude-dependent manner. This cannot be captured by linear
models in which impedance is independent of the input amplitude. To our knowledge, no study has attempted to

understand the ionic mechanisms that produce shifts in f,e in response to changes in the voltage range.

Previous studies have explored the generation of MPR by /¢, and through the interaction between /¢,
and Iy in hippocampal CA1 pyramidal neurons [16, 17] and thalamic neurons [21], where the resonant
and network frequencies are significantly higher than in the crab pyloric network and the /c, time
constants are smaller. Based on numerical simulations, these investigations have produced important
results about the role of the activating and inactivating gating variables and their respective time
constants play in the generation of MPR and the determination of f... However, a mechanistic
understanding of the effects of the interacting time constants and voltage-dependent inactivation that
goes beyond simulations is lacking. An important finding for the CA1 pyramidal neurons is that, for
physiological time constants, they exhibit resonance, but no phasonance [16]. However, for larger time
constants, outside the physiological range for these neurons, they are able to exhibit phasonance. This
suggests that PD neurons, which have slower time scale currents, may exhibit resonance and
phasonance at comparable frequencies. If so, such a correlation between resonance and phasonance

can be used to explain the influence of ionic current parameters.
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Our study has two interconnected goals: (i) to understand how the interplay of multiple resonant gating
variables shapes the Z- and ¢-profiles (impedance amplitude and phase-shift as a function of input
frequency) of a biological PD neuron, and (ii) to understand the many ways in which these interactions
can occur to produce the same Z-profile in these neurons. For a neuron behaving linearly, e.g., with
small subthreshold inputs, this task is somewhat simplified by the fact that linear components are
additive. However, neurons are nonlinear and the nonlinear interaction between ionic currents has been

shown to produce unexpected results [16, 18, 19].

To achieve these goals we measured and quantified the Z- and ¢-profiles of the PD neuron. We then
used a single-compartment conductance-based model of Hodgkin-Huxley type [34] that included a
passive leak and the two voltage-gated currents Iy and Ic, to explore what combinations of model
parameters can produce the experimentally observed PD neuron Z- and ¢-profiles. The maximal
conductances of ionic currents of neurons in the stomatogastric nervous system vary widely [35-37]. We
therefore assume that the parameters that determine the Z-profile in the PD neuron vary across
animals. Thus, instead of searching for a single model that fit the PD neuron Z-profile, we used a genetic
algorithm to capture a collection of parameter sets that fit this Z-profile. To achieve such a fit, we
defined a set of ten attributes that characterize the PD neuron Z-profile (e.g., resonant frequency and
amplitude) and used a multi-objective evolutionary algorithm [MOEA, 38] to obtain a family of models
that fit these attributes. We then used this family of optimal models to identify the important
biophysical parameters and relationships among these parameters to explain how the PD neuron Z-
profile is shaped. We show how the fact that the inactivating calcium current peaks at the same phase
as the passive properties, in response to sinusoidal inputs, can explain why resonant and phasonant
frequencies are equal. We identify significant pairwise parameter-correlations, which selectively set
certain attributes of MPR. We show that, in this neuron, I, does not produce MPR but can extend the
dynamic range of Ic, parameters mediating MPR. Furthermore, we identify a subset of models that
capture the experimental shift in the resonant frequency with changes in lower bound of voltage
oscillation. Finally, we exploit the fact that the resonant and phasonant frequencies are equal for the PD
neuron to provide a mechanistic understanding of the effects of the /¢, time constants on the resonant
frequency by using phase information. Our results provide a mechanistic understanding for a generic
class of neurons that exhibit both resonance and phasonance as the result of the interaction between

multiplicative gating variables and complement the studies in [16].
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151  Results

152 The PD neuron produces 1 Hz bursting oscillations with a slow-wave approximately -60mV to -30mV (fig
153 3a). Driving the neuron through this voltage range with a ZAP function in voltage clamp (fig 3b top

154 panel) produces a minimum (arrow in fig 3b bottom panel) in the amplitude of the current response
155 (fig 3b). The input frequency at which this minimum occurs corresponds to a peak in the Z-profile (fies,
156 Zmay; fig 3c1). The value of f,.s was 0.86 + 0.05Hz producing Z,. values of 10.23 + 0.51 MQ (N = 18; fig
157 3d). The ¢-profile shows a phasonant frequency f,-o = 0.81 + 0.05Hz, which in most cases matched fies
158 (fig 3c2). The PD neuron had a Q; of 2.77 £ 0.71 MQ and Ay of 0.53 + 0.04 Hz. Across preparations, Q;
159 showed considerable variability, whereas fie, Ay, and f,-o were relatively consistent (fig 3d). The

160 corresponding median values for fr.s, Qz Ay, and f,-o were 0.83 Hz, 2.77 MQ, 0.5 Hz, 0.79 Hz,

161 respectively.

162 To obtain model parameter combinations constrained by the PD neuron Z- and ¢ - profiles, we

163 generated a population of models using an NSGA-II algorithm (see Methods). The attributes of a single
164 PD neuron Z- and ¢ -profiles (fig 4, filled red circles) constrained the optimization of the parameter
165 values. This resulted in a population of ~9000 sets of parameters (“optimal” dataset). All models in the
166 optimal dataset captured the attributes of Zand ¢ to within 5% of the target (light blue lines in fig 4),
167 with the exception of @y, Which may be due to the anatomical structure of the PD neuron, a property
168  thatis omitted in our single-compartment model, or due to additional ionic currents, such as the

169 potassium A current, which are not included in our model [16, 39].
170  The generation of MPR by the interaction of two resonant voltage-gated currents

171 To understand how Z is generated by the dynamics of individual ionic currents at different voltages and
172 frequencies, we examined the amplitude and kinetics of ionic currents. In voltage clamp, Z is shaped by
173 active voltage-gated currents, interacting with the passive leak and capacitive currents, in response to
174  the voltage inputs. To understand the contribution of different ionic currents, we measured these

175 currents in response to a constant frequency sine wave voltage inputs (fig 5a inset) at three frequencies:
176 0.1Hz, 1Hz (fs) and 4Hz (fig 5). For these frequencies, we plotted the steady-state current as a function
177 of voltage (fig 5b-d left) and normalized time (or cycle phase = time x frequency; fig 5b-d right). At 0.1
178 Hz, the amplitudes of Iy and /| +/cy, sets /e at low (~ -60 mV) and high (~ -30 mV) voltages, respectively

179 (fig 5b left). Since I, deactivation is slow, it also contributes to /. at high voltages (fig 5b right). At 1 Hz
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180 (= fres), Iy still sets the minimum of the total current, but, because of its slow kinetics, its steady-state

181 dynamics are mostly linear (fig 5¢ left). However, now I, peaks in phase (fig 5c right) with the passive /, +
182 Iem at high voltages, thus producing a smaller /i, (magenta bar in fig 5¢). The values of /;at 4 Hz are not
183 much different from 1 Hz (fig 5d). However, I, peaks at a much later phase (fig 5d right), which does not
184 allow it to compensate for I, + Ic, at high voltages, thus resulting in a larger /2 (Mmagenta bar in fig 5d).
185 Note that at 1 Hz, the total current peaks at a cycle phase close to 0.5, thus implying that that the fi.s
186 and fy-oare very close or equal (fig 5c right). Although figure 5 shows the results for only one model in
187 the optimal dataset, these results remain nearly identical for all models in the optimal dataset. The

188 standard deviation of the currents measured, including the total current was never above 0.15 nA over
189 all models. The inset in fig. 5¢c shows one standard deviation around the mean for the data shown in the

190 right panel, calculated for 200 randomly selected models.

191 An important collective property of the models we found is that the two frequencies, fres and fy-0

192 coincide (fig. 6a-b). We analyzed the experimental data, and confirmed that the coincidence of MPR and
193 phasonance frequencies also occurs in the biological system (fig. 6b inset). This is typically not the case
194 for neuronal models (and for dynamical systems in general), not even for linear systems [18-20], with
195 the exception of the harmonic oscillator. However, the fact that it occurs in this system, allows us to use
196 the current vs. cycle phase (current-phase) diagrams to understand the dependence of f.s and fy-00n

197 the model parameters (fig. 6¢).

198 The current-phase diagrams are depicted as in fig 5b-d, as graphs of /iuta), /L and /¢, as a function of the
199 cycle phase for each given specific input frequency (fig. 6¢). We do not show /,; and /¢, in this plot,
200 because at frequencies near f..s they do not change much with input frequency. Note that /, is

201 independent of the input frequency (five panels in fig. 6¢) because it precisely tracks the input voltage.

202 In voltage clamp, fy-0= 1Hz is where | is at its minimum amplitude exactly at cycle phase 0.5,

203 coinciding with the peak of the input voltage (fig. 6¢, middle). The fact that /. precisely tracks the input
204 voltage imposes a constraint on the shapes of Ic, and /:a. Therefore, by necessity, if the Ic, trough

205 occurs for a cycle phase below 0.5, the /s peak must occur for a cycle phase above 0.5 (fig. 6-c, top two
206 panels) and vice versa (fig. 6¢, bottom two panels). This is shown by the slope of the line joining the

207 peaks of I and Ic;and, at fres this line is approximately vertical (fig. 5¢c middle panel).

208 We use this tool to explain the dependence of the Z-profile on the time constants z* (fig. 7a) and z“

209 (fig. 7b). The corresponding current-phase diagrams are presented in figs. 7c and 7d, respectively. In

8
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210 each panel we present the current-phase diagrams for f at 1 Hz (=f..s when the parameter is at 100%;

211 middle) and f = fi.s (sides) when f is different from 1Hz.

212 To understand the dependence of Zon changes in 75* and 7, we have to primarily explain the

213 dependence of the two attributes Z,,.x and f.es on these parameters. While f..s has a similar monotonic

214 dependence on 7¢“ and 71 (as these parameters increase, fs decreases), Zmax has the opposite

215  dependence on 7¢* and 7. The opposite dependence of Zy.,on 75 and 7z is a straightforward

216 consequence of the opposite feedback effects (positive for 75 and negative for 7;) that these

217 parameters exert on Ic,. An increase in 7. (for fixed values of z1) results in a smaller /¢, in response to

218 a given voltage clamp input. Because /¢, is smaller and negative, this leads to an increase in /i, and a

219 decrease in Z at all frequencies. Similarly, an increase in 7. (for fixed values of 7.") results in a larger Ic,,

220 leading to a decrease in /i and an increase in Z.

221 For a fixed value of the input frequency f (e.g. f= 1 Hz as in fig. 7), for Z,.x to decrease as 7°“ increases
222 (fig. 7-a), the cycle phase of peak I, is delayed thereby subtracting less from /, on the depolarizing

223 phase. This leads to /12 to phase advance relative to /, (fig. 7-c) and causes f..s to decrease. Similarly, for
224 Zmax to increase as 7, increases (fig. 7-b), Ic, has to peak later in the cycle thereby subtracting less from

225 I, on the depolarizing phase, which causes ;o5 to peak earlier in the cycle, which in turn causes the bar

226 also to swing from the left to the right (fig. 7-d). Therefore, f,es decreases.

227
228 Parameter constraints and pairwise correlations

229 Previous studies have shown that stable network output can be produced by widely variable ion channel
230 and synaptic parameters [37, 40]. Our biological data, similarly, showed that many of the Z- and ¢-

231 profile attributes, such as fs, Ay, and f,-o are relatively stable across different PD neurons whereas Q;
232 shows the most variability (fig 3d). To determine whether the Z- and ¢-profile attributes constrain ionic
233 current parameters, we examined the variability of the model parameters in the optimal dataset. We

234  found that some parameters were more constrained while others were widely variable, as measured by

235 the coefficient of variation (CoV; fig 8a). Parameters showing large CoVs were g .. , T,}; , &, T , and
gCa g h h

236 V,f‘z’i; those showing small CoVs were g, and the time constant of activation of I, and Ic, and half-
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Ca Vca::

237 activation voltage of Ic.: T, , V57,

g, (inincreasing order of CoV value). A small CoV value implies that

238 the parameter is tightly constrained in order to produce the proper Z- and ¢-profiles.

239 A number of studies have indicated that the large variability in ion channel parameters is counter-

240 balanced by paired linear covariation of these parameters [36, 37, 41-43]. Considering the large

241 variability, we identified parameter pairs that co-varied (fig 8b). For this, we carried out a permutation
242 test for the Pearson’s correlation coefficients, followed by a Student’s t-test on the regression slopes, to

243 identify significant correlations between pairs of parameters (see Methods). The strongest correlations

244 were between the following parameters: g, -g,, (r=-0.93), g, - T,ia (R=0.73), g, - Thca (R=0.88),

245 g, -7 (R=0.68), g, -1, (R=-0.82), g, -V “(R=0.76), g, -V* (R=-0.94),and 7." -7," (R = -0.80)

1/2

246 (correlations selected with p < 0.01; fig 8b).

247 In our experiments, /2 was fixed at -70 mV, using data from experimental measurements in crab [44]
248 (see Methods). However, we also repeated the MOEA with /= set to -96 mV, as reported in lobster
249 experiments [45], and found that all correlations observed with the former value of y”; remain intact,

250 but simply with a much larger maximal conductance of Iy (fig. S1). In other words, shifting /> to the left

251 simply results in larger g, in the optimal models without qualitatively changing the other findings.

252 In particular, we found that the g, -V,f‘;i correlation appeared nonlinear, but there were strong and

253 distinct linear correlations in the two regions g >0.05uS (low g )and g <0.05pS (high g ; fig

254 8c). To ensure that our partitioning of the population into different levels of g was valid, we ran the

255 MOEA two additional times, each time using only the mean values of g, T,f, Vlfj“‘ ,and T,ia for either
256 the low or the high g values. These optimal models consistently separated into two non-overlapping

257 model parameters, consistent with the low and high g models in fig 8c.

258 We examined if the low and high g models separated or showed distinct correlations in the remaining

259 parameters. The two groups produced non-overlapping subsets of model parameters in the g, -V,f‘;i

260 graph. We calculated the Pearson’s correlation coefficient for each pair of parameters in the low and

261 high g, groups and tested for significance as before (see Table 2). We found that only the high g

262 group showed a significant 7" -7, and g, — 7 correlations (Table 2). Additionally, both low and high

10
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- H H . ca" Ca — - = Ca" — H T _ Ca
g, 8roups showed the following correlations: V, 5 —7,“, g, -8,,,8,-V,>,and g, —7.., 8.~ T -

Furthermore, when we ran the MOEA on models where g, was set to 0, the only optimal models
obtained fell within a narrow range of the high g . group (fig S2), which is consistent with the

distribution of high g . models in the g, —g . panel of figure 8d.

Decreasing the lower bound of voltage oscillations influences the measured f,s

and Z,,,x

The lower voltage range of the PD bursting oscillation is strongly influenced by the inhibitory synaptic input from
the lateral pyloric neuron (LP), and previous work has shown that f,.s in the PD neuron is influenced by the
minimum of the voltage oscillation (Vo) [14]. In order to explore which subset of our optimal models faithfully
reproduce the influence of the minimum voltage range, we measured the Z-profile when V,,, was changed from -
60 to -70 mV (fig 9a). Decreasing V., significantly decreased f,es (by 0.24+0.8Hz), while there was no significant
difference in the mean Z,,,,(-0.15+0.81MQ) (two-way RM-ANOVA; N = 8, p < 0.001; fig 9b, left panel).

To explore whether the shift in f.s as a function of V., could be captured by either low or high g models, we
measured the shift in f,.; and Z,,.,, when V., was changed from -60mV to -70mV. We found that f,.; decreased by
0.24+0.03 Hz and Z,,,cincreased by 5.2+0.6 MQ for high g . models, whereas f; decreased by 0.07+0.02Hz and
Zmaxdecreased by 2.620.2MQ for low g, models (fig 9b, right panel). Therefore, neither model group reproduced

the experimental changes in the Z-profile, specifically, a decrease in f,es and no change in Z,.x.

We consequently filtered the full optimal dataset (black dots fig 9c) to find a subset of models that reproduced the
change in fesand Zya (to within 5% of the representative experimental Z(f) shown in fig 9a) when V,,,, was

decreased to -70mV. Of the ~9000 models in the population, we found ~1000 models that produced the desired

h

change. Interestingly, the resulting models showed a trade-off in values for g, and V,%’“ parameters that showed

little overlap with the low and high g model groups (fig 9c).

To understand why this particular group (which we will term intermediate g ) produced small changes in Zy.

when V|, was decreased, we plotted the current-voltage relationships for /¢, I4, lco+y and ot fOr Vigw = -60 and -

70 mV, measured at f=1Hz (fe; at Viow = -60mV) and compared these models with the low and high g . models. For

Viow =-60mV, the ionic currents behaved similarly for all model groups and /;:,; was maximal at -30mV (magenta

curve in fig 9d1-3), indicating the similarity of all models in the optimal dataset. However, when V,,,, was at -70mV
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291 revealed differences in peak Ic,, without affecting the peak amplitude of /yacross the different g groups (fig
292 9el-3). The differences in peak I, accounted for most of the changes in /ity across the different g groups. The
293 Zmax values for intermediate g models reproduced the small shift seen in experiments because /c, were at the

294 correct level at high voltages (-30 mV) when V., was at -70mV (fig 9e3). The other two groups did not produce

295 appropriate Zn,a, for Vio,, = -70mV because either I, was too small (and hence /i, too large), resulting in a smaller
296 Zmax (fig 9e1) or vice versa (fig 9e2). It was also clear that the more negative voltages allowed for an increase in Iy
297 levels and therefore larger contribution to the total current. With V., at -70mV, not only was there a larger peak
298 amplitude of I, at the lower voltages, but the current at positive voltages also increased because of the very slow
299 deactivation rate. Consequently, Iy did not fully turn off when Ic, peaked, so that it also contributes to shaping the

300 upper envelope of the total current. Iy kinetics were different across the groups (fig 9el-e3). Taken together with

301 the fact that when I,y was removed produced only parameter values with very high g, and very low V,%”,“ (fig S1),

302 these data suggest that /; could extend the range of Ic, parameters over which MPR through compensation for

303 variable levels of /.

304 The I, in low g models was too small when V,,,, was -70 mV, because the low conductance did not allow for a

305 significant contribution from the additional de-inactivation (considering the higher V,%”,“ in this group) and

306 therefore the peak current did not increase enough. Consequently, the contribution of /,;at low voltages was

307 greater than that of /¢, at higher voltages (fig 9e2). Conversely, in the high g group, V,%”,“ was more negative and

308 so many more channels were available for de-inactivation and the contribution of I, at higher voltages was much
309 larger than that of /; at low voltages (fig 9e3). These findings suggest that the balance between these two currents,
310 that shape the lower and upper envelope of the total current response to voltage inputs, is necessary to produce
311 the appropriate shift in f.s without influencing Z,,. significantly.

312 The intermediate g . models were strongly correlated in g - V,f‘;i (R* = 0.89; p < 0.001 fig 9f1, and had a

313 stronger correlation in the Tyia - T,Ca parameters compared to all models (R2 = 0.65; p < 0.001; fig 9g). Limiting the

n

314 optimal models to the intermediate g group also revealed a correlation in the g - g, parameters (R2 =0.79; p<

315 0.001; fig 9h). This new correlation may be produced by the balance of the amplitudes of /; and Ic, at the lower and

316 higher voltages, respectively.

317

318  fes and Q, are maintained by distinct pairwise correlations
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319 To determine if any of the MPR attributes were sensitive to the correlations, we ran a 2D sensitivity
320 analysis on a random subset of 50 models. We tested for significant difference in sensitivity across low,

321 intermediate and high levels of g . In particular, we tested for significant sensitivity of f.s and Q; when

322 parameters were co-varied in directions parallel (L) or perpendicular (L) to their respective population

323 correlation lines.

324  We first examined whether f,.s and Q; were sensitive to T,ia - Thca for both high (fig 10al), low (fig 10a2),
325 and intermediate g (fig 10a3) when parameters were moved along L and L (blue and green line; fig
326 10al-a3). For high and intermediate g models, f.s sensitivities in the L group were negative and not
327  significantly different (3-way RM ANOVA; N=50, p > 0.05), but both groups were significantly different
328 from the low g_ group (3-way RM ANOVA; N=50, p < 0.001), which had a positive sensitivity (fig 10b).
329  This result indicates that the correlation did a better job at maintaining the value of f..s when the value
330 of g, isintermediate or high. For all g . groups, we found that there was a significant interaction

331 between the Z attribute and direction (2-way RM ANOVA; F(1, 49) = 853.52, p < 0.001). When carrying
332 out a pairwise comparison for each direction within an attribute, we found a significant difference in
333 sensitivity between L and L for fres (1(93.57)=28.251, p<0.001). Similarly, for all g groups, significant

334  difference in sensitivity between L and L™ for Qz (t(93.57)=-8.294, p<0.001). Because the difference

4 . . .
335 between L and L" for Q; was negative, these results suggest that the T,i“ - Thc“ correlation determines f,.s

336 and not Qg (fig 10b).

337 We next examined whether f.; and Q; were sensitive to the g, - V,f‘;i correlation for the three model
338 groups (fig 11a1-3). For all g groups, we found that there was a significant interaction between the Z
339 attribute and direction (2-way RM ANOVA; F(1, 49) = 1262.73.2, p < 0.001). When carrying out a

340 pairwise comparison for each direction within an attribute, we found a significant difference in

341 sensitivity between L and L™ for fres (t(95.18)=10.10, p<0.001). Similarly, for all g groups, we found a

342 significant difference in sensitivity between L and L for Q (t(95.18)=-35.62, p<0.001). Therefore, these

343 results suggest that the g, - V,f‘;i correlation determines Q; and not f (fig 11b).

344 Finally, we tested the sensitivity of f., and Q; to the g, - g, correlation in the intermediate g group

345 (fig 12a). We found that there was a significant interaction between the Z attribute and direction (2-way

346 RM ANOVA; F(1, 11.12) = 2236.2, p < 0.001). When carrying out pairwise comparisons between
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347 directions for each attribute, we found there was a significant difference in f..s sensitivity between L
348 and LJ'(t(93.93) = 2.65, p = 0.0095; fig 12). Although the sensitivity of Q; was not O for L, the difference
349 in sensitivity values between L and L™ was also significantly different (t(93.93) = 62.157, p < 0.0001; fig
350 12b). These results suggest that, when V,,, is at -70 mV, for this subset of models to shift f.; with only

351 small shifts in Z.,, g, and g, values must be balanced. It may be possible that the Qzsensitivity is not

352 closer to zero along L because V<*

/5 » Which is also negatively correlated with g , should decrease too to

353 compensate for changes in Qz.

354
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Discussion

Many neuron types exhibit membrane potential resonance (MPR) in response to oscillatory inputs.
Several studies have shown that the resonant frequency of individual neurons is correlated with the
frequency of the network in which they are embedded [2, 6, 12, 14, 22, 46]. Moreover, networks of
resonant neurons have been proposed to generate more robust network oscillations than neurons with
low-pass filter properties [27, 28]. In several cases, the underlying nonlinearities and time scales that
shape the Z-profile also shape specific properties of the spiking activity patterns, thus leading to a link

between the subthreshold and suprathreshold voltage responses [25, 47].

Previous work in the crustacean stomatogastric pyloric network has shown that the resonance
frequency of the pyloric pacemaker PD neurons is correlated with the pyloric network frequency and is
sensitive to blockers of both Iy and Ic, [12-14]. However, it was not clear how these voltage-gated ionic
currents and the passive properties could interact to generate MPR in the PD neurons. Previous
modeling work showed that these currents participate in the generation of resonance in CA1 pyramidal
neurons [16, 17]. However, due to the differences in Ic, time constants, the interaction between its
activating and inactivating gating variables did not produce phasonance in CA1 pyramidal neurons, while
it does in PD neurons. On a more general level, it is not well understood how the nonlinear properties of
ionic currents affect their interplay. Previous studies have shown such interactions may lead to
unexpected results, which are not captured by the corresponding linearizations [16-19]. This complexity
is expected to increase when two currents with resonant components are involved [16, 48]. We
therefore set out to investigate the biophysical mechanism underlying such interactions by using a
combined experimental and computational approach and the biological PD neuron as a case study. The
two PD neurons are electrically coupled to the pacemaker anterior burster neuron in the pyloric
network and their MPR directly influences the network frequency through this electrical coupling [22].

Consequently, our findings have a direct bearing on how the pyloric network frequency is controlled.

Many studies of biophysical models have explored the parameter space using a brute-force technique,
by sampling the parameters on a grid [40, 49]. Although this technique provides a rather exhaustive
sampling of the parameter space, using a fine grid on a large number of free parameters could lead to
combinatorial explosion and result in a prohibitive number of simulations. On the other hand, a sparse
sampling may miss “good” solutions. A multi-objective evolutionary algorithm (MOEA) can generate

multiple trade-off solutions in a single run and can handle large parameter spaces very well. In contrast
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to a brute-force approach, the MOEA can potentially cover a much larger range with possibly hundreds
of values [38]. One disadvantage of the MOEA is that, as the number of objectives increases, the search
may miss a large portion of the parameter space. This occurs because randomly generated members
often tend to be just as good as others, which means that the MOEA would run out of room to introduce
new solutions in a given generation. To try to overcome this problem, we carefully chose the parameters
of the MOEA such as population size, mutation and crossover distribution indices (100, 20 and 20,
respectively) and ensured that the sampled population covered the parameter space evenly.
Additionally, we ran the MOEA multiple times, each time collecting all the good parameter sets until one

has exhausted all regions of the parameter space where good models exist.

In previous work, we and other authors have examined how the additive interaction of ionic currents
with resonant and amplifying gating variables shape the Z and ¢ profiles at both the linear and nonlinear
levels of description [6, 15, 18, 20, 32, 33, 50]. However, the role of inactivating currents in the
generation of MPR is not so clear. Authors have established that Ic, can generate MPR in the absence of
additional ionic currents [21], that the activation variable diminishes the propensity for MPR and the
interaction with /yenhances the dynamic range of parameters producing Ic;-mediated resonance [16].
Even so, to date, only a descriptive explanation of how the ionic current parameters affect certain
attributes of MPR has been provided, but no study has provided a mechanistic understanding in terms

of the parameters of /¢, that go beyond numerical simulations.

Similar to [16], the model we used in this paper involves the interaction between resonant and
amplifying components. Specifically, this model includes a calcium current with both activation
(amplifying) and inactivation (resonant) gating variables, and an H-current with a single activation
(resonant) gate. Since I and Ic, shape the lower and upper envelopes of the voltage response to current
inputs, respectively [12], given the appropriate voltage-dependence and kinetics of the currents both
could play equal roles at different voltage ranges. In fact, either Ic, inactivation or I, is capable of
producing MPR [2, 21]. In CA1 pyramidal neurons, the differences in Z profiles are due to the passive
properties and the kinetics of /,; [4]. It is possible that the kinetic parameters of Iy and Ic, are tuned so

that they contribute nearly equally to shaping the envelopes of the voltage-clamp current.

By tracking the current response to sinusoidal voltage inputs at various frequencies, we found that the
fres and fy-0 are driven by the peak phase of Ic, and that fi.s and f4- are nearly equal because of the

phase matching of I, with /.. This is not always the case for neuronal models, and dynamical systems in

16


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

415
416
417
418
419
420
421
422
423
424

425
426
427
428
429
430
431
432
433
434
435
436

437

438

439

440

441

442
443

444

aCC-BY-NC-ND 4.0 International license.

general, not even for linear models, except for the harmonic oscillator [18-20]. In fact, as we mentioned
above, this is not the case for the I, model used in [16], although our results on the /¢, inactivation time
constant are consistent with that study. In these models phase advance for low input frequencies
required the presence of /. The underlying mechanisms are still under investigation and are beyond the
scope of this paper. However, the fact that it occurs was crucial to develop a method to investigate the
dependence of the resonant properties, particularly the dependence of the f..s on the I, time constants,
using phase information. To date, no other analytical method is available to understand the mechanisms
underlying this type of phenomenon in voltage clamp. The tools we developed are applicable to other
neuron types for which f. is equal to or has a functional relationship with f,-. However, the conditions

under which such a functional relationship exists still needs to be investigated.

Linear correlations between biophysical parameters of the same or different currents have been
reported [37] and may be important in preserving the activity of the model neuron and its subthreshold
impedance profile attributes [41]. Previous studies examined combinations of parameters in populations
of multi-compartment conductance-based models fit to electrophysiological data [16, 51] and found
only weak pairwise correlations suggesting that the correlations do not arise from electrophysiological
constraints. In contrast, constraining the parameters of the ionic currents found to be essential for MPR
in PD neuron by MPR attributes, we observed strong correlations underlying parameters when the Z and
¢ were constrained by the experimental data. We found that constraining the model parameters by fes
produced a correlation between the values of time constants of Ic, among the population of ~9000
optimal parameter sets. Furthermore, running a 2D sensitivity analysis confirmed that the time
constants were constrained so that the effect of making inactivation slower was compensated for by

making activation faster to maintain f..s constant.

The optimal model parameter sets showed a nonlinear co-variation relationship between the g and
half-inactivation voltage of Ic,. However, the models could be divided into two groups, low and high
g, in each of which this co-variation was close to linear. Interestingly, although /¢, alone was the
primary current underlying MPR, in the absence of Iy (with g,, =0) the models were restricted to the
high g group. A 2D sensitivity analysis showed that co-varying parameters in each groups along their

respective correlation lines preserved Q; without affecting f..s, indicating that each group requires a

distinct changes in one parameter to compensate for effects of changes in the other. Local sensitivity

analysis showed that changes in Vf,;l had opposite effects on f..; between high and low g groups.
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. h . . — . ey . — .
Increasing V' decreased fr in high g, models but increased it in low g, models. A previous

modeling study has found that changes in Vlcgl greatly influenced the amplitude of MPR with little effect
on post-inhibitory rebound in thalamic neurons [21]. It would be interesting to verify whether the
mechanisms that generate MPR overlap with those that contribute to post-inhibitory rebound

properties.

Previous work in our lab has shown that the voltage range of oscillations significantly affects f.es [13].
Here we show that decreasing, Vo, the lower bound of the oscillation voltage of the PD neuron, from -
60 to -70 mV, significantly shifted f..s to smaller values without affecting Z,,x. Within our optimal model

parameter sets, we obtained a set of ¥1000 models in the intermediate g range that produced a

similar shift in f.es but no change in Z,,... Because V,,, greatly affects both /¢, inactivation and I
activation, this indicated a potential interaction between these two currents. In fact, we found that
because I and I, are activated preferentially in different voltage ranges, their amplitudes needed to be
balanced to keep Z,.x unchanged when V,,, was decreased. If the ratio of /;to Ic, amplitudes is incorrect,

then Z will amplify (for high g . models) or attenuate (for low g models). The intermediate g,
models also showed a stronger rf,“ —rhc“ correlation, which may be important in matching the phase of
lca with that of /.. This group also showed a strong g,, — g, correlation, which may provide a mechanism

for controlling the changes in Iy amplitude at more negative voltage with similar changes in Ic, amplitude

at more positive voltages.

In contrast to the findings of Rathour and Narayanan [16], in our optimal models the /,; amplitude was
not different across the groups with different Ic, properties. However, since Ic, and Iy are differentially
modulated [45, 52], their functional role may overlap when their voltage thresholds and time constants
are shifted by neuromodulation. Therefore, we expect that under certain neuromodulatory contexts, Iy
may play more of an active role in the generation of MPR. A similar effect of two ionic currents on
resonance has been observed in the hippocampal pyramidal cells that participate in the theta rhythm, in
which two currents, the slow potassium M-current and Iy, were found to operate at the depolarized and

hyperpolarized membrane potentials respectively to generate theta-resonance [2].

In general, variability of ionic current expression in any specific neuron type should lead to great
variability in network output. Yet, network output in general, and specifically the output of the

crustacean pyloric network is remarkably stable across animals [30, 53, 54]. Our results suggest that in
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474 oscillatory networks the interaction among ionic currents in an individual neuron may be tuned in a way
475 that the variability of the output is reduced in response to oscillatory inputs. Although our
476 computational study may provide some insight into how such stability is achieved, it also indicates a

a77 need for additional mathematical analysis to elucidate the underlying mechanisms.

478

479 Methods

480  Electrophysiology

481 The stomatogastric nervous system of adult male crabs (Cancer borealis) was dissected using standard
482 protocols as in previous studies [14]. After dissection, the entire nervous system including the

483 commissural ganglia, the esophageal ganglion, the stomatogastric ganglion (STG) and the nerves

484 connecting these ganglia, and motor nerves were pinned down in a 100mm Petri dish coated with clear
485 silicone gel, Sylgard 186 (Dow Corning). The STG was desheathed to expose the PD neurons for

486 impalement. During the experiment, the dish was perfused with fresh crab saline maintained at 10-

487 132C. After impalement with sharp electrodes, the PD neuron was identified by matching intracellular
488 voltage activity with extracellular action potentials on the motor nerves. After identifying the PD neuron
489  with the first electrode, a second electrode was used to impale the same neuron in preparation for two-
490 electrode voltage clamp. Voltage clamp experiments were done in the presence of 107 M tetrodotoxin
491 (TTX; Biotium) superfusion to remove the neuromodulatory inputs from central projection neurons

492 (decentralization) and to stop spiking activity [13, 14].

493 Intracellular electrodes were prepared by using the Flaming-Brown micropipette puller (P97; Sutter
494 Instruments) and filled with 0.6M K,SO,4 and 0.02M KClI. For the microelectrode used for current

495 injection and voltage recording, the resistance was, respectively, 10-15MQ and 25-35MQ. Extracellular
496 recording from the motor nerves was carried out using a differential AC amplifier model 1700 (A-M

497 Systems) and intracellular recordings were done with an Axoclamp 2B amplifier (Molecular Devices).
498  Measuring the Z-profile

499 During their ongoing activity, the PD neurons produce bursting oscillations with a frequency of ~1 Hz

500 and slow-wave activity in the range of -60 to -30 mV. Activity in the PD neuron is abolished by
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501 decentralization. The decentralized PD neuron shows MPR in response to ZAP current injection when
502 the current drives the PD membrane voltage to oscillate between -60mV and -30mV, which is similar to
503 the slow-wave oscillation amplitude during ongoing activity [12]. The MPR profiles are not significantly
504 different when measured in current clamp and voltage clamp [14]. Since the MPR depends on the

505 dynamics of voltage-gated ionic currents, it will also depend on the range and shape of the voltage

506 oscillation. Therefore, to examine how Z(f) in a given voltage range constrains the properties of voltage-
507 gated currents and how factors that affect the voltage range change MPR, we measured Z(f) in voltage

508 clamp [10].

509 To measure the Z-profile, the PD neuron was voltage clamped with a sweeping-frequency sinusoidal
510 impedance amplitude profile (ZAP) function [55] and the injected current was measured [14]. To
511 increase the sampling duration of lower frequencies as compared to the larger ones, a logarithmic ZAP

512 function was used:

>13 ZAP() = v, +v, sinEF(1); F(1)= flot[&] .

lo
514  The amplitude of the ZAP function was adjusted to range between -60 and -30 mV (vo=-45 mV, v,=15
515 mV) and the waveform ranged through frequencies of f,=0.1 to f,=4 Hz over a total duration 7=100 s.
516 Each ZAP waveform was preceded by three cycles of sinusoidal input at f;, which smoothly transitioned

517 into the ZAP waveform. The total waveform duration was therefore 130 s.

518 Impedance is a complex number consisting of amplitude and phase. To measure impedance amplitude,
519 we calculated the ratio of the voltage and current amplitudes as a function of frequency and henceforth
520 impedance amplitude will be referred to as Z(f). To measure ¢,(f), we measured the time difference
521 between the peaks of the voltage clamp ZAP and the measured clamp current. One can also measure
522 Z(f) by taking the ratio of the Fourier transforms of voltage and current. However, spectral leakage,

523 caused by taking the FFT of the ZAP function and the nonlinear response, often resulted in a low signal-
524  to-noise ratio and therefore in inaccurate estimates of impedance. Such cases would lead to less

525 accurate polynomial fits compared to the cycle-to-cycle method described above and we therefore

526 limited our analysis to the cycle-to-cycle method.

527 Because the average Z-profile may not be a realistic representation of a biological neuron, we used the

528 attributes of Zand ¢ measurements from a single PD neuron as our target. We characterized attributes
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of Z into five objective functions used for fitting by specifying five points of the profile (fig 1a). These five

points were:

(fo, Zo), where Zy = Z(f,) and fo = 0.1 Hz,
®  (fress Zmax), thereby capturing Qz = Zinay - 2,

(fy, Z(f1)) where f, =4 Hz,

The two frequencies at which Z=Zy+ Q, / 2. Pinning the profile to these points captures the frequency

bandwidth Ay, which is the frequency range for which f > Z, + Q,/ 2 (fig 1a).

We also constructed five objective functions to capture the attributes of ¢(f) at five points (fig 1b):

e (fo, @(fo)),

®  (fy-0, 0), where f,_o, is the phasonant frequency

®  (fomax Pmax) Where @, is the maximum phase advance,
®  (fomin, @min) Where @i, is the maximum phase delay,

e (2 Hz, ¢5-,) capturing the phase at 2Hz.

Single-compartment model

We used a single-compartment biophysical conductance-based model containing only those currents
implicated in shaping Zand ¢ [12]. We performed simulations in voltage clamp and measured the

current as:

1

clamp

=1, +1,+1,+1,

where I, is the capacitive current ( Cd_V in nA), C,, is set to 1 nF and /_is the voltage-independent leak
dt

current in nA. The voltage-dependent currents I (Ica or I4) in nA are given by

]curr = gcurrmp hq (V - E )

curr--curr curr

where Vis the ZAP voltage input (see below), m,, is the activation gating variable, h., is the

inactivation gating variable, g is the maximal conductance in uS, E. is the reversal potential in mV,
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and p and g are non-negative integers. For I, p=3, g =1 and, for I, p =1 and g = 0. The generic

equation that governs the dynamics of the gating variables is:

dx 1
Z—T—(XM(V)—X)

X

where X = Mgy or heyrr, and
xm(V)=l/[l+exp((V—Vx)/kx)]

The sign of the slope factor (k,) determines whether the sigmoid is an increasing (negative) or

decreasing (positive) function of V, and V, is the midpoint of the sigmoid.

A total of 8 free model parameters were defined (Table 1), which were optimized in light of the

objective functions introduced above, to yield a good fit to the Z-profile attributes as described below.

Ca h

The slope factors k, of the sigmoid functions mS”(V) , b (),and m_)were fixed at -8 mV, 6 mV, and -7

o0

mV, respectively. p/; was fixed at -70 mV, using data from experimental measurements in crab [44].

The voltage-dependent time constant for /;was also taken from [44] to be

7/ /[1+exp((V +110)/-13)]

where the range of T: is given in Table 1.

Fitting models to experimental Data

Computational neuroscience optimization problems have used a number of methods, such as the “brute-force”
exploration of the parameter space [51] and genetic algorithms [56]. However, the brute-force method is
computationally prohibitive for an 8-dimensional model parameter space, which would require potentially very
fine sampling to find optimal models. [57]. We used an MOEA (evolutionary optimization) to identify optimal sets
of model parameters constrained by experimental Z and ¢ attributes. MOEAs are computationally efficient at
handling high-dimensional parameter spaces and other studies have used them to search for parameters

constrained by other types of electrophysiological activity [57]
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576 Evolutionary optimization finds solutions by minimizing a set of functions called objective functions, or simply
577 objectives, subject to certain constraints. In our problem, each objective represents the Euclidean distance

578 between the target and the model attributes of Zand ¢. When optimizing multiple (potentially conflicting)

579 objectives, MOEA will find a set of solutions that constitute trade-offs in objective scores. For instance, an optimal
580 parameter set may include solutions that are optimal in f,.s but not in Q, or vice versa and a range of solutions in
581 between that result from the trade-offs in both objectives. In this paper, we used the non-dominated sorting

582 genetic algorithm 11 (NSGA-II) [38, 58] to find optimal solutions, which utilizes concepts of non-dominance and
583 elitism, shown to be critical in solving multi-objective optimization problems [58]. Solution x; is said to dominate
584 solution x, if it is closer to the target Z(f) and ¢@(f) profiles in at least one attribute (e.g., fres) and is no worse in any

585 other attributes (e.g., Qz, Z,, etc.).

586 NSGA-II begins with a population of 100 parameter combinations created at random within pre-determined lower
587 and upper limits (Table 1). The objective values for each parameter combination are calculated and ordered
588 according to dominance. First, the highest rank is assigned to all of the non-dominated, trade-off solutions. From

589 the remaining set of parameters, NSGA-II selects the second set of trade-off solutions. This process continues

590 until there are no more parameter combinations to rank. Genetic operators such as binary tournament selection,
591 crossover, and mutation form a child population. A combination of the parent and child parameter sets form the
592 population used in the next generation of NSGA-II [38, 58]. NSGA-II favors those parameter combinations—among
593 solutions non-dominating with respect to one another—that come from less crowded parts of the parameter

594 search space (i.e., with fewer similar, in the sense of fitness function values, solutions), thus increasing the
595 diversity of the population. The crowding distance metric is used to promote large spread in the solution space

596 [38].

597 We ran NSGA-Il multiple times (3-5 times, until the mean values of the distributions of optimal

598 parameters was stable) each time for 200 generations with a population size of 100, and pooled the
599  solutions at the end of each run to form a combined population of ~9000 parameter combinations. The
600 algorithm stopped when no additional distinct parameter combinations were found. The Z and ¢ values
601 associated with the optimal parameter sets match the target features (objectives) defining Zand ¢ to

602 within 5% accuracy.

603 To test whether two parameters were significantly correlated in the population of 9000 PD models, we
604 calculated the Pearson’s correlation coefficients for each pair of parameters and used a permutation
605 test to determine the number of times the calculated correlation coefficient (using a random subset of
606 20 models). The p-value was given as the fraction of R-values for the permuted vectors greater than the

607 R-value for the original data [51]. We also used a t-test to determine whether the calculated slope of the
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608 linear fit differed significantly from zero, which gave us identical results. We repeated both procedures
609 2000 times, each time with a random subset of 20 models and calculated the percentage of times we

610  obtained a p-value < 0.01.
611
612  Sensitivity Analysis

613  We assessed how the values of f,.s and Q; depend on changes in parameter values by performing a

614 sensitivity analysis as in [59]. We split the model parameters into two categories: additive, for the

615 voltage-midpoints of activation and inactivation functions, and multiplicative, for the maximal

616 conductances and time constants. We changed the parameters one at a time and fit the relative change
617 in the resonance attributes as a linear function of the relative parameter change. We changed the

618 multiplicative parameters on a logarithmic scale to characterize parameters with both low and high

619 sensitivity.

620 Multiplicative parameters were varied as pp.1 = exp(+Ap,) po with Ap,=0.001*1.15" and the sign

621 indicating whether the parameter was increased or decreased. To ensure approximate linearity, we
622 added points to the fit until the R? value fell below 0.98. The sensitivity was defined as the slope of this
623 linear fit (fig 2). For example, if a resonance attribute has a sensitivity of 1 to a parameter, then a 2-fold
624 change in the parameter results in a 2-fold change in the attribute. We changed additive parameters by

625 +0.5 mV.

626 We assessed the sensitivity of f..s and Q,to parameter pairs (p; and p,) that were correlated. We first fit
627  aline through the correlated values in the p;-p, space. We then shifted this line to pass through a subset
628 of 50 random points in p;-p, space, resulting in a family of parallel lines, L . For each point, we also

629 produced a line perpendicular to a line L™. For each model, we performed a sensitivity analysis as before
630 but used the linear fit equation L or L™ to calculate value of p.. We fit the relative change in the Z(f)

631 attribute as a linear function of the correlated change in p; and p,. We used the slope of the linear fit to
632 represent the sensitivity. We used a 2-and 3-way repeated measures ANOVA and the Ismeans function
633 in R to perform pairwise comparisons of means in testing for significant differences between each group

634 of gc,, each direction, L and LJ', and between each Z attribute, f.es and Q.
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635 For each model, we solved a system of three differential equations for my, mc, and hc, (voltage was
636 clamped). All simulations were performed using the modified Euler method [60] with a time step of 0.2
637 ms. The simulation code, impedance calculations, and MOEA were written in C++. MATLAB (The

638 MathWorks) and R were used to perform statistical analyses.

25


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

639 References

640 1. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons.
641 Trends Neurosci. 2000;23(5):216-22. PubMed PMID: 10782127.
642 2. Hu H, Vervaeke K, Storm JF. Two forms of electrical resonance at theta frequencies, generated

643 by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol.

644 2002;545(Pt 3):783-805. PubMed PMID: 12482886; PubMed Central PMCID: PMCPM(C2290731.

645 3. Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O. Distinct frequency

646 preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J
647 Physiol. 2000;529 Pt 1:205-13. PubMed PMID: 11080262; PubMed Central PMCID: PMC2270176.

648 4, Zemankovics R, Kali S, Paulsen O, Freund TF, Hajos N. Differences in subthreshold resonance of
649 hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane

650 characteristics. J Physiol. 2010;588(Pt 12):2109-32. doi: 10.1113/jphysiol.2009.185975. PubMed PMID:
651 20421280; PubMed Central PMCID: PMCPMC2905616.

652 5. Erchova |, Kreck G, Heinemann U, Herz AV. Dynamics of rat entorhinal cortex layer Il and Ill cells:
653 characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J
654 Physiol. 2004;560(Pt 1):89-110. doi: 10.1113/jphysiol.2004.069930. PubMed PMID: 15272028; PubMed
655 Central PMCID: PMC1665205.

656 6. Schreiber S, Erchova |, Heinemann U, Herz AV. Subthreshold resonance explains the frequency-
657 dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol.
658 2004;92(1):408-15. doi: 10.1152/jn.01116.2003. PubMed PMID: 15014100.

659 7. Lampl I, Yarom Y. Subthreshold oscillations of the membrane potential: a functional

660 synchronizing and timing device. J Neurophysiol. 1993;70(5):2181-6. PubMed PMID: 8294979.

661 8. Lampl I, Yarom Y. Subthreshold oscillations and resonant behavior: two manifestations of the
662 same mechanism. Neuroscience. 1997;78(2):325-41. PubMed PMID: 9145790.

663 9. Puil E, Meiri H, Yarom Y. Resonant behavior and frequency preferences of thalamic neurons. J
664 Neurophysiol. 1994;71(2):575-82. PubMed PMID: 8176426.

665 10. Beatty JA, Song SC, Wilson CJ. Cell-type-specific resonances shape the responses of striatal

666 neurons to synaptic input. J Neurophysiol. 2015;113(3):688-700. doi: 10.1152/jn.00827.2014. PubMed
667 PMID: 25411465; PubMed Central PMCID: PMCPMC4312866.

668 11. Song SC, Beatty JA, Wilson CJ. The lonic Mechanism of Membrane Potential Oscillations and
669 Membrane Resonance in Striatal LTS Interneurons. J Neurophysiol. 2016:jn 00511 2016. doi:

670 10.1152/jn.00511.2016. PubMed PMID: 27440246.

671 12. Tohidi V, Nadim F. Membrane resonance in bursting pacemaker neurons of an oscillatory

672 network is correlated with network frequency. J Neurosci. 2009;29(20):6427-35. doi:

673 10.1523/JNEUROSCI.0545-09.2009. PubMed PMID: 19458214; PubMed Central PMCID: PMC2716082.
674 13. Tseng HA, Martinez D, Nadim F. The frequency preference of neurons and synapses in a

675 recurrent oscillatory network. J Neurosci. 2014;34(38):12933-45. doi: 10.1523/JNEUROSCI.2462-

676 14.2014. PubMed PMID: 25232127; PubMed Central PMCID: PMC4166170.

677 14. Tseng HA, Nadim F. The membrane potential waveform of bursting pacemaker neurons is a
678 predictor of their preferred frequency and the network cycle frequency. J Neurosci. 2010;30(32):10809-
679 19. doi: 10.1523/JNEUROSCI.1818-10.2010. PubMed PMID: 20702710; PubMed Central PMCID:

680 PM(C2944831.

681 15. Richardson MJ, Brunel N, Hakim V. From subthreshold to firing-rate resonance. J Neurophysiol.
682 2003;89(5):2538-54. doi: 10.1152/jn.00955.2002. PubMed PMID: 12611957.
683 16. Rathour RK, Narayanan R. Inactivating ion channels augment robustness of subthreshold

684 intrinsic response dynamics to parametric variability in hippocampal model neurons. J Physiol.

26


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

aCC-BY-NC-ND 4.0 International license.

2012;590(22):5629-52. doi: 10.1113/jphysiol.2012.239418. PubMed PMID: 22930270; PubMed Central
PMCID: PMCPMC(C3528982.

17. Rathour RK, Narayanan R. Homeostasis of functional maps in active dendrites emerges in the
absence of individual channelostasis. Proceedings of the National Academy of Sciences of the United
States of America. 2014;111(17):E1787-96. doi: 10.1073/pnas.1316599111. PubMed PMID: 24711394,
PubMed Central PMCID: PMCPMC4035944.

18. Rotstein HG, Nadim F. Frequency preference in two-dimensional neural models: a linear analysis
of the interaction between resonant and amplifying currents. ] Comput Neurosci. 2014;37(1):9-28. doi:
10.1007/s10827-013-0483-3. PubMed PMID: 24254440; PubMed Central PMCID: PMCPM(C4028432.

19. Rotstein HG. Subthreshold amplitude and phase resonance in models of quadratic type:
nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci.
2015;38(2):325-54. doi: 10.1007/s10827-014-0544-2. PubMed PMID: 25586875.

20. Rotstein HG. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural
Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance. J Math Neurosci.
2014;4:11. doi: 10.1186/2190-8567-4-11. PubMed PMID: 24872925; PubMed Central PMCID:
PMCPMC4014472.

21. Hutcheon B, Miura RM, Yarom Y, Puil E. Low-threshold calcium current and resonance in
thalamic neurons: a model of frequency preference. J Neurophysiol. 1994;71(2):583-94. PubMed PMID:
8176427.

22. ChenYY, Li X, Rotstein HG, Nadim F. Membrane potential resonance frequency directly influences
network frequency through electrical coupling. J Neurophysiol. 2016:jn 00361 2016. doi:
10.1152/jn.00361.2016. PubMed PMID: 27385799.

23. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325-40. PubMed PMID:
11832222,

24. Hu H, Vervaeke K, Graham LJ, Storm JF. Complementary theta resonance filtering by two
spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J Neurosci.
2009;29(46):14472-83. doi: 10.1523/JNEUROSCI.0187-09.2009. PubMed PMID: 19923281.

25. Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G. Inhibition-induced theta resonance
in cortical circuits. Neuron. 2013;80(5):1263-76. doi: 10.1016/j.neuron.2013.09.033. PubMed PMID:
24314731; PubMed Central PMCID: PMC3857586.

26. Narayanan R, Johnston D. Long-term potentiation in rat hippocampal neurons is accompanied
by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron.
2007;56(6):1061-75. Epub 2007/12/21. doi: 10.1016/j.neuron.2007.10.033. PubMed PMID: 18093527
PubMed Central PMCID: PMCPMC2430016.

27. Moca VV, Nikolic D, Singer W, Muresan RC. Membrane resonance enables stable and robust
gamma oscillations. Cereb Cortex. 2014;24(1):119-42. doi: 10.1093/cercor/bhs293. PubMed PMID:
23042733; PubMed Central PMCID: PMCPMC(C3862267.

28. Tikidji-Hamburyan RA, Martinez JJ, White JA, Canavier CC. Resonant Interneurons Can Increase
Robustness of Gamma Oscillations. J Neurosci. 2015;35(47):15682-95. doi: 10.1523/JNEUROSCI.2601-
15.2015. PubMed PMID: 26609160; PubMed Central PMCID: PMCPMC4659828.

29. Marder E, Bucher D. Understanding circuit dynamics using the stomatogastric nervous system of
lobsters and crabs. Annu Rev Physiol. 2007;69:291-316. doi:
10.1146/annurev.physiol.69.031905.161516. PubMed PMID: 17009928.

30. Marder E. Variability, compensation, and modulation in neurons and circuits. Proceedings of the
National Academy of Sciences of the United States of America. 2011;108 Suppl 3:15542-8. doi:
10.1073/pnas.1010674108. PubMed PMID: 21383190; PubMed Central PMCID: PMC3176600.

31. Puil E, Gimbarzevsky B, Miura RM. Quantification of membrane properties of trigeminal root
ganglion neurons in guinea pigs. ] Neurophysiol. 1986;55(5):995-1016. PubMed PMID: 3711977.

27


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

733 32. Gutfreund Y, Yarom Y, Segev |. Subthreshold oscillations and resonant frequency in guinea-pig
734 cortical neurons: physiology and modelling. J Physiol. 1995;483 ( Pt 3):621-40. PubMed PMID: 7776248;
735 PubMed Central PMCID: PMCPMC1157807.

736 33. Hutcheon B, Miura RM, Puil E. Subthreshold membrane resonance in neocortical neurons. J
737 Neurophysiol. 1996;76(2):683-97. PubMed PMID: 8871191.
738 34. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to

739 conduction and excitation in nerve. J Physiol. 1952;117(4):500-44. PubMed PMID: 12991237; PubMed
740  Central PMCID: PMCPMC1392413.

741 35. Golowasch J, Abbott LF, Marder E. Activity-dependent regulation of potassium currents in an
742 identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J Neurosci.

743 1999;19(20):RC33. Epub 1999/10/12. PubMed PMID: 10516335.

744 36. Khorkova O, Golowasch J. Neuromodulators, not activity, control coordinated expression of
745 ionic currents. J Neurosci. 2007;27(32):8709-18. Epub 2007/08/10. doi: 27/32/8709 [pii]

746 10.1523/INEUROSCI.1274-07.2007. PubMed PMID: 17687048.

747 37. Schulz DJ, Goaillard JM, Marder E. Variable channel expression in identified single and

748 electrically coupled neurons in different animals. Nat Neurosci. 2006;9(3):356-62. doi: 10.1038/nn1639.
749 PubMed PMID: 16444270.

750 38. Deb K. Multi-objective optimization using evolutionary algorithms. 1st ed. Chichester ; New
751 York: John Wiley & Sons; 2001. xix, 497 p. p.
752 39. Rathour RK, Malik R, Narayanan R. Transient potassium channels augment degeneracy in

753 hippocampal active dendritic spectral tuning. Sci Rep. 2016;6:24678. doi: 10.1038/srep24678. PubMed
754  PMID: 27094086; PubMed Central PMCID: PMCPMC4837398.

755 40. Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat
756 Neurosci. 2004;7(12):1345-52. doi: 10.1038/nn1352. PubMed PMID: 15558066.
757 41. Zhao S, Golowasch J. lonic current correlations underlie the global tuning of large numbers of

758 neuronal activity attributes. J Neurosci. 2012;32(39):13380-8. doi: 10.1523/JNEUROSCI.6500-11.2012.
759 PubMed PMID: 23015428; PubMed Central PMCID: PMCPM(C3541048.

760 42. Schulz DJ, Goaillard JM, Marder EE. Quantitative expression profiling of identified neurons
761 reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National
762  Academy of Sciences of the United States of America. 2007;104(32):13187-91. doi:

763 10.1073/pnas.0705827104. PubMed PMID: 17652510; PubMed Central PMCID: PMCPMC(C1933263.
764 43, Rotstein HG, Olarinre M, Golowasch J. Dynamic compensation mechanism gives rise to period
765 and duty-cycle level sets in oscillatory neuronal models. J Neurophysiol. 2016;116(5):2431-52. doi:
766 10.1152/jn.00357.2016. PubMed PMID: 27559141.

767 44, Buchholtz F, Golowasch J, Epstein IR, Marder E. Mathematical model of an identified

768 stomatogastric ganglion neuron. J Neurophysiol. 1992;67(2):332-40. PubMed PMID: 1373763.

769 45, Peck JH, Gaier E, Stevens E, Repicky S, Harris-Warrick RM. Amine modulation of Ih in a small
770 neural network. J Neurophysiol. 2006;96(6):2931-40. doi: 10.1152/jn.00423.2005. PubMed PMID:
771 16943317.

772 46. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition.
773 Physiol Rev. 2010;90(3):1195-268. doi: 10.1152/physrev.00035.2008. PubMed PMID: 20664082;

774 PubMed Central PMCID: PMCPM(C2923921.

775 47. Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I. Subthreshold membrane-

776 potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol.

777 2008;100(3):1576-89. doi: 10.1152/jn.01282.2007. PubMed PMID: 18450582; PubMed Central PMCID:
778 PMC2544463.

28


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

779 48. Rotstein HG. Resonance modulation, annihilation and generation of antiresonance and

780 antiphasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow

781 dynamics. bioaRxiv 2016;091207. PubMed PMID: 091207.

782 49. Prinz AA, Billimoria CP, Marder E. Alternative to hand-tuning conductance-based models:

783 construction and analysis of databases of model neurons. J Neurophysiol. 2003;90(6):3998-4015. Epub
784  2003/08/29. doi: 10.1152/jn.00641.2003

785 00641.2003 [pii]. PubMed PMID: 12944532.

786 50. Haas JS, White JA. Frequency selectivity of layer Il stellate cells in the medial entorhinal cortex. J
787 Neurophysiol. 2002;88(5):2422-9. doi: 10.1152/jn.00598.2002. PubMed PMID: 12424283.
788  51. Taylor AL, Goaillard JM, Marder E. How multiple conductances determine electrophysiological

789 properties in a multicompartment model. J Neurosci. 2009;29(17):5573-86. doi:

790 10.1523/JNEUROSCI.4438-08.2009. PubMed PMID: 19403824; PubMed Central PMCID: PM(C2821064.
791 52. Johnson BR, Kloppenburg P, Harris-Warrick RM. Dopamine modulation of calcium currents in
792 pyloric neurons of the lobster stomatogastric ganglion. J Neurophysiol. 2003;90(2):631-43. Epub

793 2003/08/09. doi: 10.1152/jn.00037.2003

794 90/2/631 [pii]. PubMed PMID: 12904487.

795 53. Bucher D, Prinz AA, Marder E. Animal-to-animal variability in motor pattern production in adults
796 and during growth. J Neurosci. 2005;25(7):1611-9. PubMed PMID: 15716396.
797 54. Golowasch J. lonic Current Variability and Functional Stability in the Nervous System. Bioscience.

798 2014;64(7):570-80. doi: 10.1093/biosci/biu070. PubMed PMID: 26069342; PubMed Central PMCID:
799 PMCPMC4460997.

800 55. Gimbarzevsky B, Miura RM, Puil E. Impedance profiles of peripheral and central neurons. CanJ
801 Physiol Pharmacol. 1984;62(4):460-2. PubMed PMID: 6733594,

802 56. Mitchell M. An introduction to genetic algorithms. Cambridge, Mass.: MIT Press; 1996. viii, 205
803 p. p.

804 57. Malik A, Shim K, Prinz A, Smolinski T, G. Multi-objective evolutionary algorithms for analysis of
805 conductance correlations involved in recovery of bursting after neuromodulator deprivation in lobster
806 stomatogastric neuron models. BMC Neurosci. 2014;15(Suppl 1):P370.

807 58. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:
808 NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-97. doi: 10.1109/4235.996017.
809 PubMed PMID: W0S:000175082800006.

810 59. Nowotny T, Levi R, Selverston Al. Probing the dynamics of identified neurons with a data-driven
811 modeling approach. PLoS One. 2008;3(7):€2627. doi: 10.1371/journal.pone.0002627. PubMed PMID:
812 18612435; PubMed Central PMCID: PMC2440808.

813 60. Burden RL, Faires JD. Numerical Analysis: PWS Publishing Company - Boston; 1980.

814 61. Ballo AW, Nadim F, Bucher D. Dopamine modulation of /, improves temporal fidelity of spike
815 propagation in an unmyelinated axon. J Neurosci. 2012;32(15):5106-19. doi: 10.1523/JNEUROSCI.6320-
816 11.2012. PubMed PMID: 22496556; PubMed Central PMCID: PMCPMC3347488.

817

29


https://doi.org/10.1101/126714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/126714; this version posted April 12, 2017. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

818

819

820

821

822

823

824

825

826

827

828

829

830

831
832
833
834
835
836
837

838
839
840
841
842

843
844

aCC-BY-NC-ND 4.0 International license.

Supporting Information Legends

S1. Changing the value of " does not change the correlations observed among the model
parameters. a. Correlations shown in Fig. 8b with /= at -70 mV. b. Correlations obtained with y/ set
to -96 mV (red dots). MOEA was run only once in this case, compared to 5 times in panel a (hence the
difference in the number of points). Black dots are the same as panel a. Note that the values of §H in
this case are about 10 times larger than those in panel a, but the correlations (green boxes) remain

intact. More importantly, the range of parameters other than g,, is exactly the same in both cases.

S2. I extends the dynamic range of I, parameters over which Ic,-mediated MPR occurs. Parameter

values for the optimal models in g, -V,f‘;i space shown for all models (grey dots) and those without /4

(blue dots). We removed Iy by setting g, =0, and ran the MOEA multiple times using the same Z- and

@-profiles to constrain the Ic, parameters. A linear fit (green) shows that, when g, =0, the relationship

between g, -V,f‘;i is linear and matches a narrow range of the high g values in fig 8c.

Figure Legends

Fig 1. Characterization of impedance amplitude Z(f) and phase ¢(f) into target objective functions was
performed to constrain the model parameters. The individual objective functions which collectively
measure goodness-of-fit were taken as the distance away from characteristic points along the Z(f) and
@(f) profiles (green circles). a. The attributes used along Z(f) were Zy=Z(f,) at fo=0.1 Hz, Z(f,) at f1 = 4 Hz,
maximum impedance Z,,.,=Z(fes) and the two points of the profile at Z;+Qz/2. Qz=Zax-Zo. Ny, is the width
of the profile at Zy+Qz/2. b. The attributes used along ¢(f) were ¢(f,), maximum advance @, zero-

phase frequency fy-o, @s2 at 2 Hz and maximum delay @min.

Fig 2. Linear fits used to assess the sensitivity of impedance attributes on changes in parameters. Each
model parameter was changed from the optimal value (origin) in both directions on a logarithmic scale
to characterize parameter sensitivity. The slope of a linear fit of the relative change in the Z(f) attribute
and the parameter was measured as sensitivity. The parameter was changed until the fit was no longer

linear (R%<0.98).

Fig 3. Membrane potential resonance MPR of the PD neuron was measured in voltage clamp. a. During

ongoing activity, the PD neuron shows a slow-wave voltage waveform ranging approximately between -
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845 60 and -30 mV. b. The membrane potential (V.,,) and the injected current (lpp) were recorded when the
846 PD neuron was voltage-clamped using a ZAP function between -60 and -30mV and sweeping frequencies
847 between 0.1 and 4 Hz. The arrowhead indicates resonance, where the current amplitude is minimal and
848 Z is maximal. c. The impedance amplitude Z(f) (c1) and phase ¢(f) (c2) profiles of the PD neuron

849 recorded in 18 preparations. The cross bars show the mean and SEM of f.; and Z,,4« (€1) and f,-o (€2).
850  The shaded region indicates the 95% confidence interval. d. The range of three Z(f) attributes fe, Qz, and
851 Ay and one @ff) attribute f,-o . Each attribute was normalized to the median of its distribution for cross

852 comparison. CoV is the coefficient of variation.

853 Fig. 4. Optimal models were fit to the impedance attributes of a single PD neuron. The Z(f) (a) and ¢(f)
854 (b) profiles of 500 randomly selected models from the optimal dataset (light blue curves) are compared
855 to the target neuron’s impedance profiles (red circles). All attributes (except @nmax) were captured to
856 within 5% accuracy. The values of the biological target impedance amplitude attributes (in Hz, MQ)

857 were: (fo, Zo) = (0.1, 8.2), (fres, Zmax) = (1, 13.7), (0.4, 11.65), (2.5, 11.65) and (4, 9.6). The target

858 impedance phase attributes (in Hz, rad) were: (0.1, 0), (fomax, ®max) = (0.4, 0.5), (f4=0, 0) = (1.05, 0), (2, -4),
859 (Fomins @min) = (4, -0.4).

860 Fig 5. Passive and voltage-gated currents contribute to the generation of MPR. a. Z(f) for a random

861 model from the optimal dataset. We measured the steady-state response to sinusoidal voltage inputs
862 (inset) at 0.1 Hz, f..s=1 Hz, and 4 Hz. Voltage-gated (/c, and /) and passive currents (I, + Icy,) are plotted as
863 a function of voltage (left) and normalized time or cycle phase (right) at 0.1 Hz (b), 1 Hz (c), and 4Hz (d).
864  Theinset in 5¢c shows one standard deviation around the mean for the data shown in the right panel,

865 calculated for 200 randomly selected models.

866 Fig 6. fresand fy-o of the optimal models are nearly identical. a. Z(f) (top) and ¢(f) (bottom) for a

867 representative optimal model. Green dots indicate f. (top) and fy-o (bottom). b. Histogram showing the
868 difference between f..sand f4-o for 500 randomly selected models. A comparison of fies and fy-o of the
869 experimental data of the PD neuron shows a similar distribution (inset, N=18). (c) Plots of steady-state
870 responses of Ic,, I, and /i to sinusoidal voltage inputs at the frequencies marked in panel a shown as a
871 function of normalized time (cycle phase). Dotted vertical line indicates cycle phase 0.5 where the

872 passive currents peak. Solid lines connect the minimum of I, to the peak of /.. The two lines nearly

873 align at fg-o.
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Fig 7. The time constants of I, activation and inactivation control f,.s and Z,,,,. The Z(f) profiles are

plotted for a randomly selected optimal model (green) at different values of z&“ (a) and 7;“ (b). Note
that fes of the control (100%) values are at 1 Hz (dashed vertical line). The currents Ic,, I, and lioa plotted

as a function of cycle phase at 50% (c1, d1), 100% (c2, d2), and 150% (c3, d3) of the control values of 7.

(c)and z;“ (d). In each panel of c and d, the currents are shown at 1 Hz (along the dashed lines in a, b)

and at f. (filled circles in a, b).

Fig 8. The optimal models show variability in individual and pairs of parameters. a. The range of
parameters for all optimal models (~¥9000). Each parameter is normalized by its median value for cross
comparison. The median values were g, =0.096uS, g, =0.164uS , g, =0.172uS, 7 =2179ms, V<" =—51mV’,
75 =T0ms, V5 =—6Tmy , 7, =458ms . Three representative optimal model parameter sets are shown

(cyan, orange, purple solid line segments) indicating that widely different parameter combinations can
produce the biological Z(f) and ¢(f). CoV is coefficient of variation. b. Pairwise relationships among
parameters of all optimal models (black dots). The range of parameter space was sampled within the
prescribed limits given to the optimization routine, shown by including the sampled non-optimal models
(grey). Permutation test showed significant pairwise correlations (green highlighted boxes with linear

fits shown as green lines). c. Optimal models could be separated into two highly significant linear fits

(green lines) in g, - V< according to whether g <0.05 (red; Low g_ ) or g, > 0.05 (cyan; High g, ). d.

1/2

All pairwise relationships, separated on the low or high g (colors as in panel c). Green boxes are the

same asinb.

Fig 9. The effect of the lower voltage bound V,,,, of oscillations on f,.s and Z,,,., constrains the optimal models. a.
An example of the change in Z(f) measured in the biological PD neuron for V., =-60mV (black line) and V|, =-70mV
(grey line). Inset shows the bounds of voltage clamp inputs in the two cases. b. Shifting V., from -60 mV to -70 mV
lowers the value of f,.s measured in the PD neuron significantly, without influencing Z...x (b. Experimental). f,es and

Zmax Values measured in a random subset of optimal model neurons corresponding to low or high g values

produced the same f,es and Z,,.x values at Vo, = -60mV (black dots), but distinct f,es and Z,,., values at Vo = -70mV

(low g, :red dots; high g . : cyan dots). A subset of optimal models could reproduce the experimental result in

which fies shifted to significantly lower values without affecting Zp,. (grey dots). (c) g, - pee relationship

1/2
separating out the different groups of models producing different responses to changes in V,, (colors correspond

to b Model panel). Models depicted by grey dots are referred to as intermediate g, models. (d1-e3) mean

voltage-gated ionic currents I¢,, Iy and Ic,+ly and hora, Shown as a function of voltage for Vi, =-60 mV (d1-d3) and
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904 Viow =-70 mV (el1-e3). Numbers correspond to the location along the g, - V,f‘;i as shown in c. f. The intermediate

905 8., models (grey dots) show a distinct g, - V,f‘;i linear correlation. g. Intermediate g, models (grey dots) show a

L. . C C . . . —
906 distinct and tighter Tma - Thacorrelatlon compared to all optimal models (black dots). h. Intermediate g models

907 (grey dots) show a strong g, - g, linear correlation that is not observed for all optimal models (black dots).

. . Ca _Ca,. .
908 Fig 10. Assessing the dependence of f,.; and Q; on the Tma - Tha linear correlation. a. Parameter values for each

909 model were changed along a line parallel ( , blue) to the correlation line (black) or along a perpendicular line (J-,

910 grey). This was done for models with high (cyan; al), low (red; a2) and intermediate (grey; a3) g_cd models. For

911 each model and each line, or J—, we fit a line to the relative change in either f,.s or Q; as a function of the relative
912 change in g_cd . b. The sensitivity values of f.; or Q;to or L are shown for the three groups. ¢. Impedance profiles
913 showing how Q; changes when the parameters vary along a line parallel (blue) or perpendicular (grey) to the

914 T,ia - Thca correlation line in one optimal model. Arrows show the direction of the movement of Z,., and f..s for the

915 change in parameters along or L for the high (c1), low (c2) and intermediate (c3) g_cd model.

916 Fig 11. Assessing the dependence of f..; and Q;on the linear g - V]%}x correlation. a. Parameter values for

917 each model were changed along a line parallel ( , blue) to the correlation line (black) or along a perpendicular line

918 (J-, grey). This was done for models with high (cyan; al), low (red; a2) and intermediate (grey; a3) g_cd models.

919 For each model and each line, or J—, we fit a line to the relative change in either f,.s or Q; as a function of the
920 relative change in g_cd . b. The sensitivity values of f.; or Q; to or L are shown for the three groups. ¢. Impedance
921 profiles showing how Q; changes when the parameters vary along a line parallel (blue) or perpendicular (grey) to

922 the g - V]%}x correlation line in one optimal model. Arrows show the direction of the movement of Z,,., and fes

923 for the change in parameters along or L for the high (c1), low (c2) and intermediate (c3) g_cd model.

924 Fig 12. Assessing the dependence of f,.; and Q; of the intermediate §Ca models on the linear gCa - gH

925 correlation. a. Parameter values for each model were in the intermediate gCa group (see fig 9) were changed

926 along a line parallel ( , blue) to the correlation line (black) or along a perpendicular line (J-, grey). For each model

927 and each line, or L, we fit a line to the relative change in either f,. or Q; as a function of the relative change in

928 g_cd . b. The sensitivity values of f,.; or Qzto or - are shown for the three groups. c. Impedance profiles showing

929 how Q; changes when the parameters vary along a line parallel (blue) or perpendicular (grey) to the gCa - gH
930 correlation line in one optimal model. Arrows show the direction of the movement of Z,,., and f.s for the change in

931 parameters along or .
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932 Tables

h Ca

rog H Ca” Ca Ca;,
& 8u 8ca Tm V]/Z Tm VI/Z T/’l

Low 0 0 0 0 -75 0 -75 0

High | 0.15 | 0.35 | 0.35 | 3000 | -30 100 -30 | 1000

Table 1. Limits of parameter values allowed for the PD neuron

models. ;2 was fixed at -70 mV since there is little variability

in the reporting of this experimental measurement [45, 61].
Voltages are in mV, maximal conductances in uS and time

constants in ms.

933

Table 2. Statistical p-values obtained using the permutation test of pairwise

comparisons for low (lower triangle) and high (upper triangle) g, . Underlined

values are statistically significant (p<0.05).

934
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