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Abstract 

Single-cell analysis is a rapidly evolving approach to characterize genome-scale 

molecular information at the individual cell level. Development of single-cell 

technologies and computational methods has enabled systematic investigation of 

cellular heterogeneity in a wide range of tissues and cell populations, yielding fresh 

insights into the composition, dynamics, and regulatory mechanisms of cell states in 

development and disease. Despite substantial advances, significant challenges remain 

in the analysis, integration, and interpretation of single-cell omics data. Here, we 

discuss the state of the field and recent advances, and look to future opportunities. 

Background 

Cell-to-cell variation is a universal property of multi-cellular organisms, which contain 

diverse cell types characterized by different functions, morphologies, and gene 

expression profiles. Even within any single tissue, no matter how apparently 

homogeneous, there is a diverse population of cells, all of which represent different 

manifestations of that tissue type. Investigation of tissues or cell populations is 

inherently limited by the fact that the readout of any pooled assay that uses bulk tissue 

represents a weighted average of that population’s cellular constituents. Intrinsic cellular 

heterogeneity is obscured in the typical ensemble studies on which the canon of 

modern biology and medicine are constructed.  

Consider, for example, the diverse repertoire of cells present in the three most rapidly 

self-renewing tissues in mammals: blood, skin, and the intestinal epithelium.  Although 

the trajectory from stem to terminally differentiated cell is almost certainly a continuum 
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of highly variable states, our limited understanding forces us to regard known stem and 

progenitor cell populations as discrete and stable entities. Even in post-mitotic tissues 

such as the adult brain, the differentiated cell states resulting from complex bifurcating 

developmental trajectories may also appear as a continuum. The diversity of cellular 

states is not only caused by their own inherent cell-to-cell variability, but also influenced 

by interactions among tens or even hundreds of distinct cells. These considerations 

question the precise boundary of a cell type and point to the need for single cell analysis 

to dissect the underlying complexity and the empirical reality of stable and distinct cell 

states.  

The past few years have seen the introduction of technologies that provide genome-

scale molecular information at the resolution of single cells, providing unprecedented 

power for systematic investigation of cellular heterogeneity in DNA [1, 2], RNA[3], 

proteins [4], and metabolites[5]. These technologies have been applied to identify 

previously unknown cell types and associated markers [6-8] and to predict 

developmental trajectories [9-13].  

Beyond expanding the catalog of mammalian cell states and identities, single cell 

analyses have challenged prevailing ideas of cell-fate determination [14-19] and opened 

new ways of studying the mechanisms associated with disease development and 

progression. For example, single-cell DNA sequencing (scDNA-seq) has revealed 

remarkable cellular heterogeneity inside each tumor, significantly revising models of 

clonal evolution [20-22], whereas single-cell RNA sequencing (scRNA-seq) has shed 

new lights on the role of tumor microenvironments in disease progression and drug 

resistance [23].  

The ambitious goal of understanding the full complexity of cells in a multi-cellular 

organism collectively requires not only experimental methods that are considerably 

better than existing platforms, but synchronous development of computational methods 

that can be used to derive useful insights from complex and dense data on large 

numbers of diverse single cells. Several recent papers have discussed various 
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challenges critical to advance the incipient field of single cell analysis [24-27]; here we 

expand on these discussions with a focus on looking to the future.  

 

Current challenges in analyzing single-cell data: 

While many methods have been successfully used for the analysis of genomic data 

from bulk samples, the relatively small number of sequencing reads, the sparsity of data 

and cell population heterogeneity present significant analytical challenges in effective 

data analysis. Recent advances in computational biology have greatly enhanced the 

quality of data analyses and provided important new biological insights [24-27]. 

 

Data preprocessing:  

The goal of data preprocessing is to convert the raw measurements to bias-corrected 

and biologically meaningful signals. Here we focus on scRNA-seq, which has become 

the primary tool for single cell analysis. Gene expression profiling by scRNA-seq is 

inherently noisier than bulk RNA-seq, as vast amplification of small amounts of starting 

material combined with sparse sampling introduce significant distortions. A typical 

single-cell gene expression matrix contains excessive zero entries. The limited 

efficiency of RNA capture and conversion rate combined with DNA amplification bias 

may lead to significant distortion of the gene expression profiles. On one hand, even 

transcripts that are expressed at a highly level may occasionally evade detection 

altogether, resulting false-negative errors. On the other hand, transcripts that are 

expressed at a low level may appear abundant due to amplification biases. These errors 

artificially inflate the estimate of the cell-to-cell variability.  While a number of methods 

have been developed to address this issue [28-30], managing dropout events continues 

to be a challenge. Another source of technical variation is the batch effect, which can be 

introduced when cells from one biological group are cultured, captured, and sequenced 

separately from cells in a second condition. If a scRNA-seq experiment is designed 

improperly, the results can be significantly affected by batch effects [31]. Furthermore, 
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high throughput technologies typically involve multiplexing of thousands or more 

barcode sequences. Error in demultiplexing may be caused by barcode impurities or 

external background, which has become increasingly challenging as thousands or more 

cells are multiplexed by recent technologies. Finally, the cell-to-cell variation may also 

be attributed to cell size, cell cycle state, and other factors that are irrelevant for cell 

type identification. Statistical models have been developed to remove such confounding 

factors [27].  Together, these technical artifacts pose important challenges for data 

calibration and interpretation.  

The entanglement of technical and biological variations poses a significant challenge for 

evaluating data reproducibility. One approach to directly measure technical variability is 

to use dilute bulk RNA to approximately single cell level (~10-50 pg of total RNA) [32, 

33]. However, this approach has at least two significant limitations. First, RNA 

purification leaves out cellular factors that may impede RNA isolation and amplification. 

Second, accurate dilution up to single cell levels is technical challenging. Another 

approach is to use external spike-ins, such as ERCC [34]. However, this approach also 

has a number of limitations [35]. First, the spike-in probes typically have different 

molecular properties than the RNA molecules of interest. Second, the spike-in probes 

interact differently with respect to different molecular biology protocols. Furthermore, the 

dynamic range of spike-in sets like ERCC is often not optimized for the dynamic range 

of a typical single cell transcriptome (~103 to 104). As such, there is a great need to 

develop better-controlled methods for separating technical and biological variations. 

Considering these limitations, targeted approaches aimed at precise quantification of 

key pathways may provide more biological insights in some applications. 

 

Lack of spatial-temporal context: Single cell DNA and RNA based assays often contain 

the following steps: cell isolation, cell sorting, and library preparation and sequencing. 

During this process, cells are isolated from their local environment and destroyed prior 

to profiling. These “snapshots” lose important contextual information regarding both, the 

cells’ spatial environment, and the cells’ position within a trajectory of dynamic behavior 
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[25]. Both sources of information are crucial to interpret the precise state of a cell at the 

time point of its isolation (and usually destruction).  

 

Future directions 

in situ transcriptomic analysis: To preserve spatial information, transcriptome can be 

profiled in situ in fixed cells and tissues, using either in situ hybridization (ISH) or 

sequencing. Single molecule florescence in situ hybridization (smFISH) provides a 

powerful tool for detecting individual transcripts [36, 37].  Using super-resolution 

microscopy [38, 39], this was extended to image over a dozen mRNA in situ regardless 

of transcript density [40].  More recently, a temporal barcoding scheme was developed 

that scales exponentially with the number of hybridization, called sequential FISH 

(seqFISH) [41].  In parallel, in situ sequencing methods were developed to directly 

sequence transcripts in tissue sections [42, 43], which has broad coverage but lower 

efficiency compared to FISH based methods. More recently, a Hamming distance 2 

based error correcting barcode system called merFISH [44] was developed and can be 

applied to long transcripts (>3 kb). This technology has recently been extended to 

detect 130 mRNA species [45].  Fundamentally, because of high background in tissues, 

smFISH based methods are difficult to apply directly for detection of mRNAs in tissues.  

An amplified version of seqFISH [46], based on hybridization chain reaction (HCR) [47], 

allows robust detection of mRNAs in tissues and thick cleared brain samples. 

Combining amplification and a simple one-drop tolerant error correction scheme, this 

technology was applied to profile up to 249 genes, with each mRNA detected at ~80% 

efficiency, in over 15,000 cells in the mouse brain to resolve the structural organization 

of the hippocampus with single-cell resolution [48]. The authors identified distinct layers 

in the dentate gyrus corresponding to the granule cell layer and the subgranular zone. 

They also found that the dorsal CA1 is relatively homogeneous at the single-cell level, 

while ventral CA1 is highly heterogeneous.  For imaging large samples, such as the 

brain, imaging speed is rate limiting, rather than the switching time between 

hybridizations.  This is because one can toggle between two samples on the 
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microscope, one that is being imaged and another that is being hybridized.  Faster 

imaging modality such as lattice lightsheet [49] and faster cameras can enable higher 

throughput in the number of imaged cells. 

Future work in spatial genomics will take several directions.  First, to combine spatial 

transcriptome data with scRNA-seq data, one can take an approach where cell states 

are defined by RNA-seq, and then mapped onto the spatial images and transcription 

profiles determined by spatial transcriptome data [50].  Second, to increase the optical 

space available in each cell and allow more mRNAs to be resolved spatially, expansion 

microscopy [51] can physically enlarge the tissue sample.  An alternative image 

correlation approach [52] can also allow dense transcripts to be decoded.  Lastly, 

analysis of in situ transcriptomic data requires development of new computational 

methods, for example, to automatically detect spatial patterns from combination of 

multiple genes.   

 

Live imaging transcriptomic analysis:  

Cellular and molecular behaviors are highly dynamic and constantly changing. These 

dynamic behaviors greatly complicate the interpretation of snapshot single-cell analyses 

because individual cells will differ not only in their molecular state from other cells, but 

even from themselves if analyzed at a different time point [25]. Importantly, these 

dynamics may not represent noise, but rather a basis for important regulatory 

mechanisms controlling cell identity, so it is important to quantify dynamic changes and 

to understand their relevance [53]. Unfortunately, it is also much more difficult than 

static snapshot analyses. Cells must be kept alive and unchanged during the 

continuous – and sometimes very long non-invasive analysis of their behaviors. The 

acquisition, handling and analysis of time-resolved single-cell data then require 

specialized technical and theoretical approaches. Not only are the requirements for 

robustness of data acquisition technologies such as live imaging much higher than for 

snapshot analyses, but the resulting large and complex volumes of data require 

specialized solutions. These differ from tools available to analyze snapshot data, and 
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often require self-made custom developments. This holds true for the required 

theoretical algorithms and for user-friendly implementation [25].  

 

Lineage tracing: 

The objective of lineage tracing is to label the progeny of individual cells using 

molecular markers and use such information to reconstruct the developmental 

trajectories. Recently, high-throughput lineage-tracing methods have been developed 

by CRSIPR/Cas9-based multiplexing DNA barcodes synthesis [54-58]. These barcodes 

are stably registered in the genome and inherited during cell division and differentiation. 

Additional mutations are cumulated in time, through either combinatorial editing at 

multiple gRNA target loci [54, 55, 57] or by sequential editing at a single locus [56, 58]. 

In the latter approach, the investigators introduced genetic mutations at the S. pyogenes 

gRNA-encoding sequence to circumvent the requirement of PAM motif in gRNA 

recognition, enabling the resulting gRNA to repeatedly target its own locus. In addition, 

the DNA barcodes can be sequenced in situ, thereby preserving the spatial information 

[58]. Some of the aforementioned technologies have been applied to study 

developmental loci [54, 55, 57] and immune response [56].  In one study [54], the 

investigators traced the cell lineages in zebrafish, and found that the majority of cells in 

each organ are derived from a small number of progenitor cells, whereas different 

progenitors are biased toward different germ layers and organs. Similar results are 

reported in an independent study [55].  These lineage tracing technologies will likely 

have wide-range applications in mapping developmental and disease progression 

trajectories. 

 

Single-cell multi-omics:  While significant effort has been dedicated to improving the 

quality and throughput of various omic assays, work is also ongoing to develop methods 

to profile multiple sources of information in the same cells. Multi-omics profiling is 

valuable for accurate mapping of cell states and can provide insights into the regulatory 

mechanisms. For example, genomic DNA and mRNA transcripts from the same cells 
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can be quantified by either physical separation [59] or pre-amplification [60], followed by 

high throughput sequencing. In the former, extracted genomic DNA can be further 

processed to bisulfite conversion, leading to simultaneous quantification of the 

methylome and transcriptome [61, 62].  Bioinformatic analysis of the bisulfite 

sequencing data can further detect genetic information [63, 64]. Protein and 

transcriptome have also been measured in the same cells [65]. Multi-omic methods 

applied to single cells have revealed some surprises. For example, profiling DNA and 

RNA variability in single acute lymphoblastic leukemia cells suggests that genetic 

heterogeneity is not responsible for the diverse response of drug treatment (Enver, 

unpublished). 

Recent technologies have moved even beyond single cells to investigate sub-cellular 

localization of biologically active molecules. For example, nanoliter-scale cell 

fractionation or micro-manipulation has been applied to measure subcellular information 

within single cells [66]. On a different front, super-resolution imaging has been applied 

to map the nuclear compartmentalization of chromatin domains [67]. These subcellular 

data provide new insights into the precise mechanisms of various cellular processes.  

Ultimately, we may be able to understand phenotypic differences between genetically 

identical cells in terms of such variations in subcellular organization.   

 

Modeling and predictions: Different cell types usually arise from a linear hierarchy of 

differentiation stages, and one goal of single-cell analysis is to identify previously 

unknown cell types and lineage relationships. Numerous methods have been developed 

to isolate similar cell types from single-cell gene expression data [7, 50, 68, 69]. 

Furthermore, additional methods have been developed to specifically detect rare cell 

subpopulations [70, 71]. To compensate the dropout effect, methods have also been 

developed to impute gene expression based on similar cell types [72].  

Single-cell analysis has helped refine traditional views of cell differentiation. For 

example, A number of studies [14-16, 73] report evidence to suggest that 

megakaryocytes emerge at a “high” level, approximating that of the hematopoietic stem 
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cell (HSC);  this insight challenges the prevailing model that the megakaryocytic lineage 

emerges late in the differentiation cascade. The cell states defined by transcriptomic 

patterns are surprisingly continuous instead of forming distinct, transcriptionally defined 

groups [15, 74].  This apparent continuity of cell states poses practical challenges for 

cell annotation, and conceptually, implies a need for significant revisions to current 

models of cell lineage hierarchy. 

Data from single-cell studies have enabled the development of mathematical models 

that represent the distribution of cell states as one sampled from a dynamical system 

[11, 17, 19, 73]. In this view, cell types are modeled as “attractors” [75], stable states 

that are determined by the underlying gene regulatory networks and sometimes referred 

to as the energy landscape. In some models, stochastic fluctuation, either due to 

intrinsic or extrinsic noise, may facilitate dispersion and transition between attractors 

[11]. Although complex, these mathematical models can be used not only to explain the 

continuity of cell states but, in some cases, predict the initiation events during cell 

differentiation, thereby providing mechanistic insights [11]. In a similar way, the 

hierarchy of cell states can be measured by entropy, which has been applied to inform 

cell differentiation directions [76, 77]. These new methods have opened up new ways to 

think about cell states, not as discrete entities, but as a continuum. To connect these 

two viewpoints, it is critical to determine with high precision the level of natural variation 

that defines the same cell type and distinguish this from the changes linked to functional 

state transitions. A major obstacle for achieving this goal is that the resolution of cell-

state identification is limited by the quality of the underlying scRNA-seq data, which 

varies greatly depending on sequencing depth and other factors. Such differences have 

contributed to the debate over the organizing structure of hematopoietic lineage 

hierarchy [15, 16].   

 

Functional validation.   As single cell data continue to grow in quality and quantity, new 

cell states, lineages, and associated markers are being identified at an accelerated rate. 

It is important to recognize that such findings are typically based on correlative analyses 
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and that their functional relevance needs to be carefully evaluated through further 

experimental validation.   

A first level of validation is to utilize the identified markers to label the predicted cell-type 

and visualize in their original tissue.  For example, unsupervised clustering of 25,000 

single-cell transcriptomes identified 15 types of bipolar neurons [8]. The authors 

identified cell-type specific markers and fluorescently labeled the predicted cell-types by 

DNA FISH. They found that the spatial organization of these predictive cell-types is 

restricted to definitive layers and that different cell-types display distinct morphology, 

thereby supporting their functional identity.   

A deeper level of validation requires design of functional assays to demonstrate that a 

predicted cell type has unique properties. For example, single-cell analysis showed that 

common myeloid progenitors (CMP) occur in two varieties associated with differential 

expression of CD55 [14]. Using an in vitro colony forming assay, the investigators found 

that CD55+ CMP produce predominantly erythroid and megakaryocytic (MegE) 

colonies, whereas few MegE colonies are formed from CD55- CMP, indicating these 

two subpopulations are functionally different. A similar strategy has been applied to 

compare the functional difference between HSC subpopulations, termed MolO and 

NoMO respectively [78]. These investigators found that MolO cells were enriched for 

higher than average CD150 and Sca-1 surface marker expression and lower than 

average CD48 expression.  

In the same vein, engineered animal models can allow isolation of cell populations and 

functional testing. For example, comparative scRNA-seq analysis between HSCs from 

young and old mice identified a gene signature associated with the MegE lineage [79]. 

By using a transgenic mouse strain carrying a VWF-EGFP reporter, the authors verified 

an increased bias toward platelet-priming HSCs in old mice.   

 

Combining scRNA-seq and CRISPR/cas9 based perturbations 
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CRISPR/Cas9 based genetic screens have been widely used to systematically 

characterize gene functions [80, 81].  Recently, this technique has been combined with 

scRNA-seq analysis [82-85], thereby greatly increasing the throughput of functional 

readouts. In these studies, gene activities are disrupted by either genetic mutations [82, 

83, 85] or epigenetic inhibition [84].  gRNA-specific reporter transcripts are synthesized, 

which can be detected along with the mRNAs by scRNA-seq sequencing.  By varying 

the concentration of the gRNA-containing vectors, the technique can be used to study 

the gene function either in isolation or in combination.  In one study [82], the 

investigators applied this technology to analyze the effects of 24 TFs in mediating the 

immune response of dendritic cells.  They found that the TFs form distinct modules 

each targeting a common set of gene program.  Further analysis detected significant 

genetic interactions among a subset of TFs.  In another study [83], the engineered 

hematopoietic progenitor cells were injected into wild-type recipient mice to evaluate 

their effect in hematopoiesis. This allowed them to identify a previously unknown role of 

Cebpb in regulating the balance between dendritic cells and monocytes during 

development. The combination of genome editing and scRNA-seq profiling provides a 

powerful tool for high-throughput dissection of gene functions and will have a wide 

range of applications in biomedical research.    

 

Disease applications . Genomic profiling has been widely used to identify markers, 

mechanisms, and therapeutic targets of diseases. Most studies to date identify disease 

related alterations by comparing genomic profiles obtained from bulk disease samples 

and their normal counterparts. However, these average profiles provide a distorted view 

of the disease sample if it contains significant cellular heterogeneity, as in cancer.  

Single-cell technologies have provided a set of powerful tools to dissect the cellular 

heterogeneity and led to important discoveries in cancer [23, 86-89] and other diseases 

[90, 91].  For example, multiplexing qPCR analysis has identified subtypes of leukemia 

cells with distinct capacity of proliferation [87, 92]. Application of scRNA-seq to cancer 

also led to identification of rare subpopulations associated with drug resistance [23] or 

self-renewal [89], whereas scDNA-seq can be used to reconstruct paths of clonal 
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evolution [21]. Single cell profiling will provide new opportunities for mechanistic 

understanding of the initiation and progression of human diseases and to develop novel 

treatment methods targeting specific cell types. 

 

Interdisciplinary research: We recognize that to overcome each challenge requires 

significant resources of lab and computational infrastructure. To move forward, the field 

needs groups of people with diverse expertise to work together. Interdisciplinary 

approaches are recognized to be important, if not a crucial prerequisite, for addressing 

many open questions, but also come with numerous challenges. First, the lack of 

expertise for parts of an interdisciplinary collaboration requires increased effort and tie 

for communication. The importance of a common language is well known, but remains a 

significant problem in almost every new project. Ideally, this hurdle will be overcome by 

a new generation of students and postdocs who are educated in multiple disciplines like 

biology/medicine, engineering and theoretical sciences. Interdisciplinary science, while 

leading to higher long-term impact, tends to be slower and published in journal of lesser 

impact [93], and is hard to organize and fund . Thus, it needs more patience, in 

particular in environments with funding cycles that require fast short-term output. Finally, 

not only language, but also career paths, scientific and publication cultures, hiring 

procedures and age, and scientific talent and academic motivation vary widely across 

disciplines. While many of these differences pose managerial challenges and should not 

impact scientific merit, in reality they often are the reason for failures of interdisciplinary 

endeavors. Overcoming these problems will require changes in teaching, funding, 

publication and hiring procedures, which would benefit most areas of science, but will 

only have a measurable effect after a few years. 

 

Conclusions 

Single-cell analysis is an exciting and rapidly expanding field that holds tremendous 

potential to improve our understanding of fundamental biological problems and to better 

understand the nature and complexity of human disease in order to develop more 
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effective therapies. To achieve these ambitious goals, proper control needs to be taken 

to warrant the detection of genuine heterogeneity existing in cell population and tissue 

samples. In addition, we need to invest in development of new methods. Single-cell 

data presents a number of intrinsic challenges, including systematic noise, the features 

of biological systems, and the sparsity and complexity of the data. The past few years 

have witnessed remarkable growth in the field, a trend we believe will continue, 

enabling more rigorous development of methods and deeper understanding of biological 

complexity. 
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