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Abstract 31 

Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in 32 

freshwater bacterial community composition and dynamics are not yet well characterized. We 33 

used a multi-year time series of 16S rRNA gene amplicon sequencing data from eight bog lakes 34 

to census the freshwater bacterial community and observe annual and seasonal trends in 35 

abundance. Multiple sites and sampling events were necessary to begin to fully describe the 36 

bacterial communities. Each lake and layer contained a distinct bacterial community, with 37 

distinct levels of richness and indicator taxa that likely reflected the environmental conditions of 38 

each site. The community present in each year and site was also unique. Despite high interannual 39 

variability in community composition, we detected a core community of ubiquitous freshwater 40 

taxa. Although trends in abundance did not repeat annually, each freshwater lineage within the 41 

communities had a consistent lifestyle, defined by persistence, abundance, and variability. The 42 

results of our analysis emphasize the importance of long-term observations, as analyzing only a 43 

single year of data would not have allowed us to describe the dynamics and composition of these 44 

freshwater bacterial communities to the extent presented here. 45 

Importance 46 

Lakes are excellent systems for investigating bacterial community dynamics because they have 47 

clear boundaries and strong environmental gradients. The results of our research demonstrate 48 

that bacterial community dynamics operate on multi-year timescales, a finding which likely 49 

applies to other ecosystems, with implications for study design and interpretation. Understanding 50 

the drivers and controls of bacterial communities on long time scales would improve both our 51 

knowledge of fundamental properties of bacterial communities, and our ability to predict 52 

community states. In this specific ecosystem, bog lakes play a disproportionately large role in 53 
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global carbon cycling, and the information presented here may ultimately help refine carbon 54 

budgets for these lakes. Finally, all data and code in this study are publicly available. We hope 55 

that this will serve as a resource to anyone seeking to answer their own microbial ecology 56 

questions using a multi-year time series. 57 

 58 

Introduction 59 

One of the major goals of microbial ecology is to predict bacterial community composition. 60 

However, we have only a cursory knowledge of the factors that would allow us to predict 61 

bacterial community dynamics. To characterize the diversity and dynamics of an ecosystem’s 62 

bacterial community, sampling the same site multiple times is as necessary as sampling replicate 63 

ecosystems. Additionally, the sampling frequency must match the rate of change of the process 64 

being studied. We must first understand the scales on which bacterial communities change before 65 

we can design experiments that capture a full range of natural variation. 66 

Bacterial communities have the potential to change more quickly than communities of 67 

macro-organisms due to their fast rate of reproduction. A meta-analysis of time series spanning 68 

one to three years found positive species-time relationships, indicating that more taxa are 69 

observed as the duration of sampling increases, either due to incomplete sampling, extinction and 70 

immigration, or speciation (1). Bacterial time series display time decay, meaning that the 71 

community continues to become more dissimilar from the initial sampling event as time from 72 

that event increases (2). In one freshwater lake, the amount of change in the bacterial community 73 

over a single day was equivalent to dissimilarity between sampling points ten meters apart (3). 74 

Conversely, bacterial communities can also change gradually over extremely long time scales, as 75 

they are sensitive to changes in environmental parameters such as nutrient availability and 76 
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temperature. Wetland ecosystems and their carbon emissions are expected to change on scales 77 

greater than 300 years (4); as these emissions are the result of bacterial processes, we expect that 78 

the bacterial community will change on the same time scale as its ecosystem. Changes in marine 79 

phytoplankton regimes have been observed to occur over the past millennium, correlating with 80 

shifts in climate (5). With such a large range of potential change, we now recognize the need to 81 

more rigorously consider the duration and frequency of sampling in microbial ecology. 82 

   Multi-year studies of bacterial communities are less common due their logistical 83 

difficulties and the need for stable funding, but results from the United States National Science 84 

Foundation funded Microbial Observatory projects are exemplary. As a few examples among 85 

many, the San Pedro North Pacific - Microbial Observatory contributed to our understanding of 86 

heterogeneity of bacterial communities across space and time (6), while research at the Sapelo 87 

Island – Microbial Observatory has led the field in linking genomic data to metadata (7). In our 88 

own North Temperate Lakes – Microbial Observatory, based in Wisconsin, USA, a multi-year 89 

time series of metagenomic data was used to study sweeps in diversity at the genome level (8), 90 

adding to our knowledge of how genetic mutation influences bacterial communities. Long-term 91 

microbial ecology studies have a time-tested role in the quest to forecast bacterial communities. 92 

Our North Temperate Lakes - Microbial Observatory time series was collected from eight 93 

bog lakes near Minocqua in the boreal region of northern Wisconsin, USA. Bog lakes contain 94 

high levels of dissolved organic carbon in the form of humic and fulvic acids, resulting in dark, 95 

“tea-colored” water. Due to their dark color, bog lakes absorb heat from sunlight, resulting in 96 

strong stratification during the summer. The top layer in a stratified bog lake, called the 97 

“epilimnion,” is oxygen-rich and warm. At the lake bottom, an anoxic, cold layer called the 98 

“hypolimnion” is formed. The transitions between mixing of these two layers and stratification 99 
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occur rapidly in these systems, and at different frequencies (called mixing regimes) depending on 100 

the depth, surface area, and wind exposure of the lake. Changes in bacterial community 101 

composition along the vertical gradients established during stratification are well documented (9, 102 

10). Mixing has been shown to be a disturbance to the bacterial communities in bog lakes (11).  103 

The bacterial communities in bog lakes are still being characterized, but contains both ubiquitous 104 

freshwater organisms (12, 13) and members of the candidate phyla radiation (14). Seasonality in 105 

these systems has been suggested (15, 16); however, multiple years of sampling are needed to 106 

confirm these prior findings. 107 

Our dataset is comprised of 1,387 16S rRNA gene amplicon sequencing samples, 108 

collected from eight lakes and two thermal layers over five years. Our primary goal for this 109 

dataset was to census the bog lake community and determine which taxa are core to all bog 110 

lakes, to each thermal layer, and to each mixing regime. We also sought to learn how mixing 111 

regime structures the bacterial community, with our specific hypothesis being that lakes with 112 

intermediate levels of disturbance via mixing would be the most diverse. Finally, we investigated 113 

seasonality both at the community level and in individual taxa to identify annual trends. This 114 

extensive, long-term sampling effort establishes a time series that allows us to assess variability, 115 

responses to disturbance and re-occurring trends in freshwater bacterial communities. 116 

 117 

Results 118 

Overview of community composition 119 

A time series of 16S amplicon data recovered from 1,387 samples was used to investigate 120 

bacterial community composition over time and across lakes. A total of 8,795 OTUs were 121 

detected. As is typical for most freshwater ecosystems, Proteobacteria, Actinobacteria, 122 
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Bacteroidetes, and Verrucomicrobia were the most abundant phyla (Figure S1). Within these 123 

phyla, OTU abundance was highly uneven. For example, much of the abundance of 124 

Proteobacteria could be attributed to OTUs belonging to the well-known freshwater groups 125 

Polynucleobacter and Limnohabitans, and the freshwater clade acI contributed 126 

disproportionately to the observed abundance of Actinobacteria.  Like many microbial 127 

communities, unevenness was a recurring theme in this dataset, which had a long rare tail of 128 

OTUs and trends driven largely by the most abundant OTUs (17, 18). Trimming of rare taxa did 129 

not impact the clustering observed in ordinations, such as those present in Figure 2, even when 130 

taxa observed less than 1000 times were removed. 131 

Community richness 132 

 We hypothesized that disturbance frequency, indicated by mixing regime, determines 133 

biodiversity levels. Observed richness was calculated for every sample at the OTU level, and 134 

samples were aggregated by lake and layer. Hypolimnia were generally richer than epilimnia 135 

(Figure 1, Table S1). Significant differences in richness between lakes were detected. For both 136 

layers, polymictic lakes had the fewest taxa, meromictic lakes had the most taxa, and dimictic 137 

lakes had intermediate numbers of taxa. This dataset includes two fall mixing events (Trout Bog 138 

2007 and North Sparkling Bog 2008), as well as the artificial mixing event in North Sparkling 139 

Bog 2008 (11). Richness decreased sharply in mixed samples compared to those taken during the 140 

summer stratified period (Figure S2). 141 

Clusters of community composition 142 

When differences in community composition were quantified using weighted UniFrac 143 

distance and visualized using principal coordinates analysis, several trends emerged. The large 144 

number of samples precluded much interpretation using a single PCoA, but sample clustering by 145 

layer, mixing regime, and lake was evident (Figure S3). Thus, we also examined PCoA for single 146 
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lakes (both layers). Communities from the epilimnion and hypolimnion layers were significantly 147 

distinct from each other at p < 0.05 in all lakes except for polymictic Forestry Bog (FB) (p = 148 

0.10) (Figure S4).  149 

Within layers, mixing regime was the next factor explaining differences in community 150 

composition (Figure 2). Clustering by mixing regime was significant by PERMANOVA in both 151 

epilimnia and hypolimnia samples (r2 = 0.20 and r2 = 0.22, respectively, and p = 0.001 in both 152 

groups). Lake was a strong factor explaining community composition, with significant cluster in 153 

epilimnia (p = 0.001, r2 = 0.34) and hypolimnia (p = 0.001, r2 = 0.49).  154 

Variability and dispersion 155 

 While community composition was distinct by layer, lake, and mixing regime, there was 156 

still variability in community composition over time. Each year in each lake had a significantly 157 

different community composition, indicating interannual variability in the community 158 

composition (Figure 3a-c, Figure S5). We found no evidence of repeating seasonal trends during 159 

the stratified summer months in these lakes. Likewise, we examined the abundance trends of the 160 

most abundant individual OTUs and they did not seem to repeat each year, even when 161 

abundances in each year were normalized using z-scores (Figure S6).  162 

 Varibility can also be assessed by measuring the dispersion of groups in PCoA. 163 

Dispersion is the distance of each point from the centroid of a group on an ordination plot. This 164 

analysis showed that layers had significantly different degrees of dispersion in two of the 165 

dimictic lakes (Trout Bog and South Sparkling Bog) and a meromictic lake (Mary Lake) (Figure 166 

3d). Two outliers in Mary Lake were removed; these dates showed different community 167 

compositions dominated by few taxa, possibily the result of a bloom event. Dispersion was not 168 

significantly different in the polymictic lakes, dimictic North Sparkling Bog, and meromictic 169 

Hell’s Kitchen. Increased sampling may reveal significant dispersion in these lakes. When 170 
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dispersion between layers was significant, the epilimnion was on average more dispersed than 171 

the hypolimnion, indicating higher variability. This is consistent with our previously published 172 

results, and confirms that epilimnia are more variable than hypolimnia. 173 

The core community of bog lakes 174 

 One of the goals of this study was to determine the core bacterial community of bog lakes 175 

in general, and to determine if mixing regime affects core community membership. Our previous 176 

analyses showed that community composition was distinct in each layer and lake (Figure 2), 177 

while variability was observed within the same lake and layer (Figure 3). This prompted us to 178 

ask whether we had adequately sampled through time and space to fully census the lakes. Still, 179 

rarefaction curves generated for the entire dataset and for each layer begin to level off, 180 

suggesting that we have indeed sampled the majority of taxa found in our study sites (Figure S7). 181 

To identify the taxa that comprise the bog lake core community, we defined “core” as being 182 

present in 90% of a group of samples, regardless of abundance in the fully curated dataset. Four 183 

OTUs met this criteria for all samples in the dataset: OTU0076 (bacI-A1), OTU0097 (PnecC), 184 

OTU0813 (acI-B2), and OTU0678 (LD28). These taxa were therefore also core to both epilimnia 185 

and hypolimnia.  Additional taxa core to epilimnia also included OTU0004 (betI), OTU0184 186 

(acI-B3), OTU0472 (Lhab-A4), and OTU0522 (alfI-A1), while additional hypolimnia core taxa 187 

included OTU0042 (Rhodo), OTU0053 (unclassified Verrucomicrobia), and OTU0189 (acI-B2). 188 

 We performed the same core analysis after combining OTUs assigned to the same tribe 189 

(defined by 97% nucleotide similarity in the full length 16S region and phylogenetic branch 190 

structure (19)) into new groups. This revealed that certain tribes were core to the entire dataset or 191 

thermal layer even though their member OTUs were specific to certain sites. Notably, some 192 

OTUs were endemic to specific lakes, even though their corresponding tribe was found in 193 

multiple lakes/layers. OTUs not classified at the tribe level were not included. Results were 194 
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similar to those observed at the OTU level, but yielded more core taxa. Tribes core to all samples 195 

included bacI-A1, PnecC, acI-B2, and LD28, but also betIII-A1 and acI-B4. In epilimnia, the 196 

core tribes were bacI-A1, PnecC, betIII-A1, acI-B3, acI-B2, Lhab-A4, alfI-A1, LD28, and acI-197 

B4, while in hypolimnia, they were Rhodo, bacI-A1, PnecC, betIII-A1, acI-B2, and acI-B4.  198 

These results show that despite lake-to-lake differences and interannual variability, there are 199 

bacterial taxa that are consistently present in bog lakes. 200 

 Principal coordinates analysis suggested that samples clustered also by mixing regime 201 

(Figure 2). We thus evaluated Venn diagrams of OTUs shared by and unique to each mixing 202 

regime to better visualize the overlap in community composition (Figure 4). In both epilimnia 203 

and hypolimnia, meromictic lakes had the greatest numbers of unique OTUs while polymictic 204 

lakes had the least, consistent with the differences in richness between lakes (Figure 1). Shared 205 

community membership, i.e. the number of OTUs present at any abundance in both 206 

communities, differed between mixing regimes. Epilimnia (A) and hypolimnia (B) showed 207 

similar trends in shared membership: meromictic and dimictic lakes shared the most OTUs, 208 

while meromictic and polymictic lakes shared the least.  209 

 We next used indicator analysis to identify the taxa unique to each mixing regime. 210 

Indicator analysis is a statistical method used to determine if taxa are found significantly more 211 

frequently in certain pre-determined groups of samples than in others. In this case, the groups 212 

were defined by mixing regime, and normalization was applied to account for different numbers 213 

of samples in each group.  OTUs were grouped at every taxonomic level, and all taxonomic 214 

levels were run in the indictor analysis at once to account for differences in the ability of these 215 

levels to serve as indicators (for example, the order Actinomycetales is a stronger indicator of 216 

polymictic lakes than the phylum Actinobacteria). An abundance threshold of 500 reads was 217 
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imposed on each taxonomic group. The full table of results from the indicator analysis is 218 

available in the supplemental material, while a few indicator taxa of interest are highlighted here.  219 

 The lineage acI is a ubiquitous freshwater group, with specific clades and tribes showing 220 

a preference for bog lakes in previous studies (20, 21). Our dataset shows a further distinction of 221 

acI by mixing regime in epilimnia; acI-A tribes were found predominantly in meromictic lakes, 222 

with exception of Phila, which is an indicator of polymictic lakes. Tribes of acI-B, particularly 223 

OTUs belonging to acI-B2, were indicators of dimictic lakes. Methylophilales, a putative 224 

methylotroph, was also an indicator of dimictic lakes, as was putative sulfate reducer 225 

Desulfobulbaceae. The phyla Planctomyces, Omnitrophica (formerly OP3), OP8, and 226 

Verrucomicrobia were found more often in meromictic lakes, as were putative sulfate reducers 227 

Syntrophobacterales and Desulfobacteraceae. Indicators of polymictic lakes include ubiquitous 228 

freshwater groups such as Limnohabitans, Polynucleobacter (PnecC), betI-A, and verI-A. These 229 

indicator taxa likely reflect the environmental conditions unique to each mixing regime. 230 

Lifestyles of freshwater lineages 231 

Even though OTUs do not show the same trends each year, they do possess patterns that 232 

are consistent between years and lakes. We quantified mean abundance when present, 233 

persistence (defined as the proportion of samples containing the group of interest), and the 234 

coefficient of variation for lineages classified using the freshwater taxonomy, metrics which 235 

have been previously used to categorize OTUs (22, 23). Using only these well-defined 236 

freshwater groups allowed better taxonomic resolution as we summed the abundances of OTUs 237 

by their lineage classification. Lifestyle traits of lineages were consistent across both lakes and 238 

years. Low persistence was associated with high variability, and low variability was associated 239 

with high abundance (Figure 5, Figure S8).  We rarely observed “bloomers,” situations where a 240 

clade had both high abundance and low persistence; one potential reason for this could be that 241 
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true “bloomers” drop below the detection limit of our sequencing methods when not abundant. 242 

Most freshwater lineages were highly persistent at low abundances with low variability. Lineage 243 

gamIII of the Gammaproteobacteria was an exception, with low persistence, low abundance, and 244 

high variability. Lineages gamI and verI-A occasionally also exhibited this profile. Lineages 245 

betII and acI were highly abundant and persistent with low variability, consistent with their 246 

suggested lifestyles as ubiquitous freshwater generalists (12, 21).  247 

 248 

Discussion 249 

The North Temperate Lakes - Microbial Observatory dataset is a comprehensive 16S 250 

amplicon survey spanning four years, eight lakes, and two thermal layers. We found that 251 

multiple years of sampling were necessary to census the community of bog lake ecosystems. 252 

Richness and membership in these communities were structured by layer, mixing regime, and 253 

lake. We identified specific bacterial taxa present throughout the dataset, as well as taxa endemic 254 

to certain depths or mixing regimes. Mixing events were associated with reduced richness and an 255 

increase in the proportion of certain taxa. High levels of variability were detected in this dataset; 256 

each year in each lake harbored a unique bacterial community.  However, freshwater lineages 257 

still showed consistent lifestyles, defined by abundance, persistence, and variability, across lakes 258 

and years, even though the abundance trends of individual populations were . Our results 259 

emphasize the importance of multiple sampling events to assess full bacterial community 260 

membership and variability in an ecosystem. 261 

The bog lakes in this study have been model systems for freshwater microbial ecology for 262 

many years. Early studies used Automated Ribosomal Intergenic Spacer Analysis (ARISA), a 263 

fingerprinting technique for identifying unique bacterial taxa in environmental samples (24). Our 264 
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research built upon these studies and added information about the taxonomic identities of 265 

bacterial groups. For example, persistent and unique bacterial groups were detected in the bog 266 

lakes using ARISA (25); using 16S amplicon sequencing, we also found persistent groups and 267 

could identify them as the ubiquitous freshwater bacteria LD28, acI-B2, PnecC, and bacI-A1. 268 

Differences in richness and community membership were previously detected between Crystal 269 

Bog, Trout Bog, and Mary Lake, three sites representative of the three mixing regime categories 270 

of polymictic, dimictic, and meromictic (25). Our data supported these results and suggest that 271 

these trends are indeed linked with mixing regime, as we included multiple lakes of each type 272 

sampled over multiple years in this study.   273 

We also supported previous research on the characteristics of bacterial communities in 274 

the epilimnion and hypolimnion, and the impacts of lake mixing on these communities. We 275 

confirmed that epilimnia communities tended to be more dispersed than hypolimnia 276 

communities, potentially due to increased exposure to climatic events (25). Mixing was 277 

disruptive to both epilimnion and hypolimnion communities, selecting for only a few taxa that 278 

persist during this disturbance, but quickly recovering diversity once stratification was re-279 

established (11, 26). Comparing richness between lakes of different mixing regimes did not 280 

support the intermediate disturbance hypothesis, which was our initial inspiration for the 281 

collection of this dataset; rather, the least frequently mixing lakes had the most diverse 282 

communities. As many variables co-vary with mixing regime (such as depth, volume of 283 

integrated water column, dissolved carbon concentrations and total nitrogen concentration), it is 284 

not clear which variables are driving this trend. One likely explanation is that increased depth 285 

leads to increased habitat heterogeneity, as more distinct niches develop along the vertical 286 

chemical gradients in the lake. These results are in line with current thinking in the ecological 287 
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community, as other studies on diversity and disturbance have also found no evidence for the 288 

intermediate disturbance hypothesis (27). 289 

We were not able to detect repeatable annual trends in bog lakes in our multiple years of 290 

sampling. While seasonality in marine and river systems has been well-established by our 291 

colleagues, previous research on seasonality in freshwater lakes has produced inconsistent results 292 

(28–31). Distinct, seasonally repeatable community types were identified in alpine lakes, but 293 

stratified summer communities were distinct each year (32). Seasonal trends were detected in a 294 

time series from Lake Mendota similar to this study, but summer samples in Lake Mendota were 295 

more variable then those collected in other seasons (33). In the previous ARISA-based research 296 

on the bog lakes in our dataset, community properties such as richness and rate of change were 297 

consistent each year, and the phytoplankton communities were hypothesized to drive seasonal 298 

trends in the bacterial communities based on correlation studies (34–36). Synchrony in seasonal 299 

trends was observed (35); however, in a second year of sampling for seasonal trends in Crystal 300 

Bog and Trout Bog, these findings were not reproduced (37). Successional trends were studied in 301 

Crystal Bog and Lake Mendota with a relatively small number of samples collected over two 302 

years and “dramatic changes” in community composition associated with drops in biodiversity 303 

were described during the summer months, while spring, winter, and fall had more stable 304 

community composition (34). Because our dataset was sparsely represented by seasons other 305 

than summer, higher summer variability may explain why we see a different community each 306 

year and a lack of seasonal trends in community composition. However, we cannot disprove the 307 

influence of seasonality on bacterial community dynamics in temperate freshwater lakes. 308 

One of the biggest benefits of 16S rRNA gene amplicon sequencing over ARISA is the 309 

ability to assign names to sequences. In addition to a core of persistent taxa found in nearly every 310 
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sample collected, we also identified taxa endemic to either the epilimnion or hypolimnion and to 311 

specific mixing regimes. These endemic taxa likely reflect the biogeochemical differences driven 312 

by mixing regime. Dimictic and meromictic hypolimnia, which are consistently anaerobic, 313 

harbor putative sulfur and sulfate reducers not present in polymictic hypolimnia, which are more 314 

frequently oxygenated. Members of the acI lineage partition by mixing regime in epilimnia, and 315 

the functional traits driving this filtering effect are the subject of active study (20). Interestingly, 316 

the meromictic Mary Lake hypolimnion contains several taxa classified into the candidate phyla 317 

radiation and a larger proportion of completely unclassified reads than other hypolimnia (38). 318 

This is consistent with the findings of other 16S and metagenomics studies of meromictic lakes  319 

(39, 40), and suggests that the highly reduced and consistently anaerobic conditions in 320 

meromictic hypolimnia are excellent study systems for research on members of the candidate 321 

phyla radiation and “microbial dark matter”. 322 

Perhaps the biggest implication of this study is the importance of repeated sampling of 323 

microbial ecosystems. A similar dataset spanning only a single year would not have captured the 324 

full extent of variability observed, and therefore would not have detected as many of the taxa 325 

belonging to the bog lake community; even our four years of weekly sampling did not result in 326 

level rarefaction curves (Figure S7). While we found no evidence for seasonal trends or repeated 327 

annual trends, it is possible that there are cycles or variables acting on scales longer than the five 328 

years covered in this dataset, or that annual differences are driven by environmental factors that 329 

do not occur every year. Unmeasured biotic interactions between bacterial taxa may also 330 

contribute to the observed variability. Understanding the factors that contribute to variability in 331 

bog lake communities will lead to improved predictive modelling in freshwater systems, 332 

allowing forecasting of bloom events and guiding better management strategies. Additionally, 333 
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these systems may be ideal for addressing some of the core questions in microbial ecology, such 334 

as how community assembly occurs, how interactions between taxa shape community 335 

composition, and how resource partitioning drives the lifestyles of bacterial taxa. 336 

To answer these questions and more, we continue to collect and sequence samples for the 337 

North Temperate Lakes – Microbial Observatory, and we are expanding our sequencing 338 

repertoire beyond 16S rRNA gene sequencing. All 16S rRNA gene data we have currently 339 

generated can be found in the R package “OTUtable” which is available on CRAN for 340 

installation via the R command line, or on our GitHub page. This dataset has already been used 341 

in a meta-analysis of microbial time series (1). We hope that this dataset and its future expansion 342 

will be used as a resource for researchers investigating their own questions about how bacterial 343 

communities behave on long time scales.  344 

 345 

Materials and Methods 346 

Sample Collection 347 

Water was collected from eight bog lakes during the summers of 2005, 2007, 2008 and 348 

2009, as previously described (25). Briefly, the epilimnion and hypolimnion layers were 349 

collected separately using an integrated water column sampler. Dissolved oxygen and 350 

temperature profiles were measured at the time of collection using a handheld YSI 550A (YSI 351 

Inc., Yellow Springs, OH). After transport to the laboratory, approximately 150 mL from each 352 

well-mixed sample was filtered through a 0.22 micron polyethersulfone filter (Supor 200, Pall, 353 

Port Washington, NY). Filters were stored at -80C until DNA extraction using FastDNA Spin Kit 354 

for Soil (MP Biomedicals, Santa Ana, CA), with minor modifications (41). The sampling sites 355 

are located near Boulder Junction, WI, and were chosen to include lakes represent the three 356 
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mixing regimes of polymictic (multiple mixing events per year), dimictic (two mixing events per 357 

year, usually in spring and fall), and meromictic (no record mixing events) (Table 1). Trout Bog 358 

and Crystal Bog are also primary study sites for the North Temperate Lakes - Long Term 359 

Ecological Research Program, which measures a suite of chemical limnology parameters 360 

fortnightly during the open water season. The NTL-LTER also maintains autonomous sensing 361 

buoys on Trout Bog and Crystal Bog, allowing for more refined mixing event detection based on 362 

thermistor chain measurements. 363 

Sequencing 364 

A total of 1,510 DNA samples, including 547 biological replicates, were sequenced by 365 

the Earth Microbiome Project according to their standard protocols in 2010, using the original 366 

V4 primers (FWD:GTGCCAGCMGCCGCGGTAA;REV:GGACTACHVGGGTWTCTAAT) 367 

(42). Briefly, the V4 region was amplified and sequenced using Illumina HiSeq, resulting in 368 

77,517,398 total sequences with an average length of 150 base pairs. To reduce the number of 369 

erroneous sequences, QIIME’s “deblurring” algorithm for reducing sequence error in Illumina 370 

data was applied (43). Based on the sequencing error profile, this algorithm removes reads that 371 

are likely to be sequencing errors if those reads are both low in abundance and highly similar to a 372 

high abundance read. Reads occurring less than 25 times in the entire dataset were removed after 373 

deblurring, leaving 9,856 unique sequences. These sequences are considered operational 374 

taxonomic units (OTUs).	375 

570 sequences with long homopolymer runs, ambiguous base calls, or incorrect sequence 376 

lengths were found and removed via mothur v1.34.3 (44). Thirty-three chimeras and 340 377 

chloroplast sequences (based on pre-clustering and classification with the Greengenes 16S 378 

database, May 2013) (45) were removed. Samples were rarefied to 2,500 reads; samples with 379 

less than 2,500 reads were omitted, resulting in 1,387 remaining samples. The rarefaction cutoff 380 
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used was determined based on the results of simulation; 2,500 reads was chosen to maximize the 381 

number of samples retained, while maintaining sufficient quality for downstream analysis of 382 

diversity metrics. 383 

Representative sequences for each OTU were classified in either our curated freshwater 384 

database (19) or the Greengenes database based on the output of NCBI-BLAST (blast+ 2.2.3.1) 385 

(46). Representative sequences from each OTU were randomly chosen. The program blastn was 386 

used to compare representative sequences to full-length sequences in the freshwater database. 387 

OTUs matching the freshwater database with a percent identity greater than 98% were classified 388 

in that database, and remaining sequences were classified in the Greengenes database. Both 389 

classification steps were performed in mothur using the Wang method (47), and classifications 390 

with less than 70% confidence were not included. A detailed workflow for quality control and 391 

classification of our sequences is available at (https://github.com/McMahonLab/16STaxAss ) 392 

(manuscript in prep). 393 

Statistics 394 

Statistical analysis was performed in R v3.3.2 (R Development Core Team, 2008. R: A 395 

language and environment for statistical computing.). Significant differences in richness between 396 

lakes was tested using a pairwise Wilcoxon sum rank test with a Bonferroni adjustment in the R 397 

package “exactRankTests” (T. Hothorn and K. Hornik, 2015. exactRankTests: Exact 398 

Distributions for Rank and Permutation Tests). Similarity between samples was compared using 399 

UniFrac distances, as implement in “phyloseq” (48) (P.J. McMurdie and S. Holmes, 2013. 400 

phyloseq: An R Package for reproducible interactive analysis and graphic of microbiome census 401 

data). Weighted and unweighted Unifrac distance (48) was compared with Bray-Curtis 402 

Dissimilarity and Jaccard Similarity, implemented in “vegan” (J. Oksanen, 2016. vegan: 403 

Community Ecology Package). Weighted UniFrac distances were chosen for principle 404 
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coordinates analysis, performed by betadisper() in “vegan”, because it explained the greatest 405 

amount of variation in the first two axes.  Significant clustering by year in PCoA and in 406 

dispersion between lakes was tested using PERMADISP with the function adonis() in “vegan.”  407 

Indicator species analysis was performed using “indicspecies” (49). Only taxa with read 408 

abundances of at least 500 reads in the entire dataset were used for this analysis. The group-409 

normalized coefficient of correlation was chosen for this analysis because it measures both 410 

positive and negative habitat preferences and accounts for differences in the number of samples 411 

from each site. All taxonomic levels were included in this analysis to determine which level of 412 

resolution was the best indicator for each taxonomic group.  413 

Plots were generated using “ggplot2” (H. Wickham, 2009. ggplot2: Elegant Graphics for 414 

Data Analysis) and “cowplot” (C. Wilke, 2016. cowplot: Streamlined Plot Themes and Plot 415 

Annotations for ‘ggplot2’). “reshape2” was used for data formatting (H. Wickham, 2007. 416 

Reshaping Data with the reshape Package). Data and code from this study can be downloaded 417 

from the R package “OTUtable” and the McMahon Lab GitHub repository 418 

“North_Temperate_Lakes-Microbial_Observatory.” 419 
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Tables 580 

Table 1. Location and characteristics of study sites. The lakes included in this time series are 581 

small, humic bog lakes in the boreal region near Minocqua, Wisconsin, USA. They range in 582 

depth from 2 to 21.5 meters and encompass a range of water column mixing frequencies (termed 583 

regimes). Dimictic lakes mix twice per year, typically in fall and spring, while polymictic lakes 584 

can mix more than twice throughout the spring, summer, and fall. Meromictic lakes have no 585 

recorded mixing events. pH was measured in 2007, while nutrient data was measured in 2008 586 

(with the exceptions of FB, WS, and HK, measured in 2007). When two values are present in a 587 

single box, the first represents the epilimnion value and the second represents the hypolimnion 588 

value. 589 

  590 
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 591 

 592 

 Forestry 
Bog 

Crystal 
Bog 

North 
Sparkling 

Bog 

West 
Sparkling 

Bog 
Trout Bog 

South 
Sparkling 

Bog 

Hell’s 
Kitchen 

Mary 
Lake 

ID FB CB NS WS TB SS HK MA 
Depth (m)  2.0 2.5 4.5 4.6 7.0 8.0 19.3 21.5 
Surface area 
(m 2)  1300 5600 4700 11900 10100 4400 30000 12000 

Mixing 
regime Polymictic Polymictic Dimictic Polymictic Dimictic Dimictic Meromictic Meromictic 

GPS 
coordinates 

46.04777,  -
89.651248 

46.007639,  
-89.606341 

46.004819,    
-89.705214 

46.004633,    
-89.709082 

46.041140,    
-89.686352 

46.041140,    
-89.709082 

46.186674,    
-89.702510 

46.250764,  
-89.900419 

Years 
sampled 2007 2007, 2009 2007, 2008, 

2009 2007 2005, 2007, 
2008, 2009 

2007, 2008, 
2009 2007 2005, 2007, 

2008, 2009 

pH 4.97, 4.85 4.49, 4.41 4.69, 4.80 5.22, 5.14 4.60, 4.78 4.46, 4.94  5.81, 5.72 

Dissolved 
inorganic 
carbon (ppm) 

0.94, 1.46 0.69, 1.72 1.12, 2.31 0.76, 1.56 1.73, 4.47 1.97, 6.42 2.91, 9.70 5.54, 12.38 

Dissolved 
organic 
carbon (ppm) 

10.22, 8.96 15.47, 13.6 
 10.05, 10.40 7.26, 7.27 19.87, 20.58 12.40, 21.92 7.26, 7.33 20.63, 

67.10 

Total 
nitrogen 
(ppb) 

 620.57, 
846.00 

629.09, 
809.45  737.71, 

1121.00 813.88, 1498  1332.57, 
3652.38 

Total 
phosphorus 
(ppb) 

 30.00, 38.86 
 

78.00, 
135.45  50.57, 53.25 48.63, 69.14  78.00, 

303.50 
Total 
dissolved 
nitrogen 
(ppb) 

 1290.19, 
490.13 

442.39, 
586.56  582.5, 

820.21 
451.63, 
1179.21  1024.5, 

3220.14 

Total 
dissolved 
phosphorus 
(ppb) 

 84.25, 14.88 70.22, 22.67  34.5, 31.57 16.25, 18.29  71.13, 228 

 593 

 594 
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Figures 595 

 596 

 597 
Figure 1. Richness by layer and lake. Lakes on the x axis are arranged by depth (see Table 1 598 

for lake abbreviations and depth measurements). Lakes CB, FB, and WS are polymictic, lakes 599 

NS, TB, and SS are dimictic, and lakes HK and MA are meromictic. Colored bars above each 600 

plot represent significant differences in richness between lakes, with each colored bar matching 601 

the color of a lakes boxplot. For example, in Panel A, the boxplot for CB has the colored bars 602 

matching FB, NS, TB, SS, HK, and MA above it. This indicates that it is significantly different 603 

from these lakes, but not significantly different from the missing colored bar, WS. The mean and 604 

standard deviation for each lake and layer is reported in Table S1. 605 
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 606 

 607 

Figure 2. Weighted UniFrac distance was used to perform principal coordinates analysis on 608 

epilimnion (A) and hypolimnion (B) samples. In both layers, samples cluster significantly by 609 

lake and mixing regime as tested using PERMANOVA. (See Table 1 for lake abbreviations; CB, 610 

FB, and WS are polymictic, NS, TB, and SS are dimictic, HK and MA are meromictic).  Ellipses 611 

indicating the clustering of each lake were calculate based on standard error using a 95% 612 

confidence interval. Differences in bacterial community composition between lakes and mixing 613 

regimes are more pronounced in hypolimnia than epilimnia. 614 
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 615 

Figure 3. Internannual variability and dispersion by lake. Principal coordinates analysis 616 

using weighted UniFrac as the distance metric was used to measure the amount of interannual 617 

variation in the three lake hypolimnia with the longest time series (A-C). Additional ordinations 618 

of all other lakes and layers with at least two years of sampling are provided as supplemental 619 

figures (Figure S4). Black crosses indicated the centroid for each year. All hypolimnia showed 620 

significant clustering by year by PERMANOVA. Six outliers in Mary Lake from 2007 are not 621 

shown, as their coordinates lie outside the range specified for consistency between plots; these 622 

points were included in the PERMANOVA significance test. Panel D shows dispersion of each 623 

lake and layer in a PCoA including all samples (Lake abbreviations found in Table 1; E indicates 624 

epilimnion and H indicates hypolimnion; 6 outliers with distances from the centroid greater than 625 

0.45 were removed). Stars indicate significant differences between layers at p < 0.05 by 626 
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PERMADISP with a Bonferroni correction for multiple pairwise comparisons. Layers were 627 

signficantly different in TB, SS, and MA. No significant differences in dispersion between layers 628 

in the polymictic lakes (CB, FB, and WS), meromictic lake HK, or NS, a dimictic lake with an 629 

additional artificial mixing event.  630 

 631 

 632 

Figure 4. Numbers of unique and shared OTUs by mixing regime. To better understand how 633 

shared community membership differs by mixing regime, we quantified the number of shared 634 

and unique OTUs in each category. An OTU needed only to appear in one sample at any 635 

abundance to be considered present in a category. We found that in both layers, meromictic lakes 636 

have the greatest numbers of unique OTUs and polymictic lakes have the least. Meromictic and 637 

dimictic lakes shared the most OTUs, while meromictic and polymictic lakes shared the least. 638 

Dimictic lakes shared more OTUs with meromictic lakes than with polymictic lakes. 639 

 640 
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Figure 5. Traits of freshwater lineages. These well-defined freshwater groups showed similar 641 

persistence, variance, and abundance in every lake, despite differing abundance patterns. Data 642 

from epilimnia with at least two years of undisturbed sampling are shown here. Mean abundance 643 

was represented as the average percentage of reads attributed to each lineage when that lineage 644 

was present. Variability was measured as the coefficient of variation. Persistence (shaded color) 645 

was defined as the proportion of samples containing each lineage. The observed consistency in 646 

mean abundance, variability, and persistence suggests that unknown functions or metabolic 647 

characteristics drive a stable lifestyle. Additional plots by year can be found in Figure S8. 648 
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