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2 

ABSTRACT 28 

With advances in transcript profiling, the presence of transcriptional activities in intergenic 29 

regions has been well established in multiple model systems. However, whether intergenic 30 

expression reflects transcriptional noise or the activity of novel genes remains unclear. We 31 

identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found 32 

that the amount of intergenic expression correlates with genome size, a pattern that could be 33 

expected if intergenic expression is largely nonfunctional. To further assess the functionality of 34 

ITRs, we first built machine learning classifiers using Arabidopsis thaliana as a model that can 35 

accurately distinguish functional sequences (phenotype genes) and nonfunctional ones 36 

(pseudogenes and unexpressed intergenic regions) by integrating 93 biochemical, evolutionary, 37 

and sequence-structure features. Next, by applying the models genome-wide, we found that 38 

4,427 ITRs (38%) and 796 annotated ncRNAs (44%) had features significantly similar to 39 

benchmark protein-coding or RNA genes and thus were likely parts of functional genes. 40 

However, ~60% of ITRs and ncRNAs were more similar to nonfunctional sequences and should 41 

be considered transcriptional noise unless falsified with experiments. The predictive framework 42 

established here provides not only a comprehensive look at how functional, genic sequences are 43 

distinct from likely nonfunctional ones, but also a new way to differentiate novel genes from 44 

genomic regions with noisy transcriptional activities. 45 
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INTRODUCTION 47 

Advances in sequencing technology have helped to identify pervasive transcription in intergenic 48 

regions with no annotated genes. These intergenic transcripts have been found in metazoa and 49 

fungi, including Homo sapiens (human; ENCODE Project Consortium 2012), Drosophila 50 

melanogaster (Brown et al. 2014), Caenorhabditis elegans (Boeck et al. 2016), and 51 

Saccharomyces cerevisiae (Nagalakshmi et al. 2008). In plants, ~7,000 and ~15,000 intergenic 52 

transcripts have also been reported in Arabidopsis thaliana (Yamada et al. 2003; Stolc et al. 53 

2005; Moghe et al. 2013; Krishnakumar et al. 2015) and Oryza sativa (Nobuta et al. 2007), 54 

respectively. The presence of intergenic transcripts indicates that there may be additional genes 55 

in genomes that have escaped gene finding efforts thus far. Knowledge of the complete suite of 56 

functional elements present in a genome is an important goal for large-scale functional genomics 57 

efforts and the quest to connect genotype to phenotype. Thus the identification of functional 58 

intergenic transcribed regions (ITRs) represents a fundamental task that is critical to our 59 

understanding of the gene space in a genome. 60 

Loss-of-function study represents the gold standard by which the functional significance 61 

of genomic regions, including ITRs, can be confirmed (Niu and Jiang 2013). In Mus musculus 62 

(mouse), at least 25 ITRs with loss-of-function mutant phenotypes have been identified 63 

(Sauvageau et al. 2013; Lai et al. 2015), indicating that they are bona fide genes. In addition, 64 

loss-of-function mutants have been used to confirm ITR functionality in mouse embryonic stem 65 

cell proliferation (Ivanova et al. 2006; Guttman et al. 2009) and male reproductive development 66 

(Heinen et al. 2009), as well as brain and eye development in Danio rerio (Ulitsky et al. 2011). 67 

In human, 162 long intergenic non-coding RNAs harbor phenotype-associated SNPs, suggesting 68 

that these expressed intergenic regions may be functional (Ning et al. 2013). In addition to 69 

intergenic expression, most model organisms feature an abundance of annotated non-coding 70 

RNA (ncRNA) sequences (Zhao et al. 2016), which are mostly identified through the presence of 71 

expression occurring outside of annotated genes. Thus, the only difference between ITRs and 72 

most ncRNA sequences is whether or not they have been annotated. Similar to the ITR examples 73 

above, a small number of ncRNAs have been confirmed as functional through loss-of-function 74 

experimental characterization, including but not limited to Xist in mouse (Penny et al. 1996; 75 

Marahrens et al. 1997), Malat1 in human (Bernard et al. 2010), bereft in D. melanogaster 76 

(Hardiman et al. 2002), and At4 in A. thaliana (Shin et al. 2006). However, despite the presence 77 
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of a few notable examples, the number of ITRs and ncRNAs with well-established functions is 78 

dwarfed by those with no known function. 79 

While some ITRs and ncRNAs are likely novel genes, intergenic transcription may also 80 

be the byproduct of noisy expression that can occur due to nonspecific landing of RNA 81 

Polymerase II (RNA Pol II) or spurious regulatory signals that drive expression in random 82 

genomic regions (Struhl 2007). Thus, whether an intergenic transcript is considered functional 83 

cannot depend solely on the fact that it is expressed. In addition to being biochemically active, 84 

the genomic region must be under selection. This line of logic has revived the classical ideas on 85 

differentiating “causal role” and “selected effect” functionality (Doolittle et al. 2014). A “causal 86 

role” definition requires a definable activity to consider a genomic region as functional 87 

(Cummins 1975; Amundson and Lauder 1994), which is adopted by the ENCODE Consortium 88 

(2012) to classify ~80% of the human genome as having biochemical functions. This finding has 89 

been used as evidence to disprove the presence of junk DNA that is not under natural selection 90 

(see Eddy 2013). This has drawn considerable critique because biochemical activity itself is not 91 

an indication of selection (Graur et al., 2013; Niu and Jiang, 2013). Instead, selected effect 92 

functionality is advocated to be a more suitable definition for a genomic region with discernible 93 

activity (Amundson and Lauder 1994; Graur et al., 2013; Doolittle et al. 2014). Under the 94 

selected effect functionality definition, ITRs and most annotated ncRNA genes remain 95 

functionally ambiguous. 96 

Functional ITRs represent genic sequences that have not been identified with 97 

conventional gene finding programs. Such programs incorporate sequence characteristics, 98 

transcriptional evidence, and conservation information to define genic regions that are expected 99 

to be functional. Thus, genes that lack the features typically associated with genic regions remain 100 

unidentified. Due to the debate on the definitions of function post-ENCODE, Kellis et al. (2014) 101 

suggested that evolutionary, biochemical, and genetic evidences provide complementary 102 

information to define functional genomic regions. Integration of chromatin accessibility, 103 

transcriptome, and conservation evidence was successful in identifying regions in the human 104 

genome that are under selection (Gulko et al. 2014). Moreover, a comprehensive integration of 105 

biochemical, evolutionary, and genetic evidence resulted in highly accurate identification of 106 

human disease genes and pseudogenes (Tsai et al. 2017).  However, it is not known if such 107 

predictions are possible or if the features that define functional genomic regions in human are 108 
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applicable in other species. In plants, even though many biochemical signatures are known to be 109 

associated with genic regions, these signatures have not been incorporated to assist in identifying 110 

the functional genomic regions. 111 

 To investigate the functionality of intergenic transcription, we first identified ITRs in 15 112 

flowering plant species with 17-fold genome size differences and evaluated the relationship 113 

between the prevalence of intergenic expression and genome size. Next, we determined whether 114 

93 evolutionary, biochemical, and sequence-structure features could distinguish functional 115 

sequences (phenotype genes) and nonfunctional ones (pseudogenes) using A. thaliana as a 116 

model. We then jointly considered all 93 features to establish functional gene prediction models 117 

using machine learning methods. Finally, we applied the models to ITRs and annotated ncRNAs 118 

to determine whether these functionally ambiguous sequences are more similar to known 119 

functional or likely nonfunctional sequences.  120 

RESULTS & DISCUSSION 121 

Relationship between genome size and intergenic expression indicates that intergenic 122 

transcripts may generally be nonfunctional 123 

Transcription of an unannotated, intergenic region could be due to nonfunctional transcriptional 124 

noise or the activity of a novel gene. If noisy transcription occurs due to random landing of RNA 125 

Pol II or spurious regulatory signals, a naïve expectation is that, as genome size increases, the 126 

amount of intergenic expression would increase accordingly. By contrast, we expect that the 127 

extent of expression for genic sequences will not be significantly correlated with genome size 128 

because larger plant genomes do not necessarily have more genes (r
2
=0.01; p=0.56; see 129 

Methods). Thus, to gauge if intergenic transcribed regions (ITRs) generally behave more like 130 

what we expect of noisy or genic transcription, we assessed the correlation between genome size 131 

and the amount of intergenic expression occurring within 15 flowering plant species. 132 

 We first identified genic and intergenic transcribed regions using leaf transcriptome data 133 

from 15 flowering plants with 17-fold differences in genome size (Supplemental Table 1). 134 

Identical numbers of RNA-sequencing (RNA-seq) reads (30 million) and the same mapping 135 

procedures were used in all species to facilitate cross-species comparisons (see Methods). 136 

Transcribed regions were considered as ITRs if they did not overlap with any gene annotation 137 

and had no significant translated sequence similarity to plant protein sequences. As expected, the 138 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/127282doi: bioRxiv preprint 

https://doi.org/10.1101/127282


6 

amount of expression originating from annotated genic regions had no significant correlation 139 

with genomes size (r
2
=0.03; p=0.53; Fig. 1A). In contrast, the amount of intergenic expression 140 

occurring was significantly and positively correlated (r
2
=0.30; p=0.04; Fig. 1B). Because more 141 

intergenic expression is occurring in species with more genome space, this is consistent with the 142 

interpretation that a significant proportion of intergenic expression represents transcriptional 143 

noise. However, the correlation between genome size and intergenic expression explained ~30% 144 

of the variation (Fig. 1B), suggesting that other factors also affect ITR content, including the 145 

possibility that some ITRs are truly functional, novel genes. To further evaluate the functionality 146 

of intergenic transcripts, we next identified the biochemical and evolutionary features of 147 

functional genic regions and tested whether intergenic transcripts in A. thaliana were more 148 

similar to functional or nonfunctional sequences. 149 

Expression, conservation, and epigenetic features are significantly distinct between 150 

benchmark functional and nonfunctional genomic sequences 151 

To determine whether intergenic transcripts resemble functional sequences, we first asked what 152 

features allow benchmark functional and nonfunctional genomic regions to be distinguished. For 153 

benchmark functional sequences, we used genes with visible loss-of-function phenotypes when 154 

mutated (referred to as phenotype genes, n=1,876; see Methods). These phenotype genes were 155 

considered functional based on the selected effect functionality criterion (Neander 1991) because 156 

their mutations have significant growth and/or developmental impact and likely contribute to 157 

reduced fitness. For benchmark nonfunctional genomic regions, we utilized pseudogene 158 

sequences (n=761; see Methods). These pseudogenes exhibit sequence similarity to known 159 

genes, but harbor disabling mutations, including frame shifts and/or in-frame stop codons, that 160 

result in the production of presumably nonfunctional protein products. Considering that only 2% 161 

of pseudogenes are maintained over 90 million years of divergence between human and mouse 162 

(Svensson et al. 2006), it is expected that the majority of pseudogenes are no longer under 163 

selection (Li et al. 1981). 164 

 We evaluated 93 gene or gene product features for their ability to distinguish between 165 

phenotype genes and pseudogenes. These features were grouped into seven categories, including 166 

chromatin accessibility, DNA methylation, histone 3 (H3) marks, sequence conservation, 167 

sequence-structure, transcription factor (TF) binding, and transcription activity. Feature values 168 
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(Supplemental Table 2) were calculated for a randomly-selected 500 base pair (bp) window 169 

inside a phenotype gene or pseudogene. We used Area Under the Curve - Receiver Operating 170 

Characteristic (AUC-ROC) as a metric to measure how well a feature distinguishes between 171 

phenotype genes and pseudogenes. AUC-ROC values range between 0.5 (random guessing) and 172 

1 (perfect separation of functional and nonfunctional sequences), with AUC-ROC values of 0.7, 173 

0.8, and 0.9 considered fair, good, and excellent performance, respectively. Among the seven 174 

feature categories, transcription activity features were highly informative (median AUC-175 

ROC=0.88; Fig. 2A). Sequence conservation, DNA methylation, TF binding, and H3 mark 176 

features were also fairly distinct between phenotype genes and pseudogenes (median AUC-ROC 177 

~ 0.7 for each category; Fig. 2B-E). By contrast, chromatin accessibility and sequence-structure 178 

features were largely uninformative (median AUC-ROC=0.51 and 0.55, respectively; Fig. 179 

2F,G). The poor performance of chromatin accessibility features is likely because the DNase I 180 

hypersensitive site (DHS) datasets were sparse, as only 2-6% of phenotype gene and pseudogene 181 

sequences overlapped a DHS peak. Further, median nucleosome occupancy of phenotype genes 182 

(median normalized nucleosome occupancy = 1.22) is only slightly lower than that of 183 

pseudogenes (median = 1.31; Mann Whitney U test, p < 2e-4). For sequence-structure features 184 

based on dinucleotide structures (see Methods), we found that poor performance was likely due 185 

to phenotype genes and pseudogenes sharing similar dinucleotide sequence compositions 186 

(r
2
=0.99, p<3e-16).  187 

Error rates for functional region predictions are high when only single features are 188 

considered 189 

Within each feature category, there was a wide range of performance between features (Fig. 2, 190 

Supplemental Table 3) and there were clear biological or technical explanations for features that 191 

perform poorly. For the transcription activity category, 17 out of 24 features had an AUC-ROC 192 

performance >0.8, including the best-performing feature, expression breadth (AUC-ROC=0.95; 193 

Fig. 2A). However, five transcription activity-related features performed poorly (AUC-194 

ROC<0.65), including the presence of expression (transcript) evidence (AUC-ROC=0.58; Fig. 195 

2A). This is because 80% of pseudogenes were considered expressed in ≥1 of 51 RNA-seq 196 

datasets, demonstrating that presence of transcripts should not be used by itself as evidence of 197 

functionality. For the sequence conservation category, maximum and average phastCons 198 
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conservation scores were highly distinct between phenotype genes and pseudogenes (AUC-199 

ROC=0.83 and 0.82, respectively; Fig. 2B). On the other hand, identity to best matching 200 

nucleotide sequences found in Brassicaceae and algal species were not informative (AUC-201 

ROC=0.55 and 0.51, respectively; Fig. 2B). This was because 99.8% and 95% of phenotype 202 

genes and pseudogenes, respectively, had a potentially homologous sequence within the 203 

Brassicaceae family, and only 3% and 1%, respectively, in algal species. Thus, Brassicaceae 204 

genomes were too similar and algal genomes too dissimilar to A. thaliana to provide meaningful 205 

information. H3 mark features also displayed high variability. The most informative H3 mark 206 

features were based on the number and coverage of activation-related marks (AUC-ROC=0.87 207 

and 0.85, respectively; Fig. 2E), consistent with the notion that histone marks are often jointly 208 

associated with active genomic sequences to provide a robust regulatory signal (Schreiber and 209 

Bernstein 2002; Wang et al. 2008). By comparison, the coverage and intensity of H3 lysine 27 210 

trimethylation (H3K27me3) and H3 threonine 3 phosphorylation (H3T3ph) were largely 211 

indistinct between phenotype genes and pseudogenes (AUC-ROC range: 0.55-0.59; Fig. 2E).  212 

Despite this high variability in performance, some features and feature categories had 213 

high AUC-ROCs, suggesting that these features may individually provide sufficient information 214 

for distinguishing between functional and nonfunctional genomic regions. To assess this 215 

possibility, we next evaluated the error rates of function predictions based on single features. We 216 

first considered expression breadth of a sequence, the best predicting feature of functionality. 217 

Despite high AUC-ROC (0.95), the false positive rate (FPR; % of pseudogenes predicted as 218 

phenotype genes) was 21% when only expression breadth was used, while the false negative rate 219 

(FNR; % of phenotype genes predicted as pseudogenes) was 4%. Similarly, the best-performing 220 

H3 mark- and sequence conservation-related features had FPRs of 26% and 32%, respectively, 221 

and also incorrectly classified at least 10% of phenotype genes as pseudogenes. Thus, error rates 222 

are high even when considering well-performing single features, indicating the need to jointly 223 

consider multiple features for distinguishing phenotype genes and pseudogenes. 224 

Consideration of multiple features in combination produces accurate predictions of 225 

functional genomic regions 226 

To consider multiple features in combination, we first conducted principle component (PC) 227 

analysis to investigate how well phenotype genes and pseudogenes could be separated. Between 228 
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the first two PCs, which jointly explain 40% of the variance in the feature dataset, phenotype 229 

genes (Fig. 3A) and pseudogenes (Fig. 3B) were distributed in largely distinct space. However, 230 

there remains substantial overlap, indicating that standard parametric approaches are not well 231 

suited to distinguishing between benchmark functional and nonfunctional sequences. Thus, we 232 

instead considered all 93 features for phenotype gene and pseudogenes in combination using 233 

random forest (referred to as the full model; see Methods). The phenotype gene and pseudogene 234 

sequences and associated conservation, biochemical, and sequence-structure features were 235 

separated into distinct training and testing sets and the full model was generated and validated 236 

using independent data subsets (cross-validation). The full model provided more accurate 237 

predictions (AUC-ROC=0.98; FNR=4%; FPR=10%; Fig. 3C) than any individual feature (Fig. 238 

2; Supplemental Table 3). An alternative measure of performance based on the precision 239 

(proportion of predicted functional sequences that are truly functional) and recall (proportion of 240 

truly functional sequences predicted correctly) values among predictions generated by the full 241 

model also indicated that the model was performing well (Fig. 3D). When compared to the best-242 

performing single feature (expression breadth), the full model had a similar FNR but half the 243 

FPR (10% compared to 21%). Thus, the full model is highly capable of distinguishing between 244 

phenotype genes and pseudogenes. 245 

 We next determined the relative contributions of different feature categories in predicting 246 

phenotype genes and pseudogenes and whether models based on a subset of features would 247 

perform similarly as the full model. Seven prediction models were established, each using only 248 

the subset of features from a single category (Fig. 2). Although none of these category-specific 249 

models had performance as high as the full model, the models based on transcription activity, 250 

sequence conservation, and H3 mark features scored highly (AUC-ROC=0.97, 0.92, and 0.91, 251 

respectively; Fig. 3C). Particularly, the transcription activity feature category model performed 252 

almost as well as the full model (FNR=6%, FPR=12%). We emphasize that the breadth and level 253 

of transcription are the causes of the strong performance of the transcription activity-only model, 254 

not the presence of expression evidence. 255 

 To evaluate whether the strong performance of the full model is being driven solely by 256 

transcription activity-related features, we also built a function prediction model did not consider 257 

these features (full (-TX), Fig. 3C,D). We found that the model excluding transcription activity 258 

features performed almost as well as the full model and similarly to the transcription activity-259 
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feature-only model, but with an increased FPR (AUC-ROC=0.96; FNR=3%; FPR=20%). This 260 

indicates that predictions of functional regions are not reliant solely on transcription data. 261 

Instead, a diverse array of features can be considered to make highly accurate predictions of the 262 

functionality of a genomic sequence. Meanwhile, our finding of the high performance of the 263 

transcription activity-only model highlights the possibility of establishing an accurate model for 264 

distinguishing functional genic and nonfunctional genomic sequences in plant species with only 265 

a modest amount of transcriptome data. 266 

Functional likelihood allows the prediction of functional and nonfunctional genomic 267 

regions 268 

To provide a measure of the potential functionality of any sequence in the A. thaliana genome, 269 

including ITRs and ncRNAs, we utilized the confidence score from the full model as a 270 

“functional likelihood” value (Tsai et al. 2017; see Methods). The functional likelihood (FL) 271 

score ranges between 0 and 1, with high values indicating that a sequence is more similar to 272 

phenotype genes (functional) and low values indicating a sequence more closely resembles 273 

pseudogenes (nonfunctional). FL values for all genomic regions examined in this study are 274 

available in Supplemental Table 4. As expected, phenotype genes had high FL values 275 

(median=0.97; Fig. 4A) and pseudogenes had low values (median=0.01; Fig. 4B). To call 276 

sequences as functional or not, we defined a threshold FL value of 0.35 (see Methods). Using 277 

this threshold, 96% of phenotype genes (Fig. 4A) and 90% of pseudogenes (Fig. 4B) are 278 

correctly classified as functional and nonfunctional, respectively, demonstrating that the full 279 

model is highly capable of distinguishing functional and nonfunctional sequences.  280 

We next applied our model to predict the functionality of annotated protein-coding genes, 281 

transposable elements, and unexpressed intergenic regions. Most annotated protein-coding genes 282 

not included in the phenotype gene dataset had high FL scores (median=0.86; Fig. 4C) and 80% 283 

were predicted as functional. Of the 20% of protein-coding genes that were predicted as 284 

nonfunctional, we expect that at least 4% represent false negatives based on the FNR of the full 285 

model. The actual FNR among protein-coding genes may be higher, however, as phenotype 286 

genes represent a highly active and well conserved subset of all genes. However, a subset of the 287 

low-scoring protein-coding genes may also represent gene sequences undergoing functional 288 

decay and en route to pseudogene status. To assess this possibility, we examined 1,940 A. 289 
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thaliana "decaying” genes that may be experiencing pseudogenization due to promoter 290 

disablement (Yang et al. 2011) and found that, while these decaying genes represented only 7% 291 

of all A. thaliana annotated protein-coding genes, they made up 45% of protein-coding genes 292 

predicted as nonfunctional (Fisher’s Exact Test (FET), p < 1E-11). In addition to protein-coding 293 

genes, we evaluated the FLs of transposable elements (TEs) and randomly-selected, unexpressed 294 

intergenic regions that are most likely nonfunctional. As expected, the FLs were low for both 295 

TEs (median=0.03, Fig. 4D) and unexpressed intergenic regions (median=0.07; Fig. 4E), and 296 

99% of TEs and all unexpressed intergenic sequences were predicted as nonfunctional, further 297 

demonstrating the utility of the function prediction model. Overall, the FL measure provides a 298 

useful metric to distinguish between phenotype genes and pseudogenes. In addition, the FLs of 299 

annotated protein-coding genes, TEs, and unexpressed intergenic sequences agree with a priori 300 

expectations regarding the functionality of these sequences.  301 

Exclusion of features from multiple tissues increases prediction performance for narrowly-302 

expressed sequences 303 

Although the full model performs exceedingly well, there remain false predictions. There are 76 304 

phenotype genes (4%) predicted as nonfunctional (referred to as low-FL phenotype genes). We 305 

assessed why these phenotype genes were not correctly identified by first asking what category 306 

of features were particularly distinct between low-FL and the remaining phenotype genes. We 307 

found that the major category that led to the misclassification of phenotype genes was 308 

transcription activity, as only 7% of low-scoring phenotype genes were predicted as functional in 309 

the transcription activity-only model, compared to 98% of high FL phenotype genes (Fig. 5). By 310 

contrast, >65% of low-FL phenotype genes were predicted as functional when sequence 311 

conservation, H3 mark, or DNA methylation features were used. This could suggest that the full 312 

model is less effective in predicting functional sequences that are weakly or narrowly expressed. 313 

While sequence conservation features are distinct between functional and nonfunctional 314 

sequences when considered in combination, a significantly higher proportion of low-FL 315 

phenotype genes were specific to the Brassicaceae family, with only 33% present in 316 

dicotyledonous species outside of the Brassicaceae, compared to 78% of high-scoring phenotype 317 

genes (FET, p < 4e-12), thus our model likely has reduced power in detecting lineage-specific 318 

genes.  319 
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Given the association between transcription activity features and functional predictions, 320 

we next investigated how functional predictions performed for conditionally-functional and 321 

narrowly-expressed sequences. We found that genes with conditional phenotypes (see Methods) 322 

had no significant differences in FLs (median=0.96) as those with phenotypes under standard 323 

growth conditions (median=0.97; U test, p=0.38, Supplemental Fig. 1A). Thus, our model can 324 

capture conditionally functional sequences. Next, we evaluated FL distributions among 325 

sequences with different breadths of gene expression. For this comparison, we focused on non-326 

stress, single-tissue expression datasets (Supplemental Table 5), which was distinct from the 327 

expression breadth feature in the prediction model that considered all datasets. While phenotype 328 

genes were better predicted than pseudogenes among sequences with the same number of tissues 329 

with expression evidence (U tests, all p < 1.7E-06; Supplemental Fig. 1B), 65% of the 62 330 

phenotype genes expressed in ≤3 tissues were predicted as nonfunctional. Further, there was a 331 

significant correlation between the number of tissues with expression evidence and FL values of 332 

all sequences in our analysis (r
2
=0.77; p < 2E-16). Thus, the function prediction model is biased 333 

against narrowly-expressed phenotype genes.  334 

We also found that 80 pseudogenes (10%) were defined as functional (high-FL 335 

pseudogenes). Consistent with misclassifications among phenotype genes, a key difference 336 

between high-FL pseudogenes and those that were correctly predicted as nonfunctional was that 337 

high-FL pseudogenes were more highly and broadly expressed (Fig. 5). A significantly higher 338 

proportion of high-FL pseudogenes came from existing genome annotation as 19% of annotated 339 

pseudogenes were classified as functional, compared to 4% of pseudogenes identified through a 340 

computational pipeline (Zou et al 2009) (FET, p < 1.5E-10). We found that high-FL pseudogenes 341 

might be more recently pseudogenized and thus have not yet lost many genic signatures, as the 342 

mean number of disabling mutations (premature stop or frameshift) per kb in high-scoring 343 

pseudogenes (1.9) were significantly lower than that of low-scoring pseudogenes (4.0; U test, p < 344 

0.02). Lastly, we cannot rule out the possibility that a small subset of high-scoring pseudogenes 345 

represent truly functional sequences, rather than false positives (e.g. Poliseno et al. 2010; Karreth 346 

et al. 2015). Overall, the misclassification of both narrowly-expressed phenotype genes and 347 

broadly-expressed pseudogenes highlights the need for an updated prediction model that is less 348 

influenced by expression breadth. 349 
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To tailor functional predictions to narrowly-expressed sequences, we generated a “tissue-350 

agnostic” model that attempts to minimize the contribution of biochemical activities occurring in 351 

many tissues by excluding expression breadth and features that were available across multiple 352 

tissues (see Methods). The tissue-agnostic model performed similarly to the full model (AUC-353 

ROC=0.97; FNR=4%; FPR=15%; Supplemental Fig. 2; Supplemental Table 4). Importantly, the 354 

proportion of phenotype genes expressed in ≤3 tissues predicted as functional increased by 23% 355 

(35% in the full model to 58% in the tissue-agnostic model, Supplemental Fig. 1C), indicating 356 

that the tissue-agnostic model is more suitable for predicting the functionality of narrowly-357 

expressed sequences than the full model, although there was an increase in FPR (from 10% to 358 

15%). We next sought to evaluate the FL of ITR and annotated ncRNA sequences utilizing both 359 

the full model and the tissue-agnostic model, as these sequences were often narrowly-expressed 360 

(Supplemental Fig. 3A).  361 

Intergenic transcribed regions and annotated ncRNAs are mostly predicted as 362 

nonfunctional 363 

A subset of ITRs and ncRNAs likely represent novel genes or unannotated exon extensions of 364 

known genes (Johnson et al. 2005; Moghe et al. 2013). Nevertheless, most ITRs and ncRNAs are 365 

functionally ambiguous, as they are predominantly identified by the presence of expression 366 

evidence and few have been characterized genetically. To evaluate the functionality of ITRs and 367 

ncRNAs, we applied both the full and tissue-agnostic models to 895 ITRs, 136 TAIR ncRNAs, 368 

and 252 Araport long ncRNAs (referred to as Araport ncRNAs; see Methods). The median FLs 369 

based on the full model were low (0.09) for both ITRs (Fig. 4F) and Araport ncRNAs (Fig. 4G), 370 

and only 15% and 9% of these sequences were predicted as functional, respectively. By contrast, 371 

TAIR ncRNAs had a significantly higher median FL value (0.53; U tests, both p<5e-31; Fig. 372 

4H) and 68% were predicted as functional. The higher proportion of functional TAIR ncRNA 373 

predictions compared to ITRs and Araport ncRNAs could be best explained by differences in 374 

features from the transcription activity category (Fig. 5). We also note that a greater proportion 375 

of ITRs and Araport ncRNAs are predicted as functional when considering only DNA 376 

methylation or H3 mark features (Fig. 5). However, these two category-specific models also had 377 

higher false positive rates (unexpressed intergenic sequences and pseudogenes, Fig. 5). Thus, 378 
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single feature models do not provide additional support for the functionality of most Araport 379 

ncRNAs and ITRs.  380 

We next applied the tissue-agnostic model that is less biased against narrowly-expressed 381 

sequences (Supplemental Fig. 1C) to ITRs and TAIR/Araport ncRNAs that were generally 382 

narrowly-expressed (Supplemental Fig. 3A). Compared to the full model, around twice as many 383 

ITRs (30%) and Araport ncRNAs (19%) but a similar number of TAIR ncRNA (67%) were 384 

predicted as functional. Considering the union of the full and tissue-agnostic model predictions, 385 

268 ITRs (32%), 57 Araport ncRNAs (23%), and 105 TAIR ncRNAs (77%) were likely 386 

functional. ITRs and annotated ncRNAs closer to annotated genes tended to be predicted as 387 

functional (Supplemental Fig. 4A). Using the 95
th

 percentile of intron lengths for all genes as a 388 

threshold to call ITRs and annotated ncRNAs as proximal or distal to neighboring genes, 57% of 389 

likely functional and 35% of likely nonfunctional ITRs and ncRNAs were proximal to 390 

neighboring genes, respectively (FET, p < 2E-09). To assess if a subset these likely functional, 391 

proximal ITRs/ncRNAs may be unannotated exons of known genes, we assessed whether they 392 

tended to have similar features with their neighbors. Compared to feature similarities between 393 

neighboring and random gene pairs (Supplemental Fig. 4B-D), likely functional ITRs/ncRNAs 394 

were less similar to their neighbors, regardless of proximity (Supplemental Fig. 4C,D). Thus, 395 

despite their proximity to annotated genes, it remains unclear if some ITRs or annotated ncRNAs 396 

represent unannotated exon extensions of known genes or not. In addition, for proximal 397 

functional ITRs/annotated ncRNAs, we cannot rule out the possibility that they represent false-398 

positive functional predictions due to the accessible and active chromatin states of nearby genes. 399 

Given the challenge in ascertaining the origin of likely functional, proximal ITRs/ncRNAs, we 400 

instead conservatively estimate that 116 distal, functional ITRs and annotated ncRNAs may 401 

represent fragments of novel genes.  402 

Intergenic transcribed regions and annotated ncRNAs do not resemble benchmark RNA 403 

genes 404 

Thus far, we predicted the majority of ITR and annotated ncRNA sequences as nonfunctional. 405 

We demonstrated that the full model was able to predict conditional phenotype genes 406 

(Supplemental Fig. 1A) and the tissue-agnostic model was more effective than the full model in 407 

predicting narrowly expressed phenotype genes (Supplemental Fig. 1B,C). Thus, conditional or 408 
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tissue-specific functionality do not fully explain why the majority of ITRs and ncRNAs are 409 

predicted as nonfunctional. However, the function prediction models so far were built by 410 

contrasting protein-coding genes with pseudogenes and it remains possible that these protein-411 

coding gene-based models can not accurately predict RNA genes. To evaluate this possibility, 412 

we generated a tissue-agnostic model using features calculated from a randomly-selected 100 bp 413 

sequence within a phenotype protein-coding gene or pseudogene body (for features, see 414 

Supplemental Table 6). The reason for using 100 bp sequence is that most RNA genes are too 415 

short to be considered by earlier models, which were based on 500 bp sequences. In addition, 416 

features from the tissue agnostic model are more suitable for RNA gene prediction as annotated 417 

RNA genes tend to be more narrowly expressed than phenotype genes (U tests, all p < 2e-05; 418 

Supplemental Fig. 3B). The 100 bp tissue-agnostic model performed similarly to the full 500 bp 419 

model in distinguishing between phenotype protein-coding genes and pseudogenes, except with 420 

higher FNR (AUC-ROC=0.97; FNR=13%; FPR=5%; Supplemental Fig. 5), but only predicted 421 

three out of six RNA genes with documented mutant phenotypes (phenotype RNA genes) as 422 

functional (Supplemental Fig. 5I). Further, other RNA Pol II-transcribed RNA genes exhibited 423 

mixed predictions from the 100 bp tissue-agnostic model, as 15% of microRNA (miRNA) 424 

primary transcripts (Supplemental Fig. 5J), 73% of small nucleolar RNAs (snRNAs; 425 

Supplemental Fig. 5K), and 50% of small nuclear RNAs (snRNAs; Supplemental Fig. 5L) were 426 

predicted as functional. Although the proportion of phenotype RNA genes predicted as 427 

functional (50%) is significantly higher than the proportion of pseudogenes predicted as 428 

functional (5%, FET, p < 0.004), this finding suggests that a model built with protein-coding 429 

genes has a substantial FNR for detecting RNA genes. 430 

To determine whether the suboptimal predictions by the phenotype protein-coding gene-431 

based models are because RNA genes belong to a class of their own, we next built a multi-class 432 

function prediction model aimed at distinguishing four classes of sequences: benchmark RNA 433 

genes (n=46), phenotype protein-coding genes (1,882), pseudogenes (3,916), and randomly-434 

selected, unexpressed intergenic regions (4,000). Benchmark RNA genes include six phenotype 435 

RNA genes and 40 high-confidence miRNA primary transcript sequences (see Methods). 436 

Unexpressed intergenic sequences were included to provide another set of likely nonfunctional 437 

sequences distinct from pseudogenes. Expression breadth and tissue-specific features were 438 

excluded from the four-class model and 100 bp sequences were used. In the four-class model, 439 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/127282doi: bioRxiv preprint 

https://doi.org/10.1101/127282


16 

87% of benchmark RNA genes, including all six phenotype RNA genes, were predicted as 440 

functional sequences (65% RNA gene-like and 22% phenotype protein-coding gene-like; Fig. 441 

6A). In addition, 95% of phenotype genes were predicted as functional (Fig. 6B), including 80% 442 

of narrowly expressed genes, an increase of 22% over the 500 bp tissue-agnostic model 443 

(Supplemental Fig. 1B). For the remaining two sequence classes, 70% of pseudogenes (Fig. 6C) 444 

and 100% of unexpressed intergenic regions (Fig. 6D) were predicted as nonfunctional (either 445 

pseudogenes or unexpressed intergenic sequences). Thus, the four-class model improves 446 

prediction accuracy of RNA genes and narrowly expressed genes. However, the inclusion of 447 

RNA genes in the model has significantly increased the ambiguity in pseudogene classification.  448 

Since the four-class model was able to distinguish benchmark RNA genes from 449 

nonfunctional sequence classes, we next evaluated whether ITRs and annotated ncRNAs 450 

resemble functional sequences with the four-class model. Note that the 100 bp model used here 451 

allowed us to evaluate an additional 10,938 ITRs and 1,406 annotated ncRNAs. We find that 452 

34% of ITR, 38% of Araport ncRNA, and of 65% TAIR ncRNAs were predicted as functional 453 

sequences (Fig. 6E-G). To provide an overall estimate of the proportion of likely-functional 454 

ITRs and annotated ncRNAs, we considered the predictions from the four-class model (Fig. 6), 455 

the full model (Fig. 3,4), and the tissue-agnostic models (Supplemental Fig. 2,5). Based on 456 

support from at least one of the four models, we classified 4,437 ITRs (38%) and 796 annotated 457 

ncRNAs (44%) as functional, as they resembled either phenotype protein-coding or RNA genes. 458 

Our findings lend support that they are likely parts of novel or annotated genes. Meanwhile, we 459 

find that a substantial number of ITRs (62%) and annotated ncRNAs (56%) are predicted as 460 

nonfunctional. Moreover, at least a third of ITRs (Fig. 6E) and Araport ncRNAs (Fig. 6F) most 461 

closely resemble unexpressed intergenic regions. Thus, we show that the majority of ITRs and 462 

annotated ncRNA regions resemble nonfunctional genomic regions, and therefore could 463 

represent regions of noisy transcription.  464 

CONCLUSION  465 

Discerning the location of functional regions within a genome represents a key goal in genomic 466 

biology. Despite advances in computational gene finding, it remains challenging to determine 467 

whether intergenic transcribed regions (ITRs) represent functional or noisy biochemical activity. 468 

We established robust function prediction models based on the evolutionary, biochemical, and 469 
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structural characteristics of phenotype genes and pseudogenes. The prediction models accurately 470 

define functional and nonfunctional regions and are applicable genome-wide. These results echo 471 

recent findings that human phenotype genes could be distinguished from pseudogenes (Tsai et al. 472 

2017). Given that function predictions were successful in both plant and metazoan model 473 

systems, integrating the evolutionary and biochemical features of known genes will likely be 474 

applicable to any species. The next step will be to test whether function prediction models can be 475 

applied across species, which could ultimately allow the phenotype data and omics resources 476 

available in model systems to effectively guide the identification of functional regions in non-477 

models. 478 

Expression data was highly informative to functional predictions. We found that the 479 

prediction model based on only 24 transcription activity-related features performs nearly as well 480 

as the full model that integrates additional information including conservation, H3 mark, 481 

methylation, and TF binding data. In human, use of transcription data from cell lines also 482 

produced highly accurate predictions of functional genomic regions (AUC-ROC=0.96; Tsai et al. 483 

2017). Despite the importance of transcription data, we emphasize that the presence of 484 

expression evidence is an extremely poor predictor. Taken together, these results indicate that 485 

function prediction models can be established in any species, model or not, with a modest 486 

number of transcriptome datasets (e.g. 51 in this study and 19 in human). One caveat of the 487 

current model is that narrowly-expressed phenotype genes are frequently predicted as 488 

pseudogene and broadly-expressed pseudogenes tend to be called functional. To improve the 489 

function prediction model, it will be important to explore additional features unrelated to 490 

transcription. Because few phenotype genes are narrowly-expressed (5%) in the A. thaliana 491 

training data, more phenotyping data for narrowly expressed genes will be crucial as well.  492 

Upon application of the function prediction models genome-wide, we found that 4,427 493 

ITRs and 796 annotated ncRNAs in A. thaliana are likely functional. Assuming each entry 494 

equals a novel gene, this estimate represents a 19% increase in annotated gene space (excluding 495 

annotated ncRNAs) for the model plant. However, considering the high false positive rates (e.g. 496 

10% for the full and 31% for the four-class model), this is most likely an overestimate of the 497 

number of novel genes contributed by functional ITRs and annotated ncRNAs. In addition, we 498 

emphasize that the majority of ITRs and ncRNAs resemble pseudogenes and random 499 

unexpressed intergenic regions. Similarly, most human ncRNAs are more similar to 500 
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nonfunctional sequences than they are to protein coding and RNA genes (Tsai et al. 2017). 501 

Furthermore, the significant relationship between the amount of intergenic expression occurring 502 

in a species and the size of a genome is consistent with the interpretation that intergenic 503 

transcripts are generally nonfunctional. Thus, instead of assuming any expressed sequence must 504 

be functionally significant, we advocate that the null hypothesis should be that it is not, 505 

particularly considering that most ITRs and annotated ncRNAs have not been experimentally 506 

characterized. The machine learning framework we have described provides an approach for 507 

distinguishing between functional and noisy biochemical activity, and will help defining the gene 508 

space in a genome. 509 

METHODS 510 

Identification of transcribed regions in leaf tissue of 15 flowering plants 511 

RNA-sequencing (RNA-seq) datasets were retrieved from the Sequence Read Archive (SRA) at 512 

the National Center for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov/sra/) for 15 513 

flowering plant species (Supplemental Table 1). All datasets were generated from leaf tissue and 514 

sequenced on Illumina HiSeq 2000 or 2500 platforms. Genome sequences and gene annotation 515 

files were downloaded from Phytozome v.11 (www.phytozome.net; Goodstein et al. 2011) or 516 

Oropetium Base v.01 (www.sviridis.org; VanBuren et al. 2015). Genome sequences were repeat 517 

masked using RepeatMasker v4.0.5 (www.repeatmasker.org) if a repeat-masked version was not 518 

available. Only one end from paired-end read datasets were utilized in downstream processing. 519 

Reads were trimmed to be rid of low scoring ends and residual adaptor sequences using 520 

Trimmomatic v0.33 (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:20, Bolger 521 

et al. 2014) and mapped to genome sequences using TopHat v2.0.13 (default parameters except 522 

as noted below; Kim et al. 2013). Reads ≥20 nucleotides in length that mapped uniquely within a 523 

genome were used in further analysis.  524 

For each species, thirty million mapped reads were randomly selected from among all 525 

datasets and assembled into transcript fragments using Cufflinks v2.2.1 (default parameters 526 

except as noted below, Trapnell et al. 2010), while correcting for sequence-specific biases during 527 

the sequencing process by providing an associated genome sequence with the -b flag. The 528 

expected mean fragment length for assembled transcript fragments in Cufflinks was set to 150 529 

from the default of 200 so that expression levels in short fragments would not be overestimated. 530 
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The 1
st
 and 99

th
 percentile of intron lengths for each species were used as the minimum and 531 

maximum intron lengths, respectively, for both the TopHat2 and Cufflinks steps. Intergenic 532 

transcribed regions (ITRs) were defined by transcript fragments that did not overlap with gene 533 

annotation and did not have significant six-frame translated similarity to plant protein sequences 534 

in Phytozome v.10 (BLASTX E-value < 1E-05). The correlation between assembled genome 535 

size and gene counts was determined with data from the first 50 published plant genomes 536 

(Michael and Jackson, 2013). 537 

Phenotype data sources 538 

Mutant phenotype data for A. thaliana protein-coding genes was collected from a published 539 

dataset (Lloyd and Meinke 2012), the Chloroplast 2010 database (Ajjawi et al. 2010; Savage et 540 

al. 2013), and the RIKEN phenome database (Kuromori et al. 2006) as described by Lloyd et al. 541 

(2015). Phenotype genes used in our analyses were those whose disruption resulted in lethal or 542 

visible defects under standard laboratory growth conditions. Genes with documented mutant 543 

phenotypes under standard conditions were considered as a distinct and non-overlapping 544 

category from other annotated protein-coding genes. We identified six RNA genes with 545 

documented loss-of-function phenotypes through literature searches (Supplemental Table 7): At4 546 

(AT5G03545; Shin et al. 2006), MIR164A and MIR164D (AT2G47585 and AT5G01747, 547 

respectively; Guo et al. 2005), MIR168A (AT4G19395; Li et al. 2012b), and MIR828A and TAS4 548 

(AT4G27765 and AT3G25795, respectively; Hsieh et al. 2009). Conditional phenotype genes 549 

were those belonging to the Conditional phenotype group as described by Lloyd and Meinke 550 

(2012). Loss-of-function mutants of these genes exhibited phenotype only under stress 551 

conditions.  552 

Arabidopsis thaliana genome annotation 553 

A. thaliana protein-coding gene, miRNA gene, snoRNA gene, snRNA gene, ncRNA region, 554 

pseudogene, and transposable element annotations were retrieved from The Arabidopsis 555 

Information Resource v.10 (TAIR10; www.arabidopsis.org; Berardini et al. 2015). Additional 556 

miRNA gene and lncRNA region annotations were retrieved from Araport v.11 557 

(www.araport.org; Krishnakumar et al. 2015). A pseudogene-finding pipeline (Zou et al. 2009) 558 

was used to identify additional pseudogene fragments and count the number of disabling 559 
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mutations (premature stop or frameshift mutations). Genes, pseudogenes, and transposons with 560 

overlapping annotation were excluded from further analysis. Overlapping lncRNA annotations 561 

were merged for further analysis. When pseudogenes from TAIR10 and the pseudogene-finding 562 

pipeline overlapped, the longer pseudogene annotation was used. 563 

A. thaliana ITRs analyzed include: (1) the Set 2 ITRs in Moghe et al. (2013), (2) the 564 

novel transcribed regions from Araport v.11, and (3) additional ITRs from 206 RNA-seq datasets 565 

(Supplemental Table 5). Reads were trimmed, mapped, and assembled into transcript fragments 566 

as described above, except that overlapping transcript fragments from across datasets were 567 

merged. ITRs analyzed did not overlap with any TAIR10, Araport11, or pseudogene annotation. 568 

Overlapping ITRs from different annotated subsets were kept based on a priority system: 569 

Araport11 > Set 2 ITRs from Moghe et al. (2013) > ITRs identified in this study. For each 570 

sequence entry (gene, ncRNA, pseudogene, transposable element, or ITR), a 100 and 500 base 571 

pair (bp) window was randomly chosen for calculating feature values and subsequent model 572 

building steps. Feature descriptions are provided in the following sections. The feature values for 573 

randomly selected 500 and 100 bp windows are provided in Supplemental Table 2 and 6, 574 

respectively. Additionally, non-expressed intergenic sequences were randomly-sampled from 575 

genome regions that did not overlap with annotated genes, pseudogenes, transposable elements, 576 

or regions with genic or intergenic transcript fragments (100 bp, n=4,000; 500 bp, n=3,716). All 577 

100 and 500 bp windows described above are referred to as sequence windows throughout the 578 

Methods section. 579 

Sequence conservation and structure features 580 

There were 10 sequence conservation features examined. The first two were derived from 581 

comparisons between A. thaliana accessions including nucleotide diversity and Tajima’s D 582 

among 81 accessions (Cao et al. 2011) using a genome matrix file from the 1,001 genomes 583 

database (www.1001genomes.org). The python scripts are available through GitHub 584 

(https://github.com/ShiuLab/GenomeMatrixProcessing). The remaining eight features were 585 

derived from cross-species comparisons, three based on multiple sequence and five based on 586 

pairwise alignments. Three multiple sequence alignment-based features were established using 587 

aligned genomic regions between A. thaliana and six other plant species (Glycine max, 588 

Medicago truncatula, Populus trichocarpa, Vitis vinifera, Sorghum bicolor, and Oryza sativa) 589 
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(referred to as conserved blocks). For each conserved block, the first feature was the proportion 590 

of a sequence window that overlapped a conserved block (referred to as coverage), and the two 591 

other features were the maximum and average phastCons scores within each sequence window. 592 

The phastCons score was determined for each nucleotide within conserved blocks (Li et al. 593 

2012a). Nucleotides in a sequence window that did not overlap with a conserved block were 594 

assigned a phastCons score of 0. For each sequence window, five pairwise alignment-based 595 

cross-species conservation features were the percent identities to the most significant BLASTN 596 

match (if E-value<1E-05) in each of five taxonomic groups. The five taxonomic groups included 597 

the Brassicaceae family (nspecies=7), other dicotyledonous plants (22), monocotyledonous plants 598 

(7), other embryophytes (3), and green algae (5). If no sequence with significant similarity was 599 

present, percent identity was scored as zero.  600 

For sequence-structure features, we used 125 conformational and thermodynamic 601 

dinucleotide properties collected from DiProDB database (Friedel et al. 2009). Because the 602 

number of dinucleotide properties was high and dependent, we reduced the dimensionality by 603 

utilizing principal component (PC) analysis as described previously (Tsai et al. 2015). Sequence-604 

structure values corresponding to the first five PCs were calculated for all dinucleotides in and 605 

averaged across the length of a sequence window and used as features when building function 606 

prediction models.  607 

Transcription activity features 608 

We generated four multi-dataset and 20 individual dataset transcription activity features. To 609 

identify a set of RNA-seq datasets to calculate multi-dataset features, we focused on the 72 of 610 

206 RNA-seq datasets each with ≥20 million reads (see above; Supplemental Table 5). 611 

Transcribed regions were identified with TopHat2 and Cufflinks as described in the RNA-seq 612 

analysis section except that the 72 A. thaliana RNA-seq datasets were used. Following transcript 613 

assembly, we excluded 21 RNA-seq datasets because they had unusually high RPKM (Reads Per 614 

Kilobase of transcript per Million mapped reads) values (median RPKM value 615 

range=272~2,504,294) compared to the rest (2~252). The remaining 51 RNA-seq datasets were 616 

used to generate four multi-dataset transcription activity features including: expression breadth, 617 

95
th

 percentile expression level, maximum transcript coverage, and presence of expression 618 

evidence (for values see Supplemental Table 5). Expression breadth was the number of RNA-seq 619 
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datasets that have ≥1 transcribed region that overlapped with a sequence window. The 95
th

 620 

percentile expression level was the 95
th

 percentile of RPKM values across 51 RNA-seq datasets 621 

where RPKM values were set to 0 if there was no transcribed region for a sequence window. 622 

Maximum transcript coverage was the maximum proportion of a sequence window that 623 

overlapped with a transcribed region across 51 RNA-seq datasets. Presence of expression 624 

evidence was determined by overlap between a sequence window and any transcribed region in 625 

the 51 RNA-seq datasets.  626 

In addition to features based on multiple datasets, 20 individual dataset features were 627 

derived from 10 datasets: seven tissue/organ-specific RNA-seq datasets including pollen 628 

(SRR847501), seedling (SRR1020621), leaf (SRR953400), root (SRR578947), inflorescence 629 

(SRR953399), flower, (SRR505745) and silique (SRR953401), and three datasets from non-630 

standard growth conditions, including dark-grown seedlings (SRR974751) and leaf tissue under 631 

drought (SRR921316) and fungal infection (SRR391052). For each of these 10 RNA-seq 632 

datasets, we defined two features for each sequence window: the maximum transcript coverage 633 

(as described above) and the maximum RPKM value of overlapping transcribed regions (referred 634 

to as Level in Fig. 2). If no transcribed regions overlapped a sequence window, the maximum 635 

RPKM value was set as 0. For the analysis of narrowly- and broadly-expressed phenotype genes 636 

and pseudogenes (Supplemental Fig. 1B,C), we used 28 out of 51 RNA-seq datasets generated 637 

from a single tissue and in standard growth conditions to calculate the number of tissues with 638 

evidence of expression (tissue expression breadth). In total, seven tissues were represented 639 

among the 28 selected RNA-seq datasets (see above; Supplemental Table 5), and thus tissue 640 

expression breadth ranges from 0 to 7 (note that only 1 through 7 are shown in Supplemental Fig. 641 

1B,C due to low sample size of phenotype genes in the 0 bin). The tissue breadth value is distinct 642 

from the expression breadth feature used in model building that was generated using all 51 643 

datasets and considered multiple RNA-seq datasets from the same tissue separately (range: 0-644 

51). 645 

Histone 3 mark features 646 

Twenty histone 3 (H3) mark features were calculated based on eight H3 chromatin 647 

immunoprecipitation sequencing (ChIP-seq) datasets from SRA. The H3 marks examined 648 

include four associated with activation (H3K4me1: SRR2001269, H3K4me3: SRR1964977, 649 
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H3K9ac: SRR1964985, and H3K23ac: SRR1005405) and four associated with repression 650 

(H3K9me1: SRR1005422, H3K9me2: SRR493052, H3K27me3: SRR3087685, and H3T3ph: 651 

SRR2001289). Reads were trimmed as described in the RNA-seq section and mapped to the 652 

TAIR10 genome with Bowtie v2.2.5 (default parameters; Langmead et al. 2009). Spatial 653 

Clustering for Identification of ChIP-Enriched Regions (SICER) v.1.1 (Xu et al. 2014) was used 654 

to identify ChIP-seq peaks with a false discover rate ≤ 0.05 with a non-overlapping window size 655 

of 200, a gap parameter of 600, and an effective genome size of 0.92 according to Koehler et al. 656 

(2011). For each H3 mark, two features were calculated for each sequence window: the 657 

maximum intensity among overlapping peaks and peak coverage (proportion of overlap with the 658 

peak that overlaps maximally with the sequence window). In addition, four multi-mark features 659 

were generated. Two of the multi-mark features were the number of activating marks (0-4) 660 

overlapping a sequence window and the proportion of a sequence window overlapping any peak 661 

from any of the four activating marks (activating mark peak coverage). The remaining two multi-662 

mark features were the same as the two activating multi-mark features except focused on the four 663 

repressive marks. 664 

DNA methylation features 665 

Twenty-one DNA methylation features were calculated from bisulfite-sequencing (BS-seq) 666 

datasets from seven tissues (pollen: SRR516176, embryo: SRR1039895, endosperm: 667 

SRR1039896, seedling: SRR520367, leaf: SRR1264996, root: SRR1188584, and inflorescence: 668 

SRR2155684). BS-seq reads were trimmed as described above and processed with Bismark v.3 669 

(default parameters; Krueger and Andrews 2011) to identify methylated and unmethylated 670 

cytosines in CG, CHH, and CHG (H = A, C, or T). Methylated cytosines were defined as those 671 

with ≥5 mapped reads and with >50% of mapped reads indicating that the position was 672 

methylated. For each BS-seq dataset, the percentage of methylated cytosines in each sequence 673 

window for CG, CHG, and CHH contexts were calculated if the sequence window had ≥5 674 

cytosines with ≥5 reads mapping to the position. To determine whether the above parameters 675 

where reasonable, we assessed the false positive rate of DNA methylation calls by evaluating the 676 

proportion of cytosines in the chloroplast genome that are called as methylated, as the 677 

chloroplast genome has few DNA methylation events (Ngernprasirtsiri et al. 1988; Zhang et al. 678 

2006). Based on the above parameters, 0-1.5% of cytosines in CG, CHG, or CHH contexts in the 679 
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chloroplast genome were considered methylated in any of the seven BS-seq datasets.  This 680 

indicated that the false positive rates for DNA methylation calls were low and the parameters 681 

were reasonable. 682 

Chromatin accessibility and transcription factor binding features 683 

Chromatin accessibility features consisted of ten DHS-related features and one micrococcal 684 

nuclease sequencing (MNase-seq)-derived feature. DHS peaks from five tissues (seed coat, 685 

seedling, root, unopened flowers, and opened flowers) were retrieved from the Gene Expression 686 

Omnibus (GSE53322 and GSE53324; Sullivan et al. 2014). For each of the five tissues, the 687 

maximum DHS peak intensity and DHS peak coverage were calculated for each sequence 688 

window. Normalized nucleosome occupancy per bp based on MNase-seq was obtained from Liu 689 

et al. (2015). The average nucleosome occupancy value was calculated across each sequence 690 

window. Transcription factor (TF) binding site features were based on in vitro DNA affinity 691 

purification sequencing data of 529 TFs (O’Malley et al. 2016). Two features were generated for 692 

each sequence window: the total number of TF binding sites and the number of distinct TFs 693 

bound. 694 

Single-feature prediction performance 695 

The ability for each single feature to distinguish between functional and nonfunctional regions 696 

was evaluated by calculating AUC-ROC value with the Python scikit-learn package (Pedregosa 697 

et al. 2011). AUC-ROC values range between 0.5 (equivalent to random guessing) and 1 (perfect 698 

predictions) and values above 0.7, 0.8, and 0.9 are considered to be fair, good, and excellent, 699 

respectively. Thresholds to predict sequences as functional or nonfunctional using a single 700 

feature were defined by the feature value that produced the highest F-measure, the harmonic 701 

mean of precision (proportion of sequences predicted as functional that are truly functional) and 702 

recall (proportion of truly functional sequences predicted as functional). The F-measure allows 703 

consideration of both false positives and false negatives at a given threshold. FPR were 704 

calculated as the percentage of negative (nonfunctional) cases with values above or equal to the 705 

threshold and thus falsely predicted as functional. FNR were calculated as the percentage of 706 

positive (functional) cases with values below the threshold and thus falsely predicted as 707 

nonfunctional. 708 
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Binary classification with machine learning 709 

For binary classification (two-class) models that contrasted phenotype genes and pseudogenes, 710 

the random forest (RF) implementation in the Waikato Environment for Knowledge Analysis 711 

software (WEKA; Hall et al. 2009) was utilized. Three types of two-class models were 712 

established, including the full model (500 bp sequence window, Fig. 3C,D and Fig. 4), tissue-713 

agnostic models (500 bp, Supplemental Fig. 2; 100 bp, Supplemental Fig. 5), and single feature 714 

category models (Fig. 3C,D). For each model type, we first generated 100 balanced datasets by 715 

randomly selecting equal numbers of phenotype genes (positive examples) and pseudogenes 716 

(negative examples). For each of these 100 datasets, 10-fold stratified cross-validation was 717 

utilized, where the model was trained using 90% of sequences and tested on the remaining 10%. 718 

Thus, for each model type, a sequence window had 100 prediction scores, where each score was 719 

the proportion of 500 random forest trees that predicted a sequence as a phenotype gene in a 720 

balanced dataset. The median of 100 prediction scores was used as the functional likelihood (FL) 721 

value (Supplemental Table 4). The FL threshold to predict a sequence as functional or 722 

nonfunctional was defined based on maximum F-measure as described in the previous section. 723 

We tested multiple -K parameters (2 to 25) in the WEKA-RF implementation, which alters the 724 

number of randomly-selected features included in each RF tree (Supplemental Table 8), and 725 

found that 15 randomly-selected features provided the highest performance based on AUC-ROC 726 

(calculated and visualized using the ROCR package; Sing et al. 2005). Binary classification 727 

models were also built using all features from 500 bp sequences (equivalent to the full model) 728 

with the Sequential Minimal Optimization - Support Vector Machine (SMO-SVM) 729 

implementation in WEKA (Hall et al. 2009). The results of SMO-SVM models were highly 730 

similar to the full RF results: PCC between the FL values generated by RF and SMO-731 

SVM=0.97; AUC-ROC of SMO-SVM=0.97; FPR=12%; FNR=3%. By comparison, the full RF 732 

model had AUC-ROC=0.98, FPR=10%, FNR=4%.  733 

Tissue-agnostic models were generated by excluding the expression breadth feature and 734 

95
th

 percentile expression level and replacing all features from RNA-seq, BS-seq, and DHS 735 

datasets that were available in multiple tissues. For multiple-tissue RNA-seq data, the maximum 736 

expression level across 51 RNA-seq datasets (in RPKM) and maximum coverage (as described 737 

in the transcription activity section) of a sequence window in any of 51 RNA-seq datasets were 738 

used. For multi-tissue DNA methylation features, minimum proportions of methylated cytosines 739 
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in any tissue in CG, CHG, and CHH contexts were used. For DHS data, the maximum peak 740 

intensity and peak coverage was used instead. In single feature category predictions, fewer total 741 

features were used and therefore lower –K values (i.e. the number of random features selected 742 

when building random forests) were considered in parameter searches (Supplemental Table 8).  743 

Multi-class machine learning model 744 

For the four-class model, benchmark RNA gene, phenotype protein-coding gene, pseudogene, 745 

and random unexpressed intergenic sequences were used as the four training classes. Benchmark 746 

RNA genes consisted of six RNA genes with documented loss-of-function phenotypes and 40 747 

high-confidence miRNA genes from miRBase (www.mirbase.org; Kozomara and Griffiths-Jones 748 

2014). We generated 250 datasets with equal proportions (larger classes randomly sampled) of 749 

training sequences. Two-fold stratified cross-validation was utilized due to the low number of 750 

benchmark RNA genes. The features included those described for the tissue-agnostic model and 751 

focused on 100 bp sequence windows. The RF implementation, cforest, in the party package of 752 

R (Strobl et al. 2008) was used to build the classifiers. The four-class predictions provide 753 

prediction scores for each sequence type: an RNA gene, phenotype protein-coding gene, 754 

pseudogene, and unexpressed intergenic score (Supplemental Table 4). The prediction scores 755 

indicate the proportion of random forest trees that classify a sequence as a particular class. 756 

Median prediction scores from across 100 balanced runs were used as final prediction scores. 757 

Scores from a single balanced dataset models sum to 1, but not the median from 100 balanced 758 

runs. Thus, the median scores were scaled to sum to 1. For each sequence window, the maximum 759 

prediction score among the four classes was used to classify a sequence as phenotype gene, 760 

pseudogene, unexpressed intergenic, or RNA gene. 761 

FIGURE LEGENDS 762 

Figure 1. Relationship between genome size and number of nucleotides covered by RNA-seq 763 

reads (expression) in 15 flowering plant species. (A) annotated genic regions. (B) intergenic 764 

regions excluding any annotated features. Mb: megabase. Gb: gigabase. Dotted lines: linear 765 

model fits. r
2
: square of Pearson’s correlation coefficient. 766 

Figure 2. Predictions of functional (phenotype gene) and non-functional (pseudogene) sequences 767 

based on each individual feature. Prediction performance is measured using Area Under the 768 
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Curve - Receiver Operating Characteristic (AUC-ROC). Features include those in the categories 769 

of (A) transcription activity, (B) sequence conservation, (C) DNA methylation, (D) transcription 770 

factor (TF) binding, (E) histone 3 (H3) marks, (F) sequence structure, and (G) chromatin 771 

accessibility. AUC-ROC ranges in value from 0.5 (equivalent to random guessing) to 1 (perfect 772 

predictions). Dotted lines: median AUC-ROC of features in a category. 773 

Figure 3. Predictions of functional and nonfunctional sequences based on multiple features. 774 

Smoothed scatterplots of the first two principle components (PCs) of (A) phenotype gene and (B) 775 

pseudogene features. The percentages on the axes in (A) indicate the feature value variation 776 

explained by the associated PC. (C) AUC-ROC values of function prediction models built when 777 

considering all features (Full), all except transcription activity (TX)-related features (Full (-TX)), 778 

and all features from each category. The category abbreviations follow those in Fig. 2. (C) 779 

Precision-recall curves of the models with matching colors from (B). The models were built 780 

using feature values calculated from 500 bp sequence windows.  781 

Figure 4. Functional likelihood distributions of various sequence classes based on the full 782 

model. (A) Phenotype genes. (B) Pseudogenes. (C) Annotated protein-coding genes. (D) 783 

Transposable elements. (E) Random unexpressed intergenic sequences. (F) Intergenic 784 

transcribed regions (ITR). (G) Araport11 ncRNAs. (H) TAIR10 ncRNAs. The full model was 785 

established using 500 bp sequence windows. Higher and lower functional likelihood values 786 

indicate greater similarity to phenotype genes and pseudogenes, respectively. Vertical dashed 787 

lines indicate the threshold for calling a sequence as functional or nonfunctional. The 788 

percentages to the left and right of the dashed line indicate the percent of sequences predicted as 789 

functional or nonfunctional, respectively. 790 

Figure 5. Proportion of phenotype genes, pseudogenes, ITRs, and ncRNAs predicted as 791 

functional in the full and single-category models. Percentages of sequence classes that are 792 

predicted as functional in models based on all features and the single category models, each 793 

using all features from a category (abbreviated according to Figure 2. The models are sorted 794 

from left to right based on performance (AUC-ROC). The colors of and numbers within the 795 

blocks indicate the proportion sequences predicted as functional by a given model. Phenotype 796 

gene and pseudogene sequences are shown in three sub-groups: all sequences (All), and those 797 
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predicted as functional (high functional likelihood (FL)) and nonfunctional (low FL) in the full 798 

model. ITR: intergenic transcribed regions.  799 

Figure 6. Function predictions based on a four-class prediction model. (A) Stacked bar plots 800 

indicate the prediction scores of benchmark RNA genes for each of the four classes: dark blue - 801 

phenotype protein-coding gene (Ph), cyan - RNA gene (RNA), red - pseudogene (Ps), yellow – 802 

random intergenic sequence (Ig). A benchmark RNA gene is classified as one of the four classes 803 

according to the highest prediction score. The color bars below the chart indicate the predicted 804 

class, with the same color scheme as the prediction score. Sequences classified as Ph or RNA 805 

were considered functional, while those classified as Ps or Ig were considered nonfunctional. 806 

Percentages below a classification region indicate the proportion of sequences classified as that 807 

class. (B) Phenotype protein-coding gene prediction scores. (C) Pseudogene prediction scores. 808 

(D) Random unexpressed intergenic region prediction scores. Note that no sequence was 809 

predicted as functional. (E) Intergenic transcribed region (ITR), (F) Araport11 ncRNA regions. 810 

(G) TAIR10 ncRNA regions. 811 

 812 

SUPPLEMENTAL FIGURE LEGENDS 813 

Supplemental Figure 1. Impacts of conditional phenotypes and expression breadth on the 814 

function prediction model. (A) Functional likelihood distributions of phenotype genes with 815 

mutant phenotypes under standard growth conditions (non-conditional) and non-standard growth 816 

conditions such as stressful environments (conditional) based on the 500 bp full model. Feature 817 

values were calculated from a random 500 bp region from within the sequence body. Higher and 818 

lower functional likelihood values indicate a greater similarity to phenotype genes and 819 

pseudogenes, respectively. (B,C) Distributions of functional likelihood scores for phenotype 820 

genes (blue) and pseudogenes (red) for sequences with various breadths of expression for (B) the 821 

500 bp full model and (C) the 500 bp tissue-agnostic model generated by excluding the 822 

expression breadth and features available from multiple tissues. The tissue-agnostic model is 823 

aimed toward minimizing the effects of biochemical activity occurring across multiple tissues 824 

and predicts a greater proportion of narrowly-expressed phenotype genes as functional compared 825 

to the full model. 826 
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Supplemental Figure 2. Distributions of functional likelihood scores based on the 500 bp tissue-827 

agnostic model. (A) Phenotype genes. (B) Pseudogenes. (C) Annotated protein-coding genes. (D) 828 

Transposable elements. (E) Random unexpressed intergenic sequences. (F) Intergenic 829 

transcribed regions (ITR). (G) Araport11 ncRNAs. (H) TAIR10 ncRNAs. Vertical dashed lines 830 

display the threshold to define a sequence as functional or nonfunctional. The numbers to the left 831 

and right of the dashed line show the percentage of sequences predicted as functional or 832 

nonfunctional, respectively. 833 

Supplemental Figure 3. Distributions of expression breadth of different sequence classes. (A) 834 

Based on 500 bp feature regions. (B) Based on 100 bp feature regions. 835 

Supplemental Figure 4. Distance of ITRs and annotated ncRNA regions to and feature 836 

similarity with neighboring genes. (A) Distance from intergenic transcribed regions (ITRs) and 837 

annotated ncRNAs to the closest neighboring gene. ITR and ncRNA sequences are separated by 838 

whether they are predicted as functional (F) or nonfunctional (NF) by the 500 bp full model. (B) 839 

Feature similarity based on Pearson’s Correlation Coefficients (PCC) between random pairs of 840 

ITRs, Araport11 ncRNAs, TAIR10 ncRNAs, or annotated genes. (C) Feature similarity between 841 

proximal neighbors (within 95th percentile (456 bp) of intron lengths), and (D) Feature similarity 842 

between distal neighbors (>456 bp). Pairs involving ITRs and annotated ncRNAs were divided 843 

by whether the ITR or ncRNA sequence was predicted as functional (F) or nonfunctional (NF) 844 

by the full model. Feature values were quantile normalized prior to calculating correlations. 845 

Supplemental Figure 5. Distributions of functional likelihood scores based on the 100 bp tissue-846 

agnostic model. (A) Phenotype genes. (B) Pseudogenes. (C) Protein-coding gene. (D) 847 

transposable elements. (E) Random unexpressed intergenic sequences. (F) Intergenic transcribed 848 

regions (ITR). (G) Araport11 ncRNAs. (H) TAIR10 ncRNAs. (I) RNA genes with loss-of-849 

function mutant phenotypes. (J) MicroRNAs, (K) Small nucleolar RNAs, (L) Small nuclear 850 

RNAs. The tissue-agnostic model was built with 100 bp features and while excluding the 851 

expression breadth and tissue-specific features. Higher functional likelihood values indicate 852 

greater similarity to phenotype genes while lower values indicate similarity to pseudogenes. 853 

Vertical dashed lines display the threshold to define a sequence as functional or nonfunctional. 854 
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The numbers to the left and right of the dashed line show the percentage of sequences predicted 855 

as functional or nonfunctional, respectively. 856 

SUPPLEMENTAL TABLES 857 

Supplemental Table 1. Leaf tissue RNA-sequencing datasets for 15 flowering plant species 858 

 859 

Supplemental Table 2. Conservation, biochemical, and sequence-structure feature values 860 

calculated from 500 bp sequences. 861 

 862 

Supplemental Table 3. False positive and false negative rates for single feature classifications. 863 

 864 

Supplemental Table 4. Function predictions for all models generated in this study. 865 

 866 

Supplemental Table 5. RNA-sequencing datasets for identifying intergenic transcribed regions, 867 

calculating transcription activity features, and assessing tissue-specific predictions. 868 

 869 

Supplemental Table 6. Conservation, biochemical, and sequence-structure feature values 870 

calculated from 100 bp sequences. 871 

 872 

Supplemental Table 7. RNA genes with documented loss-of-function phenotypes. 873 

 874 

Supplemental Table 8. K parameters tested for random forest runs. 875 
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