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ABSTRACT

Motivation: Non-coding RNAs (ncRNAs) play important roles in various biological processes. In past, homologous-
ncRNA search in genomic scale (e.g., search all house mouse ncRNAs for several human ones) is difficult since explicit
consideration of secondary structure in alignment leads to impractical complexity on both of time and space.
Results: In this study, building the program CRAST (Context RNA Alignment Search Tool, available at “https:
//github.com/heartsh/crast” including the used validation/test set), we developed the CRAST algorithm, a “seed-and-
extend” alignment one based on adaptive seed and RNA secondary structure context (motif probabilities) as in Fig. 1.
The algorithm is O(n : a sum of lengths of target sequences) on time through help of adaptive seed, implicitly consid-
ering both of sequence and secondary structure; it provides computation time comparable with other BLAST-like tools,
significantly reduced from any variant of the Sankoff algorithm for alignment with the explicit consideration. It detects
homologs as many as other BLAST-like tools and the lowest number of non-homologous ncRNAs.

Figure 1: overview of CRAST

1 INTRODUCTION

NcRNAs are involved in diverse biological processes such as
rRNA modification [1] and chromatin modification [2]. RNAs
including ncRNAs prefer to form into 3D structures rather
than DNAs due to contribution of 2’ hydroxyl group to hy-
drogen bond and function based on it. Hence only sequence
identity doesn’t lead to ncRNA function. [3]

1.1 General genomic homolog-search

In genomic DNA/protein-homolog-search, tools based on
“seed-and-extend” strategies such as BLAST [4] and
LAST [5] are mostly used. In summary, these tools find seeds
based on sequence identities of partial regions of 2 compared
sequences, and extend the seeds from both sides of them til
their scores based on sequence identities drop to some ex-
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tent. They reduce the time complexity O(mn) from the op-
timal search by the Smith-Waterman algorithm [6] with the
suboptimal search.

1.2 Genomic ncRNA-homolog-search

On the other hand, secondary structure identity must be
taken into account as well as sequence identity in genomic
ncRNA homolog search from the aforementioned matter
(especially for ncRNA with low sequence identity such as
lncRNA). [7] Foldalign, an implementation of the Sankoff al-
gorithm [8] finds ncRNA pairwise alignments by simultane-
ously folding and aligning sequences with pruning of dynam-
ical programming matrix. [9] It is really time-consuming and
not applicable to genomic data (e.g., all house mouse ncR-
NAs to search for several human ones) although its pruning
discards any subalignment that doesn’t have a score above a
length-dependent threshold. The banded Sankoff algorithm,
another variant of the Sankoff algorithm reduces the time/s-
pace complexity of the Sankoff algorithm O(n6)/O(n4) to
O(n4)/O(n3), which again results in unapplicability to ge-
nomic data. [10] After all, explicitly considering RNA sec-
ondary structure and sequence results in the huge complexi-
ties on both time and space.

We could implicitly and efficiently consider RNA sec-
ondary structure using CapR, a linear time/space complexity
(O(nw2)/O(nw), but w could be considered as a constant)
algorithm to estimate an RNA secondary structure context
(motif probabilities) of each base in any RNA [11]. This
probabilistic encoding of RNA secondary structure seems to
enable to align ncRNA sequences in the same fashion as align-
ment for DNA/protein sequence.

So we built CRAST, a BLAST-like genomic ncRNA align-
ment search tool. We demonstrated this tool enables to align
ncRNAs with consideration of secondary structure and se-
quence in a time complexity O(n) where n is a sum of lengths
of target sequences through helps of adaptive seed adopted
in LAST [5], suffix array [12], and CapR.

2 METHODS

We implemented CRAST in Rust, a systems programming
language [13]. It supports both of safe parallelism (multi-
threading without data race) and safe zero-cost abstraction
(e.g., runtime without garbage-collection and guarantee of
memory safety when compiling), which results in both of
more safety and computation efficiency almost the same
as/more than C/C++. We implemented the bottlenecks
(e.g., the calculation of the context sequences and alignment
search) in a multi-threaded fashion.

2.1 NcRNA seed finding

“Seed-and-extend” using fixed-length seed such as one in
BLAST leads to a quadratic number of seeds with target se-
quence length due to a non-uniform (oligo-)nucleotide compo-
sition of any real sequence. [5] Adaptive seed to find matches
that occur at most f times in any target sequence guarantees
a linear number of seeds and linear time complexity with a
target sequence length. [5] We adopted this seed for extract-
ing matches without need of repeat-masking which could hide
potentially significant parts.

To find adaptive seeds, we initially build suffix arrays of
target ncRNAs in a time/space complexity O(n). Then we
generate hash maps of short substrings of target sequences to
corresponding index ranges in the suffix arrays for access in a
time complexity O(1). We store the suffix arrays, hash maps,
target sequences, and context sequences of target sequences
in compressed files (of the “bzip2” format) as a database.

We find the shortest seeds for starting position pairs
of any query sequence and target one with the hash maps
for short matches; with binary-search using search ranges
found in previous searches for long ones, as in [5]. These 2
techniques and search strategy reduce the time complexity
O(m log n,m : a length of a match) of the binary-search
for the substring search using suffix array into one less than
O(log n). Steps til here are the same as in LAST, an adap-
tive seed implementation [5] except for the context sequences.

Figure 2: seed finding of CRAST
The seeds only satisfying both of the terms for sequence/context sequence
match (the left/right one) are filtered in.

In CRAST, the seeds having similar context sequences
are filtered in from the found seeds, using a threshold of
an expected number of the seeds with more/equally similar
context sequences as in Fig. 2.

Figure 3: Jensen-Shannon distance of RNA context pair
Each term for the context is an RNA secondary structure motif.

We score any base pair having the Jensen-Shannon dis-
tance [14] of a pair of contexts as in Fig. 3 less than 0 <
p < 0.5 as a match with a score +1; other than that as a
mismatch with a score -1. The distance is a distance metric
version of the Jensen-Shannon divergence [15] (not distance,
often called the JSD) which is a symmetric finite measure
of similarity between 2 probability distributions. The JSD
doesn’t satisfy triangle inequality required for any distance
metric while the distance does. We considered a binomial
distribution as a model of a probabilistic distribution of the
series of the matches and mismatches such as a series of coin
tosses: B(n, 0 < p < 0.5).

2.2 Seed extension and scoring system

We score any base pair using both of match/mismatch of
base/context: s = rsb + (1 − r)sc where s is a fusion score,
0 ≤ r ≤ 1 is a contribution ratio of base to the fusion score,
sb is a score of any base pair (+1/-1), and sc is a score of any
context pair (+1/-1) in the CRAST scoring system.
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Figure 4: X-drop algorithm

We extend the seeds first without any gap using the
X-drop algorithm [16]; then with gaps using the same algo-
rithm. The algorithm greedily extends the seeds/ungapped
alignments til their scores drop from maximum observed val-
ues m to less than/equal to m − x where x is an aforehand
determined value as in Fig. 4. [16]

Figure 5: constrained DP matrix of CRAST
All the area of the DP matrix to solve the DP are reduced from mn.

Finally, we generate single gapped alignments derived
from all the gapped ones, using DP matrices constrained by
the gapped ones as in [17] and Fig. 5 when a number of
the gapped ones is more than 1 for 1 strand. To constrain
the matrices, we greedily merge the ungapped ones diago-
nally overlapped in the matrices; greedily remove one with
a lower score of the ungapped ones non-diagonally (in paral-
lel) overlapped. We greedily remove one with a lower score
of the overlapped gapped ones for the same purpose. After
each of the ungapped/gapped one, we discard some of the
alignments based on an expected number of alignments with
more/equally similar base/context sequences.

More specifically, we independently consider a binomial
distribution of the series of the base/context matches and
mismatches, which results in simple calculations of the E-
values. The gapped one disables to model the distributions
due to uncertainty of gap; we consider the gaps as given,
which results in the same calculations of the E-values as the
ungapped one.

3 RESULTS

3.1 Parameter-tuning

We set default CRAST parameters as in Table 3 to best per-
form with target/query sequences for validation. We used all
18,185 Mus musculus ncRNAs (derived from Ensembl [18])
as the target sequences; 34 Homo sapiens lncRNAs known as
homologs to M. musculus corresponding ones including HO-
TAIR [19] and XIST [20] (derived from LncRNAdb [21]), as
the query sequences. We fixed the parameters not referred
to in each result.

3.2 Relation between match probability of RNA
context and homolog detectability

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Match probability

0

50

100

150

200

250

# 
of
 p
os

iti
ve

s

TPs
FPs

Figure 6: relation between match probability of RNA context and homolog
detectability
We used the same target/query sequences for test as the target/query se-
quences for validation.
The “TP” is map of any Homo sapiens one to any corresponding Mus mus-
culus one; the “FP” is any Homo sapiens one to any of the others.

Fig. 6 shows the higher the match probability of RNA
context p becomes, the more the FPs are obtained while the
number of the TPs hits the ceiling at p = 0.25.

3.3 Relation between seed E-value filtering and ho-
molog detectability
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Figure 7: relation between seed E-value filtering and homolog detectability
We used the same target/query ncRNAs as Fig. 6.

Fig. 7 shows the number of the FPs hits the ceiling at
te = 1.0 · 104 while the one of the TPs (homologs) hits the
ceiling at te = 1.0 · 103 where te is any threshold of an ex-
pected number of the seeds with more/equally similar con-
text sequences. From that, we could think te as a parameter
to discard the inappropriate seeds before the following ex-
tensions. It also implies only the seeds with highly similar
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context sequences would lead to incomplete capture of ho-
mologs.

3.4 Relation between contribution ratio of base to
score r and homolog detectability
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Figure 8: relation between contribution ratio of base to score r and homolog
detectability
We used the same target/query ncRNAs as Fig. 6.

Fig. 8 represents the higher the contribution ratio of base
to the fusion score r becomes, the more the FPs are obtained
while the number of the TPs hits the ceiling at r = 0.7. From
that, we could think r as a parameter to control a number
of the FPs keeping the TPs as many as possible. It also im-
plies consideration of only secondary structure would lead to
incomplete capture of homologs.

3.5 Relation between alignment E-value filtering
and homolog detectability
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Figure 9: relation between alignment E-value filtering and homolog de-
tectability
We used the same target/query ncRNAs as Fig. 6.
From the top, the relation for: ungapped one/gapped one/final gapped one.
A color of each cell indicates precision p = TP/(TP + FP ); a number of
each one does TP/FP number.

Fig. 9 shows the number pair of the TPs and FPs hits
the ceiling around te1 = 1.0 · 10−3 and te2 = 1.0 · 103

where te1/te2 is any threshold of an expected number of
the alignments with more/equally similar sequences/context
sequences. From that, it is confirmed that each of the E-
value thresholds could play a role as a parameter to discard
the inappropriate alignments before the following alignment
step/report. It also implies only the alignments with highly
similar context sequences would lead to incomplete capture
of homologs as well as the seeds.

3.6 Performance comparison with BLAST-like tools

Table 1: performance comparison among CRAST, LAST [5], BLASTN [4]

Tool/term TPs/FPs/TNs/FNs F-meas. DB[s] Align.[s]

CRAST 65/107/0/0 0.548 189.5[m] 148.0 (34.60)
LAST 63/365/0/0 0.256 7.246 0.195

BLASTN 63/623/20/0 0.168 1.646 1.007
We used the same target/query ncRNAs as Fig. 6.
As a negative dataset, we made all the query ones di-nucleotide shuffled with
UShuffle [22]. The “TN” is map of any shuffled query one to any of others
than corresponding target ones; the “FN” is any shuffled query one to any
of corresponding target ones.
The “F-meas.” is the F-measure which is an weighted harmonic mean of
precision p = tp

tp+fp and recall r = tp
tp+fn : f = 2pr

p+r . It p is high only when

both of precision p and recall r are high.
The “align. time” of CRAST inside the parentheses is time except for the
pre-processing. (The “bzip2” decompression is time-consuming.) The pre-
processing time excludes computation time of the CapR algorithm for the
query sequences (807.8[s]) because the computation will be performed once
per set of query sequences.
The computation environment is cpu Xeon E5 2680v2 with 20 cores and
memory 64[GB].

We compared CRAST, LAST (ver. 719), and BLASTN
(BLAST for nucleotide, ver. 2.6.0+) for effect on ncRNA ho-
molog detection of fixed-length/adaptive seed/seed-extension
based on only substitution matrix/both of substitution ma-
trix and RNA secondary structure context as in List. 1.
We also measured running times of these programs on both
database/alignment step. (In practice, database step is run
only 1 time for any set of target sequences.)

Table 1 shows CRAST detects the homologs as many as
the compared tools and the lowest number of the FPs. It
also shows the database step of CRAST is significantly time-
consuming due to domination by the CapR algorithm; the
alignment step is relatively slow in spite of a lower number
of the seeds.

There are 2 reasons why the alignment step is relatively
slow: missing pre-computing of seed candidates (possible
adaptive seeds) in the database step and the compute-
intensive of the Jensen-Shannon distance. First, we could
reduce computation time of the alignment step by pre-
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computing the candidates in a certain database within a
given range of seed frequencies (e.g., the frequencies around
default one), which would lead to search of the candidates in
query sequences, not target ones. But this pre-computation
doesn’t repesent the real performance of the CRAST algo-
rithm because the speed-up is established only in the case
when seed frequencies are within the range. Second, the
Jensen-Shannon distance is computationally intensive com-
pared with the Lp one such as the Euclidean one (p = 2)
since it involves the intensive computation of logarithm com-
pared with basic arithmetic operations. Considering these 2
reasons, the computation time of CRAST is reasonable.
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Figure 10: ROC curves of CRAST, LAST, and BLASTN
The used dataset and setting of the binary classification are the same as
Table 1.
The curves are derived using their alignment expectations as the thresh-
olds. (CRAST emits both of the expectations based on sequence/context
sequence, however, we used only the ones based on sequence for the curve.)
Values inside the parentheses are areas under the curves. (The larger the
area becomes, the better the prediction performance gets.)

Fig. 10 shows the prediction performance of CRAST is
superior to the other tools.

3.7 Performance comparison with Foldalign

Table 2: performance comparison with Foldalign [9]

Tool/term TPs/FPs/TNs/FNs F-meas. DB[s] Align.[s]

CRAST 65/156/219/0 0.454 728.2 7.582
Foldalign 32/1,923/1,923/32 0.031 — > 3[d]

We used only all 219 homologs to the query ncRNAs from the same target
ncRNAs as Fig. 6 as other target sequences for test due to huge computation
of Foldalign.
We define the “FP” as any target one not mapped to the corresponding
query one; the “TN” as any target one not mapped to the corresponding
shuffled query one.
Everything except for them is the same as Table 1.

We compared CRAST and Foldalign (ver. 2.5) for effect
on ncRNA homolog detection of alignment with context se-
quence/simultaneous folding as in List. 2.

Table 2 represents there are numerous incorrect maps of
the target ones to others than the corresponding query ones
for Foldalign (32 + 1, 923 − 219 = 1, 768) compared with
CRAST (65 + 156 − 219 = 2); a half of correct maps of the
target ones to the corresponding ones for Foldalign compared
with CRAST; and several incorrect maps of the target ones
to the corresponding shuffled query ones for Foldalign (32)
compared with CRAST (0). It also implies alignment with
simultaneous folding could detect numerous non-homologous
ones rather than sufficient homologs despite the huge com-
putation compared with CRAST.

4 DISCUSSION

4.1 Principal findings

We developed the CRAST algorithm (the time complexity
O(n : a sum of lengths of target sequences)) to pairwise-
align numerous ncRNAs with consideration of both of se-
quence/secondary structure identity. Instead of explicit con-

sideration of secondary structure like the Sankoff algorithm,
we utilized RNA context (motif probabilities) from the CapR
algorithm and fused the score from sequence/secondary struc-
ture into the fusion score for the implicit consideration.

We demonstrated it could successfully reduce detec-
tions of non-homologous ones keeping detections of ho-
mologs as many as other BLAST-like tools with reasonable
computation-time in case of lncRNA, in other words, low se-
quence identity requiring viewpoint of secondary structure
identity. This reduction of the false detections leads to im-
provement of product quality/computation time from subse-
quent process in genome comparative analysis such as binary
classification of ncRNA by RNAz [23, 24] and ncRNA clus-
tering by GraphClust [25].

Surprisingly, Foldalign, a variant of the Sankoff algo-
rithm could detect numerous non-homologous ones rather
than sufficient homologs despite the huge computation com-
pared with CRAST in case of lncRNA. It may be because of a
fact which only highly similar secondary structure would lead
to incomplete capture of homologs as in Fig. 7 and Fig. 9,
and even excess capture of non-homologous ones.

To verify it, we set the seed E-value parameter to 0.75;
other E-value ones to 1; and contribution ratio of base to
score r to 0.5 for relaxing/restricting sequence/secondary
structure identity and equally taking both of the identi-
ties into account in the scoring system. Then we got
31/1,088/1,062/28 as TPs/FPs/TNs/FNs in the same con-
dition as Table 2; the number of the TPs is comparable with
the Foldalign result in Table 2. The lower number of the
FPs/TNs could be due to adaptive seed requiring rare exact
match on sequence.

4.2 Method appraisal

We independently modelled a distribution of series of matches
and mismatches on sequence/context sequence as a binomial
distribution B(n, p) due to uncertainty of the score distribu-
tion/gap. In general, Modelling a distribution of scores as the
Gumbel distribution instead of matches is frequently used to
handle the uncertainties. But the fusion score depends on not
only the match/mismatch score and gap opening/extension
cost but also the contribution ratio of base to the fusion score
r and estimated RNA context sequence controlled by the pa-
rameter w from the CapR algorithm. We could model it as
the distribution by fitting random data for roughly possible
combinations of the parameters.

We demonstrated the algorithm between only human and
house mouse due to limited availability of sufficient anno-
tation of lncRNA homolog. However, the more evolutional
distance on ncRNA between 2 compared species gets diverse,
the more homolog detectability of CRAST/other BLAST-like
tools/the Sankoff algorithm may increase/decrease. If we got
the sufficient availability, we would robustly parameter-tune
the algorithm.

We reasoned why the alignment step of CRAST was rel-
atively slow: missing pre-computing of seed candidates (pos-
sible adaptive seeds) in the database step and the compute-
intensive of the Jensen-Shannon distance. Except for the
latter factor, we would implement the former one in CRAST,
and let it faster and more accurate.

4.3 Scientific implications

We discovered the Sankoff algorithm, a traditional ncRNA
alignment could lead to numerous non-homologous ones
rather than sufficient homologs and BLAST-like tools work
well in case of lncRNA contrary to our expectations. The
result and performance of CRAST lead to comparing a large
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amount of ncRNA pairs in the efficient and accurate fashion.
We could adapt the algorithm to ncRNA multiple alignment
with consideration of secondary structure such as [26] and
ncRNA clustering with the consideration such as [25].
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6 APPENDICES

6.1 Default CRAST parameters

Table 3: default CRAST parameters from parameter-tuning

Term Description Value

ms
Maximum span between paired

bases for CapR algorithm
200

ts Threshold of frequency of adaptive seeds 3
x1 Threshold of drop of score when ungapped alignment 5
x2 Threshold of drop of score when gapped alignment 15
cp Match probability of RNA context 0.25
b Contribution ratio of base to score 0.65

e1
Threshold of # E-value of seeds with
better scores on secondary structure

6.5 · 102

e2
Threshold of # E-value of ungapped

alignments with better scores on sequence
5 · 10−3

e3
Threshold of # E-value of ungapped alignments

with better scores on secondary structure
9 · 102

e4
Threshold of # E-value of gapped

alignments with better scores on sequence
5 · 10−4

e5
Threshold of # E-value of gapped alignments

with better scores on secondary structure
9 · 102

e6
Threshold of # E-value of final gapped

alignments with better scores on sequence
5 · 10−4

e7
Threshold of # E-value of final gapped alignments

with better scores on secondary structure
6.5 · 103

go Gap opening penalty -7
ge Gap extension penalty -1

E-values E[M ] are per target sequence: E[M ] = s(1 − B(M ≤ m;n, p))
where s is a possible number of the seed/alignment occurrence and M/m
is a random variable/observed value for a number of matches of bases/sec-
ondary structure.
We set ms equal to the default one of the CapR algorithm and go/ge equal
to the default one of LAST.

6.2 Zsh commands for BLAST-like tools/Foldalign

Listing 1: Zsh commands for BLAST-like tools

$ # DB step for LAST (command ”time” i s for
measuring e lapsed time during given one )

$ time la s tdb a s t s / la s t m msc l s nc rna db /
m mscls ncrna db a s t s / m mscls ncrnas . f a

$ # Align . s tep for LAST
$ time l a s t a l −P $ ( nproc ) −s 1 −D 3.5 e+7 a s t s /

la s t m msc l s nc rna db / m mscls ncrna db a s t s /
h spns m msc l s hmlg lncrnas . f a > a s t s /
l a s t h spns m msc l s hmlg lnc rna s 2 m msc l s nc rna s
. maf

$ # DB step for BLASTN
$ time makeblastdb −in . . / m mscls ncrnas . f a −

p a r s e s e q i d s −dbtype nucl
$ # Align . s tep for BLASTN
$ time b la s tn −strand plus −query a s t s /

h spns m msc l s hmlg lncrnas . f a −db a s t s /
b las t m msc l s ncrna db / m mscls ncrnas . f a −out
a s t s /
b la s tn h spns m msc l s hmlg lnc rnas 2 m msc l s nc rnas
. dat −num threads $ ( nproc ) −outfmt 6 −task
blastn−shor t −eva lue 0 .5

Listing 2: Zsh commands for Foldalign

$ # Align . s tep for Folda l ign
$ time f o l d a l i g n −number o f proce s so r s $ ( nproc )

a s t s / h spns m msc l s hmlg lncrnas . f a a s t s /
hmlg m mscls ncrnas . f a > a s t s /
f l d l gn h spns m msc l s hmlg lnc rna s 2 m msc l s nc rna s
. dat

For the shuffled query sequences, just replace the query file
with the one for them, prepending “shfl ” to the name of the
query file when issuing a command of an alignment step.
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